// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/video_util.h" #include #include "base/logging.h" #include "base/numerics/safe_conversions.h" #include "base/numerics/safe_math.h" #include "media/base/video_frame.h" #include "media/base/yuv_convert.h" namespace media { namespace { // Empty method used for keeping a reference to the original media::VideoFrame. void ReleaseOriginalFrame(const scoped_refptr& frame) {} } // namespace gfx::Size GetNaturalSize(const gfx::Size& visible_size, int aspect_ratio_numerator, int aspect_ratio_denominator) { if (aspect_ratio_denominator == 0 || aspect_ratio_numerator < 0 || aspect_ratio_denominator < 0) return gfx::Size(); double aspect_ratio = aspect_ratio_numerator / static_cast(aspect_ratio_denominator); return gfx::Size(round(visible_size.width() * aspect_ratio), visible_size.height()); } void FillYUV(VideoFrame* frame, uint8_t y, uint8_t u, uint8_t v) { // Fill the Y plane. uint8_t* y_plane = frame->data(VideoFrame::kYPlane); int y_rows = frame->rows(VideoFrame::kYPlane); int y_row_bytes = frame->row_bytes(VideoFrame::kYPlane); for (int i = 0; i < y_rows; ++i) { memset(y_plane, y, y_row_bytes); y_plane += frame->stride(VideoFrame::kYPlane); } // Fill the U and V planes. uint8_t* u_plane = frame->data(VideoFrame::kUPlane); uint8_t* v_plane = frame->data(VideoFrame::kVPlane); int uv_rows = frame->rows(VideoFrame::kUPlane); int u_row_bytes = frame->row_bytes(VideoFrame::kUPlane); int v_row_bytes = frame->row_bytes(VideoFrame::kVPlane); for (int i = 0; i < uv_rows; ++i) { memset(u_plane, u, u_row_bytes); memset(v_plane, v, v_row_bytes); u_plane += frame->stride(VideoFrame::kUPlane); v_plane += frame->stride(VideoFrame::kVPlane); } } void FillYUVA(VideoFrame* frame, uint8_t y, uint8_t u, uint8_t v, uint8_t a) { // Fill Y, U and V planes. FillYUV(frame, y, u, v); // Fill the A plane. uint8_t* a_plane = frame->data(VideoFrame::kAPlane); int a_rows = frame->rows(VideoFrame::kAPlane); int a_row_bytes = frame->row_bytes(VideoFrame::kAPlane); for (int i = 0; i < a_rows; ++i) { memset(a_plane, a, a_row_bytes); a_plane += frame->stride(VideoFrame::kAPlane); } } static void LetterboxPlane(VideoFrame* frame, int plane, const gfx::Rect& view_area, uint8_t fill_byte) { uint8_t* ptr = frame->data(plane); const int rows = frame->rows(plane); const int row_bytes = frame->row_bytes(plane); const int stride = frame->stride(plane); CHECK_GE(stride, row_bytes); CHECK_GE(view_area.x(), 0); CHECK_GE(view_area.y(), 0); CHECK_LE(view_area.right(), row_bytes); CHECK_LE(view_area.bottom(), rows); int y = 0; for (; y < view_area.y(); y++) { memset(ptr, fill_byte, row_bytes); ptr += stride; } if (view_area.width() < row_bytes) { for (; y < view_area.bottom(); y++) { if (view_area.x() > 0) { memset(ptr, fill_byte, view_area.x()); } if (view_area.right() < row_bytes) { memset(ptr + view_area.right(), fill_byte, row_bytes - view_area.right()); } ptr += stride; } } else { y += view_area.height(); ptr += stride * view_area.height(); } for (; y < rows; y++) { memset(ptr, fill_byte, row_bytes); ptr += stride; } } void LetterboxYUV(VideoFrame* frame, const gfx::Rect& view_area) { DCHECK(!(view_area.x() & 1)); DCHECK(!(view_area.y() & 1)); DCHECK(!(view_area.width() & 1)); DCHECK(!(view_area.height() & 1)); DCHECK(frame->format() == PIXEL_FORMAT_YV12 || frame->format() == PIXEL_FORMAT_I420); LetterboxPlane(frame, VideoFrame::kYPlane, view_area, 0x00); gfx::Rect half_view_area(view_area.x() / 2, view_area.y() / 2, view_area.width() / 2, view_area.height() / 2); LetterboxPlane(frame, VideoFrame::kUPlane, half_view_area, 0x80); LetterboxPlane(frame, VideoFrame::kVPlane, half_view_area, 0x80); } void RotatePlaneByPixels(const uint8_t* src, uint8_t* dest, int width, int height, int rotation, // Clockwise. bool flip_vert, bool flip_horiz) { DCHECK((width > 0) && (height > 0) && ((width & 1) == 0) && ((height & 1) == 0) && (rotation >= 0) && (rotation < 360) && (rotation % 90 == 0)); // Consolidate cases. Only 0 and 90 are left. if (rotation == 180 || rotation == 270) { rotation -= 180; flip_vert = !flip_vert; flip_horiz = !flip_horiz; } int num_rows = height; int num_cols = width; int src_stride = width; // During pixel copying, the corresponding incremental of dest pointer // when src pointer moves to next row. int dest_row_step = width; // During pixel copying, the corresponding incremental of dest pointer // when src pointer moves to next column. int dest_col_step = 1; if (rotation == 0) { if (flip_horiz) { // Use pixel copying. dest_col_step = -1; if (flip_vert) { // Rotation 180. dest_row_step = -width; dest += height * width - 1; } else { dest += width - 1; } } else { if (flip_vert) { // Fast copy by rows. dest += width * (height - 1); for (int row = 0; row < height; ++row) { memcpy(dest, src, width); src += width; dest -= width; } } else { memcpy(dest, src, width * height); } return; } } else if (rotation == 90) { int offset; if (width > height) { offset = (width - height) / 2; src += offset; num_rows = num_cols = height; } else { offset = (height - width) / 2; src += width * offset; num_rows = num_cols = width; } dest_col_step = (flip_vert ? -width : width); dest_row_step = (flip_horiz ? 