// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This webpage shows layout of YV12 and other YUV formats // http://www.fourcc.org/yuv.php // The actual conversion is best described here // http://en.wikipedia.org/wiki/YUV // An article on optimizing YUV conversion using tables instead of multiplies // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf // // YV12 is a full plane of Y and a half height, half width chroma planes // YV16 is a full plane of Y and a full height, half width chroma planes // // ARGB pixel format is output, which on little endian is stored as BGRA. // The alpha is set to 255, allowing the application to use RGBA or RGB32. #include "media/base/yuv_convert.h" #include "base/logging.h" #include "build/build_config.h" #include "media/base/cpu_features.h" #include "media/base/simd/convert_rgb_to_yuv.h" #include "media/base/simd/convert_yuv_to_rgb.h" #include "media/base/simd/filter_yuv.h" #if defined(ARCH_CPU_X86_FAMILY) #if defined(COMPILER_MSVC) #include #else #include #endif #endif namespace media { static FilterYUVRowsProc ChooseFilterYUVRowsProc() { #if defined(ARCH_CPU_X86_FAMILY) if (hasSSE2()) return &FilterYUVRows_SSE2; if (hasMMX()) return &FilterYUVRows_MMX; #endif return &FilterYUVRows_C; } static ConvertYUVToRGB32RowProc ChooseConvertYUVToRGB32RowProc() { #if defined(ARCH_CPU_X86_FAMILY) if (hasSSE()) return &ConvertYUVToRGB32Row_SSE; if (hasMMX()) return &ConvertYUVToRGB32Row_MMX; #endif return &ConvertYUVToRGB32Row_C; } static ScaleYUVToRGB32RowProc ChooseScaleYUVToRGB32RowProc() { #if defined(ARCH_CPU_X86_FAMILY) #if defined(ARCH_CPU_X86_64) // Use 64-bits version if possible. return &ScaleYUVToRGB32Row_SSE2_X64; #endif // Choose the best one on 32-bits system. if (hasSSE()) return &ScaleYUVToRGB32Row_SSE; if (hasMMX()) return &ScaleYUVToRGB32Row_MMX; #endif return &ScaleYUVToRGB32Row_C; } static ScaleYUVToRGB32RowProc ChooseLinearScaleYUVToRGB32RowProc() { #if defined(ARCH_CPU_X86_FAMILY) #if defined(ARCH_CPU_X86_64) // Use 64-bits version if possible. return &LinearScaleYUVToRGB32Row_MMX_X64; #endif // 32-bits system. if (hasSSE()) return &LinearScaleYUVToRGB32Row_SSE; if (hasMMX()) return &LinearScaleYUVToRGB32Row_MMX; #endif return &LinearScaleYUVToRGB32Row_C; } // Empty SIMD registers state after using them. void EmptyRegisterState() { #if defined(ARCH_CPU_X86_FAMILY) static bool checked = false; static bool has_mmx = false; if (!checked) { has_mmx = hasMMX(); checked = true; } if (has_mmx) _mm_empty(); #endif } // 16.16 fixed point arithmetic const int kFractionBits = 16; const int kFractionMax = 1 << kFractionBits; const int kFractionMask = ((1 << kFractionBits) - 1); // Scale a frame of YUV to 32 bit ARGB. void ScaleYUVToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type, Rotate view_rotate, ScaleFilter filter) { static FilterYUVRowsProc filter_proc = NULL; static ConvertYUVToRGB32RowProc convert_proc = NULL; static ScaleYUVToRGB32RowProc scale_proc = NULL; static ScaleYUVToRGB32RowProc linear_scale_proc = NULL; if (!filter_proc) filter_proc = ChooseFilterYUVRowsProc(); if (!convert_proc) convert_proc = ChooseConvertYUVToRGB32RowProc(); if (!scale_proc) scale_proc = ChooseScaleYUVToRGB32RowProc(); if (!linear_scale_proc) linear_scale_proc = ChooseLinearScaleYUVToRGB32RowProc(); // Handle zero sized sources and destinations. if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) || (yuv_type == YV16 && (source_width < 2 || source_height < 1)) || width == 0 || height == 0) return; // 4096 allows 3 buffers to fit in 12k. // Helps performance on CPU with 16K L1 cache. // Large enough for 3830x2160 and 30" displays which are 2560x1600. const int kFilterBufferSize = 4096; // Disable filtering if the screen is too big (to avoid buffer overflows). // This should never happen to regular users: they don't have monitors // wider than 4096 pixels. // TODO(fbarchard): Allow rotated videos to filter. if (source_width > kFilterBufferSize || view_rotate) filter = FILTER_NONE; unsigned int y_shift = yuv_type; // Diagram showing origin and direction of source sampling. // ->0 4<- // 7 3 // // 6 5 // ->1 2<- // Rotations that start at right side of image. if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { y_buf += source_width - 1; u_buf += source_width / 2 - 1; v_buf += source_width / 2 - 1; source_width = -source_width; } // Rotations that start at bottom of image. if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { y_buf += (source_height - 1) * y_pitch; u_buf += ((source_height >> y_shift) - 1) * uv_pitch; v_buf += ((source_height >> y_shift) - 1) * uv_pitch; source_height = -source_height; } int source_dx = source_width * kFractionMax / width; int source_dy = source_height * kFractionMax / height; if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { int tmp = height; height = width; width = tmp; tmp = source_height; source_height = source_width; source_width = tmp; int original_dx = source_dx; int original_dy = source_dy; source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; source_dy = original_dx; if (view_rotate == ROTATE_90) { y_pitch = -1; uv_pitch = -1; source_height = -source_height; } else { y_pitch = 1; uv_pitch = 1; } } // Need padding because FilterRows() will write 1 to 16 extra pixels // after the end for SSE2 version. uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; uint8* ybuf = reinterpret_cast(reinterpret_cast(yuvbuf + 15) & ~15); uint8* ubuf = ybuf + kFilterBufferSize; uint8* vbuf = ubuf + kFilterBufferSize; // TODO(fbarchard): Fixed point math is off by 1 on negatives. int yscale_fixed = (source_height << kFractionBits) / height; // TODO(fbarchard): Split this into separate function for better efficiency. for (int y = 0; y < height; ++y) { uint8* dest_pixel = rgb_buf + y * rgb_pitch; int source_y_subpixel = (y * yscale_fixed); if (yscale_fixed >= (kFractionMax * 2)) { source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. } int source_y = source_y_subpixel >> kFractionBits; const uint8* y0_ptr = y_buf + source_y * y_pitch; const uint8* y1_ptr = y0_ptr + y_pitch; const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; const uint8* u1_ptr = u0_ptr + uv_pitch; const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; const uint8* v1_ptr = v0_ptr + uv_pitch; // vertical scaler uses 16.8 fixed point int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; int source_uv_fraction = ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; const uint8* y_ptr = y0_ptr; const uint8* u_ptr = u0_ptr; const uint8* v_ptr = v0_ptr; // Apply vertical filtering if necessary. // TODO(fbarchard): Remove memcpy when not necessary. if (filter & media::FILTER_BILINEAR_V) { if (yscale_fixed != kFractionMax && source_y_fraction && ((source_y + 1) < source_height)) { filter_proc(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); } else { memcpy(ybuf, y0_ptr, source_width); } y_ptr = ybuf; ybuf[source_width] = ybuf[source_width-1]; int uv_source_width = (source_width + 1) / 2; if (yscale_fixed != kFractionMax && source_uv_fraction && (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { filter_proc(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); filter_proc(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); } else { memcpy(ubuf, u0_ptr, uv_source_width); memcpy(vbuf, v0_ptr, uv_source_width); } u_ptr = ubuf; v_ptr = vbuf; ubuf[uv_source_width] = ubuf[uv_source_width - 1]; vbuf[uv_source_width] = vbuf[uv_source_width - 1]; } if (source_dx == kFractionMax) { // Not scaled convert_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width); } else { if (filter & FILTER_BILINEAR_H) { linear_scale_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } else { scale_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } } } EmptyRegisterState(); } void ConvertRGB32ToYUV(const uint8* rgbframe, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height, int rgbstride, int ystride, int uvstride) { static void (*convert_proc)(const uint8*, uint8*, uint8*, uint8*, int, int, int, int, int) = NULL; if (!convert_proc) { #if defined(ARCH_CPU_ARM_FAMILY) // For ARM processors, always use C version. // TODO(hclam): Implement a NEON version. convert_proc = &ConvertRGB32ToYUV_C; #else if (hasSSSE3()) convert_proc = &ConvertRGB32ToYUV_SSSE3; else if (hasSSE2()) convert_proc = &ConvertRGB32ToYUV_SSE2; else convert_proc = &ConvertRGB32ToYUV_C; #endif } convert_proc(rgbframe, yplane, uplane, vplane, width, height, rgbstride, ystride, uvstride); } void ConvertRGB24ToYUV(const uint8* rgbframe, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height, int rgbstride, int ystride, int uvstride) { #if defined(ARCH_CPU_ARM_FAMILY) ConvertRGB24ToYUV_C(rgbframe, yplane, uplane, vplane, width, height, rgbstride, ystride, uvstride); #else static void (*convert_proc)(const uint8*, uint8*, uint8*, uint8*, int, int, int, int, int) = NULL; if (!convert_proc) { if (hasSSSE3()) convert_proc = &ConvertRGB24ToYUV_SSSE3; else convert_proc = &ConvertRGB24ToYUV_C; } convert_proc(rgbframe, yplane, uplane, vplane, width, height, rgbstride, ystride, uvstride); #endif } void ConvertYUY2ToYUV(const uint8* src, uint8* yplane, uint8* uplane, uint8* vplane, int width, int height) { for (int i = 0; i < height / 2; ++i) { for (int j = 0; j < (width / 2); ++j) { yplane[0] = src[0]; *uplane = src[1]; yplane[1] = src[2]; *vplane = src[3]; src += 4; yplane += 2; uplane++; vplane++; } for (int j = 0; j < (width / 2); ++j) { yplane[0] = src[0]; yplane[1] = src[2]; src += 4; yplane += 2; } } } void ConvertYUVToRGB32(const uint8* yplane, const uint8* uplane, const uint8* vplane, uint8* rgbframe, int width, int height, int ystride, int uvstride, int rgbstride, YUVType yuv_type) { #if defined(ARCH_CPU_ARM_FAMILY) ConvertYUVToRGB32_C(yplane, uplane, vplane, rgbframe, width, height, ystride, uvstride, rgbstride, yuv_type); #else static ConvertYUVToRGB32Proc convert_proc = NULL; if (!convert_proc) { if (hasSSE()) convert_proc = &ConvertYUVToRGB32_SSE; else if (hasMMX()) convert_proc = &ConvertYUVToRGB32_MMX; else convert_proc = &ConvertYUVToRGB32_C; } convert_proc(yplane, uplane, vplane, rgbframe, width, height, ystride, uvstride, rgbstride, yuv_type); #endif } } // namespace media