// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This webpage shows layout of YV12 and other YUV formats // http://www.fourcc.org/yuv.php // The actual conversion is best described here // http://en.wikipedia.org/wiki/YUV // An article on optimizing YUV conversion using tables instead of multiplies // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf // // YV12 is a full plane of Y and a half height, half width chroma planes // YV16 is a full plane of Y and a full height, half width chroma planes // // ARGB pixel format is output, which on little endian is stored as BGRA. // The alpha is set to 255, allowing the application to use RGBA or RGB32. #include "media/base/yuv_convert.h" #include "base/cpu.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "build/build_config.h" #include "media/base/simd/convert_rgb_to_yuv.h" #include "media/base/simd/convert_yuv_to_rgb.h" #include "media/base/simd/filter_yuv.h" #include "media/base/simd/yuv_to_rgb_table.h" #if defined(ARCH_CPU_X86_FAMILY) #if defined(COMPILER_MSVC) #include #else #include #endif #endif // Assembly functions are declared without namespace. extern "C" { void EmptyRegisterState_MMX(); } // extern "C" namespace media { typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int); typedef void (*ConvertRGBToYUVProc)(const uint8*, uint8*, uint8*, uint8*, int, int, int, int, int); typedef void (*ConvertYUVToRGB32Proc)(const uint8*, const uint8*, const uint8*, uint8*, int, int, int, int, int, YUVType); typedef void (*ConvertYUVAToARGBProc)(const uint8*, const uint8*, const uint8*, const uint8*, uint8*, int, int, int, int, int, int, YUVType); typedef void (*ConvertYUVToRGB32RowProc)(const uint8*, const uint8*, const uint8*, uint8*, ptrdiff_t, const int16[1024][4]); typedef void (*ConvertYUVAToARGBRowProc)(const uint8*, const uint8*, const uint8*, const uint8*, uint8*, ptrdiff_t, const int16[1024][4]); typedef void (*ScaleYUVToRGB32RowProc)(const uint8*, const uint8*, const uint8*, uint8*, ptrdiff_t, ptrdiff_t, const int16[1024][4]); static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL; static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL; static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL; static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL; static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL; static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL; static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL; static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL; // Empty SIMD registers state after using them. void EmptyRegisterStateStub() {} #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) void EmptyRegisterStateIntrinsic() { _mm_empty(); } #endif typedef void (*EmptyRegisterStateProc)(); static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL; // Get the appropriate value to bitshift by for vertical indices. int GetVerticalShift(YUVType type) { switch (type) { case YV16: return 0; case YV12: case YV12J: return 1; } NOTREACHED(); return 0; } const int16 (&GetLookupTable(YUVType type))[1024][4] { switch (type) { case YV12: case YV16: return kCoefficientsRgbY; case YV12J: return kCoefficientsRgbY_JPEG; } NOTREACHED(); return kCoefficientsRgbY; } void InitializeCPUSpecificYUVConversions() { CHECK(!g_filter_yuv_rows_proc_); CHECK(!g_convert_yuv_to_rgb32_row_proc_); CHECK(!g_scale_yuv_to_rgb32_row_proc_); CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_); CHECK(!g_convert_rgb32_to_yuv_proc_); CHECK(!g_convert_rgb24_to_yuv_proc_); CHECK(!g_convert_yuv_to_rgb32_proc_); CHECK(!g_convert_yuva_to_argb_proc_); CHECK(!g_empty_register_state_proc_); g_filter_yuv_rows_proc_ = FilterYUVRows_C; g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C; g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C; g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C; g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C; g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C; g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C; g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C; g_empty_register_state_proc_ = EmptyRegisterStateStub; // Assembly code confuses MemorySanitizer. #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) base::CPU cpu; if (cpu.has_mmx()) { g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX; g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX; g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX; g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX; g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX; #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) g_filter_yuv_rows_proc_ = FilterYUVRows_MMX; g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic; #else g_empty_register_state_proc_ = EmptyRegisterState_MMX; #endif } if (cpu.has_sse()) { g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE; g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE; g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE; g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE; } if (cpu.has_sse2()) { g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2; g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2; #if defined(ARCH_CPU_X86_64) g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64; // Technically this should be in the MMX section, but MSVC will optimize out // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit // tests, if that decision can be made at compile time. Since all X64 CPUs // have SSE2, we can hack around this by making the selection here. g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64; #endif } if (cpu.has_ssse3()) { g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3; // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved. // See: crbug.com/100462 } #endif } // Empty SIMD registers state after using them. void EmptyRegisterState() { g_empty_register_state_proc_(); } // 16.16 fixed point arithmetic const int kFractionBits = 16; const int kFractionMax = 1 << kFractionBits; const int kFractionMask = ((1 << kFractionBits) - 1); // Scale a frame of YUV to 32 bit ARGB. void ScaleYUVToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type, Rotate view_rotate, ScaleFilter filter) { // Handle zero sized sources and destinations. if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) || (yuv_type == YV16 && (source_width < 2 || source_height < 1)) || width == 0 || height == 0) return; // 4096 allows 3 buffers to fit in 12k. // Helps performance on CPU with 16K L1 cache. // Large enough for 3830x2160 and 30" displays which are 2560x1600. const int kFilterBufferSize = 4096; // Disable filtering if the screen is too big (to avoid buffer overflows). // This should never happen to regular users: they don't have monitors // wider than 4096 pixels. // TODO(fbarchard): Allow rotated videos to filter. if (source_width > kFilterBufferSize || view_rotate) filter = FILTER_NONE; unsigned int y_shift = GetVerticalShift(yuv_type); // Diagram showing origin and direction of source sampling. // ->0 4<- // 7 3 // // 6 5 // ->1 2<- // Rotations that start at right side of image. if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { y_buf += source_width - 1; u_buf += source_width / 2 - 1; v_buf += source_width / 2 - 1; source_width = -source_width; } // Rotations that start at bottom of image. if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { y_buf += (source_height - 1) * y_pitch; u_buf += ((source_height >> y_shift) - 1) * uv_pitch; v_buf += ((source_height >> y_shift) - 1) * uv_pitch; source_height = -source_height; } int source_dx = source_width * kFractionMax / width; if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { int tmp = height; height = width; width = tmp; tmp = source_height; source_height = source_width; source_width = tmp; int source_dy = source_height * kFractionMax / height; source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits; if (view_rotate == ROTATE_90) { y_pitch = -1; uv_pitch = -1; source_height = -source_height; } else { y_pitch = 1; uv_pitch = 1; } } // Need padding because FilterRows() will write 1 to 16 extra pixels // after the end for SSE2 version. uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; uint8* ybuf = reinterpret_cast(reinterpret_cast(yuvbuf + 15) & ~15); uint8* ubuf = ybuf + kFilterBufferSize; uint8* vbuf = ubuf + kFilterBufferSize; // TODO(fbarchard): Fixed point math is off by 1 on negatives. // We take a y-coordinate in [0,1] space in the source image space, and // transform to a y-coordinate in [0,1] space in the destination image space. // Note that the coordinate endpoints lie on pixel boundaries, not on pixel // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and // 0.75. The formula is as follows (in fixed-point arithmetic): // y_dst = dst_height * ((y_src + 0.5) / src_height) // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5)) // Implement this here as an accumulator + delta, to avoid expensive math // in the loop. int source_y_subpixel_accum = ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2); int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height; // TODO(fbarchard): Split this into separate function for better efficiency. for (int y = 0; y < height; ++y) { uint8* dest_pixel = rgb_buf + y * rgb_pitch; int source_y_subpixel = source_y_subpixel_accum; source_y_subpixel_accum += source_y_subpixel_delta; if (source_y_subpixel < 0) source_y_subpixel = 0; else if (source_y_subpixel > ((source_height - 1) << kFractionBits)) source_y_subpixel = (source_height - 1) << kFractionBits; const uint8* y_ptr = NULL; const uint8* u_ptr = NULL; const uint8* v_ptr = NULL; // Apply vertical filtering if necessary. // TODO(fbarchard): Remove memcpy when not necessary. if (filter & media::FILTER_BILINEAR_V) { int source_y = source_y_subpixel >> kFractionBits; y_ptr = y_buf + source_y * y_pitch; u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; // Vertical scaler uses 16.8 fixed point. int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; if (source_y_fraction != 0) { g_filter_yuv_rows_proc_( ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction); } else { memcpy(ybuf, y_ptr, source_width); } y_ptr = ybuf; ybuf[source_width] = ybuf[source_width - 1]; int uv_source_width = (source_width + 1) / 2; int source_uv_fraction; // For formats with half-height UV planes, each even-numbered pixel row // should not interpolate, since the next row to interpolate from should // be a duplicate of the current row. if (y_shift && (source_y & 0x1) == 0) source_uv_fraction = 0; else source_uv_fraction = source_y_fraction; if (source_uv_fraction != 0) { g_filter_yuv_rows_proc_( ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction); g_filter_yuv_rows_proc_( vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction); } else { memcpy(ubuf, u_ptr, uv_source_width); memcpy(vbuf, v_ptr, uv_source_width); } u_ptr = ubuf; v_ptr = vbuf; ubuf[uv_source_width] = ubuf[uv_source_width - 1]; vbuf[uv_source_width] = vbuf[uv_source_width - 1]; } else { // Offset by 1/2 pixel for center sampling. int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits; y_ptr = y_buf + source_y * y_pitch; u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; } if (source_dx == kFractionMax) { // Not scaled g_convert_yuv_to_rgb32_row_proc_( y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY); } else { if (filter & FILTER_BILINEAR_H) { g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx, kCoefficientsRgbY); } else { g_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx, kCoefficientsRgbY); } } } g_empty_register_state_proc_(); } // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle. void ScaleYUVToRGB32WithRect(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int dest_width, int dest_height, int dest_rect_left, int dest_rect_top, int dest_rect_right, int dest_rect_bottom, int y_pitch, int uv_pitch, int rgb_pitch) { // This routine doesn't currently support up-scaling. CHECK_LE(dest_width, source_width); CHECK_LE(dest_height, source_height); // Sanity-check the destination rectangle. DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width); DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height); DCHECK(dest_rect_right > dest_rect_left); DCHECK(dest_rect_bottom > dest_rect_top); // Fixed-point value of vertical and horizontal scale down factor. // Values are in the format 16.16. int y_step = kFractionMax * source_height / dest_height; int x_step = kFractionMax * source_width / dest_width; // Determine the coordinates of the rectangle in 16.16 coords. // NB: Our origin is the *center* of the top/left pixel, NOT its top/left. // If we're down-scaling by more than a factor of two, we start with a 50% // fraction to avoid degenerating to point-sampling - we should really just // fix the fraction at 50% for all pixels in that case. int source_left = dest_rect_left * x_step; int source_right = (dest_rect_right - 1) * x_step; if (x_step < kFractionMax * 2) { source_left += ((x_step - kFractionMax) / 2); source_right += ((x_step - kFractionMax) / 2); } else { source_left += kFractionMax / 2; source_right += kFractionMax / 2; } int source_top = dest_rect_top * y_step; if (y_step < kFractionMax * 2) { source_top += ((y_step - kFractionMax) / 2); } else { source_top += kFractionMax / 2; } // Determine the parts of the Y, U and V buffers to interpolate. int source_y_left = source_left >> kFractionBits; int source_y_right = std::min((source_right >> kFractionBits) + 2, source_width + 1); int source_uv_left = source_y_left / 2; int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2, (source_width + 1) / 2); int source_y_width = source_y_right - source_y_left; int source_uv_width = source_uv_right - source_uv_left; // Determine number of pixels in each output row. int dest_rect_width = dest_rect_right - dest_rect_left; // Intermediate buffer for vertical interpolation. // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache, // and is bigger than most users will generally need. // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the // FilterYUVRowProcs have alignment requirements, and the SSE version can // write up to 16 bytes past the end of the buffer. const int kFilterBufferSize = 4096; const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize; uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16]; // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind. if (RunningOnValgrind()) memset(yuv_temp, 0, sizeof(yuv_temp)); uint8* y_temp = reinterpret_cast( reinterpret_cast(yuv_temp + 15) & ~15); uint8* u_temp = y_temp + kFilterBufferSize; uint8* v_temp = u_temp + kFilterBufferSize; // Move to the top-left pixel of output. rgb_buf += dest_rect_top * rgb_pitch; rgb_buf += dest_rect_left * 4; // For each destination row perform interpolation and color space // conversion to produce the output. for (int row = dest_rect_top; row < dest_rect_bottom; ++row) { // Round the fixed-point y position to get the current row. int source_row = source_top >> kFractionBits; int source_uv_row = source_row / 2; DCHECK(source_row < source_height); // Locate the first row for each plane for interpolation. const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left; const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left; const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left; const uint8* y1_ptr = NULL; const uint8* u1_ptr = NULL; const uint8* v1_ptr = NULL; // Locate the second row for interpolation, being careful not to overrun. if (source_row + 1 >= source_height) { y1_ptr = y0_ptr; } else { y1_ptr = y0_ptr + y_pitch; } if (source_uv_row + 1 >= (source_height + 1) / 2) { u1_ptr = u0_ptr; v1_ptr = v0_ptr; } else { u1_ptr = u0_ptr + uv_pitch; v1_ptr = v0_ptr + uv_pitch; } if (!kAvoidUsingOptimizedFilter) { // Vertical scaler uses 16.8 fixed point. int fraction = (source_top & kFractionMask) >> 8; g_filter_yuv_rows_proc_( y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction); g_filter_yuv_rows_proc_( u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction); g_filter_yuv_rows_proc_( v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction); // Perform horizontal interpolation and color space conversion. // TODO(hclam): Use the MMX version after more testing. LinearScaleYUVToRGB32RowWithRange_C(y_temp, u_temp, v_temp, rgb_buf, dest_rect_width, source_left, x_step, kCoefficientsRgbY); } else { // If the frame is too large then we linear scale a single row. LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, u0_ptr, v0_ptr, rgb_buf, dest_rect_width, source_left, x_step, kCoefficientsRgbY); } // Advance vertically in the source and destination image. source_top += y_step; rgb_buf += rgb_pitch; } g_empty_register_state_proc_(); } void ConvertRGB32ToYUV(const uint8* rgbframe, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height, int rgbstride, int ystride, int uvstride) { g_convert_rgb32_to_yuv_proc_(rgbframe, yplane, uplane, vplane, width, height, rgbstride, ystride, uvstride); } void ConvertRGB24ToYUV(const uint8* rgbframe, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height, int rgbstride, int ystride, int uvstride) { g_convert_rgb24_to_yuv_proc_(rgbframe, yplane, uplane, vplane, width, height, rgbstride, ystride, uvstride); } void ConvertYUY2ToYUV(const uint8* src, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height) { for (int i = 0; i < height / 2; ++i) { for (int j = 0; j < (width / 2); ++j) { yplane[0] = src[0]; *uplane = src[1]; yplane[1] = src[2]; *vplane = src[3]; src += 4; yplane += 2; uplane++; vplane++; } for (int j = 0; j < (width / 2); ++j) { yplane[0] = src[0]; yplane[1] = src[2]; src += 4; yplane += 2; } } } void ConvertNV21ToYUV(const uint8* src, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height) { int y_plane_size = width * height; memcpy(yplane, src, y_plane_size); src += y_plane_size; int u_plane_size = y_plane_size >> 2; for (int i = 0; i < u_plane_size; ++i) { *vplane++ = *src++; *uplane++ = *src++; } } void ConvertYUVToRGB32(const uint8* yplane, const uint8* uplane, const uint8* vplane, uint8* rgbframe, int width, int height, int ystride, int uvstride, int rgbstride, YUVType yuv_type) { g_convert_yuv_to_rgb32_proc_(yplane, uplane, vplane, rgbframe, width, height, ystride, uvstride, rgbstride, yuv_type); } void ConvertYUVAToARGB(const uint8* yplane, const uint8* uplane, const uint8* vplane, const uint8* aplane, uint8* rgbframe, int width, int height, int ystride, int uvstride, int astride, int rgbstride, YUVType yuv_type) { g_convert_yuva_to_argb_proc_(yplane, uplane, vplane, aplane, rgbframe, width, height, ystride, uvstride, astride, rgbstride, yuv_type); } } // namespace media