1 : -1); if (flip_horiz) { if (flip_vert) { dest += (width > height ? width * (height - 1) + offset : width * (height - offset - 1)); } else { dest += (width > height ? offset : width * offset); } } else { if (flip_vert) { dest += (width > height ? width * height - offset - 1 : width * (height - offset) - 1); } else { dest += (width > height ? width - offset - 1 : width * (offset + 1) - 1); } } } else { NOTREACHED(); } // Copy pixels. for (int row = 0; row < num_rows; ++row) { const uint8_t* src_ptr = src; uint8_t* dest_ptr = dest; for (int col = 0; col < num_cols; ++col) { *dest_ptr = *src_ptr++; dest_ptr += dest_col_step; } src += src_stride; dest += dest_row_step; } } // Helper function to return |a| divided by |b|, rounded to the nearest integer. static int RoundedDivision(int64_t a, int b) { DCHECK_GE(a, 0); DCHECK_GT(b, 0); base::CheckedNumeric result(a); result += b / 2; result /= b; return base::checked_cast(result.ValueOrDie()); } // Common logic for the letterboxing and scale-within/scale-encompassing // functions. Scales |size| to either fit within or encompass |target|, // depending on whether |fit_within_target| is true. static gfx::Size ScaleSizeToTarget(const gfx::Size& size, const gfx::Size& target, bool fit_within_target) { if (size.IsEmpty()) return gfx::Size(); // Corner case: Aspect ratio is undefined. const int64_t x = static_cast(size.width()) * target.height(); const int64_t y = static_cast(size.height()) * target.width(); const bool use_target_width = fit_within_target ? (y < x) : (x < y); return use_target_width ? gfx::Size(target.width(), RoundedDivision(y, size.width())) : gfx::Size(RoundedDivision(x, size.height()), target.height()); } gfx::Rect ComputeLetterboxRegion(const gfx::Rect& bounds, const gfx::Size& content) { // If |content| has an undefined aspect ratio, let's not try to divide by // zero. if (content.IsEmpty()) return gfx::Rect(); gfx::Rect result = bounds; result.ClampToCenteredSize(ScaleSizeToTarget(content, bounds.size(), true)); return result; } gfx::Size ScaleSizeToFitWithinTarget(const gfx::Size& size, const gfx::Size& target) { return ScaleSizeToTarget(size, target, true); } gfx::Size ScaleSizeToEncompassTarget(const gfx::Size& size, const gfx::Size& target) { return ScaleSizeToTarget(size, target, false); } gfx::Size PadToMatchAspectRatio(const gfx::Size& size, const gfx::Size& target) { if (target.IsEmpty()) return gfx::Size(); // Aspect ratio is undefined. const int64_t x = static_cast(size.width()) * target.height(); const int64_t y = static_cast(size.height()) * target.width(); if (x < y) return gfx::Size(RoundedDivision(y, target.height()), size.height()); return gfx::Size(size.width(), RoundedDivision(x, target.width())); } void CopyRGBToVideoFrame(const uint8_t* source, int stride, const gfx::Rect& region_in_frame, VideoFrame* frame) { const int kY = VideoFrame::kYPlane; const int kU = VideoFrame::kUPlane; const int kV = VideoFrame::kVPlane; CHECK_EQ(frame->stride(kU), frame->stride(kV)); const int uv_stride = frame->stride(kU); if (region_in_frame != gfx::Rect(frame->coded_size())) { LetterboxYUV(frame, region_in_frame); } const int y_offset = region_in_frame.x() + (region_in_frame.y() * frame->stride(kY)); const int uv_offset = region_in_frame.x() / 2 + (region_in_frame.y() / 2 * uv_stride); ConvertRGB32ToYUV(source, frame->data(kY) + y_offset, frame->data(kU) + uv_offset, frame->data(kV) + uv_offset, region_in_frame.width(), region_in_frame.height(), stride, frame->stride(kY), uv_stride); } scoped_refptr WrapAsI420VideoFrame( const scoped_refptr& frame) { DCHECK_EQ(VideoFrame::STORAGE_OWNED_MEMORY, frame->storage_type()); DCHECK_EQ(PIXEL_FORMAT_YV12A, frame->format()); scoped_refptr wrapped_frame = media::VideoFrame::WrapVideoFrame(frame, PIXEL_FORMAT_I420, frame->visible_rect(), frame->natural_size()); if (!wrapped_frame) return nullptr; wrapped_frame->AddDestructionObserver( base::Bind(&ReleaseOriginalFrame, frame)); return wrapped_frame; } } // namespace media