// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This webpage shows layout of YV12 and other YUV formats // http://www.fourcc.org/yuv.php // The actual conversion is best described here // http://en.wikipedia.org/wiki/YUV // An article on optimizing YUV conversion using tables instead of multiplies // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf // // YV12 is a full plane of Y and a half height, half width chroma planes // YV16 is a full plane of Y and a full height, half width chroma planes // // ARGB pixel format is output, which on little endian is stored as BGRA. // The alpha is set to 255, allowing the application to use RGBA or RGB32. #include "media/base/yuv_convert.h" // Header for low level row functions. #include "media/base/yuv_row.h" #if USE_MMX #if defined(_MSC_VER) #include <intrin.h> #else #include <mmintrin.h> #endif #endif #if USE_SSE2 #include <emmintrin.h> #endif namespace media { // 16.16 fixed point arithmetic const int kFractionBits = 16; const int kFractionMax = 1 << kFractionBits; const int kFractionMask = ((1 << kFractionBits) - 1); // Convert a frame of YUV to 32 bit ARGB. void ConvertYUVToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type) { unsigned int y_shift = yuv_type; for (int y = 0; y < height; ++y) { uint8* rgb_row = rgb_buf + y * rgb_pitch; const uint8* y_ptr = y_buf + y * y_pitch; const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch; const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch; FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, rgb_row, width); } // MMX used for FastConvertYUVToRGB32Row requires emms instruction. EMMS(); } #if USE_SSE2 // FilterRows combines two rows of the image using linear interpolation. // SSE2 version does 16 pixels at a time static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction) { __m128i zero = _mm_setzero_si128(); __m128i y1_fraction = _mm_set1_epi16(source_y_fraction); __m128i y0_fraction = _mm_set1_epi16(256 - source_y_fraction); const __m128i* y0_ptr128 = reinterpret_cast<const __m128i*>(y0_ptr); const __m128i* y1_ptr128 = reinterpret_cast<const __m128i*>(y1_ptr); __m128i* dest128 = reinterpret_cast<__m128i*>(ybuf); __m128i* end128 = reinterpret_cast<__m128i*>(ybuf + source_width); do { __m128i y0 = _mm_loadu_si128(y0_ptr128); __m128i y1 = _mm_loadu_si128(y1_ptr128); __m128i y2 = _mm_unpackhi_epi8(y0, zero); __m128i y3 = _mm_unpackhi_epi8(y1, zero); y0 = _mm_unpacklo_epi8(y0, zero); y1 = _mm_unpacklo_epi8(y1, zero); y0 = _mm_mullo_epi16(y0, y0_fraction); y1 = _mm_mullo_epi16(y1, y1_fraction); y2 = _mm_mullo_epi16(y2, y0_fraction); y3 = _mm_mullo_epi16(y3, y1_fraction); y0 = _mm_add_epi16(y0, y1); y2 = _mm_add_epi16(y2, y3); y0 = _mm_srli_epi16(y0, 8); y2 = _mm_srli_epi16(y2, 8); y0 = _mm_packus_epi16(y0, y2); *dest128++ = y0; ++y0_ptr128; ++y1_ptr128; } while (dest128 < end128); } #elif USE_MMX // MMX version does 8 pixels at a time static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction) { __m64 zero = _mm_setzero_si64(); __m64 y1_fraction = _mm_set1_pi16(source_y_fraction); __m64 y0_fraction = _mm_set1_pi16(256 - source_y_fraction); const __m64* y0_ptr64 = reinterpret_cast<const __m64*>(y0_ptr); const __m64* y1_ptr64 = reinterpret_cast<const __m64*>(y1_ptr); __m64* dest64 = reinterpret_cast<__m64*>(ybuf); __m64* end64 = reinterpret_cast<__m64*>(ybuf + source_width); do { __m64 y0 = *y0_ptr64++; __m64 y1 = *y1_ptr64++; __m64 y2 = _mm_unpackhi_pi8(y0, zero); __m64 y3 = _mm_unpackhi_pi8(y1, zero); y0 = _mm_unpacklo_pi8(y0, zero); y1 = _mm_unpacklo_pi8(y1, zero); y0 = _mm_mullo_pi16(y0, y0_fraction); y1 = _mm_mullo_pi16(y1, y1_fraction); y2 = _mm_mullo_pi16(y2, y0_fraction); y3 = _mm_mullo_pi16(y3, y1_fraction); y0 = _mm_add_pi16(y0, y1); y2 = _mm_add_pi16(y2, y3); y0 = _mm_srli_pi16(y0, 8); y2 = _mm_srli_pi16(y2, 8); y0 = _mm_packs_pu16(y0, y2); *dest64++ = y0; } while (dest64 < end64); } #else // no MMX or SSE2 // C version does 8 at a time to mimic MMX code static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; uint8* end = ybuf + source_width; do { ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8; ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8; ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8; ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8; ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8; ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8; ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8; ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8; y0_ptr += 8; y1_ptr += 8; ybuf += 8; } while (ybuf < end); } #endif // Scale a frame of YUV to 32 bit ARGB. void ScaleYUVToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type, Rotate view_rotate, ScaleFilter filter) { // 4096 allows 3 buffers to fit in 12k. // Helps performance on CPU with 16K L1 cache. // Large enough for 3830x2160 and 30" displays which are 2560x1600. const int kFilterBufferSize = 4096; // Disable filtering if the screen is too big (to avoid buffer overflows). // This should never happen to regular users: they don't have monitors // wider than 4096 pixels. // TODO(fbarchard): Allow rotated videos to filter. if (source_width > kFilterBufferSize || view_rotate) filter = FILTER_NONE; unsigned int y_shift = yuv_type; // Diagram showing origin and direction of source sampling. // ->0 4<- // 7 3 // // 6 5 // ->1 2<- // Rotations that start at right side of image. if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { y_buf += source_width - 1; u_buf += source_width / 2 - 1; v_buf += source_width / 2 - 1; source_width = -source_width; } // Rotations that start at bottom of image. if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { y_buf += (source_height - 1) * y_pitch; u_buf += ((source_height >> y_shift) - 1) * uv_pitch; v_buf += ((source_height >> y_shift) - 1) * uv_pitch; source_height = -source_height; } // Handle zero sized destination. if (width == 0 || height == 0) return; int source_dx = source_width * kFractionMax / width; int source_dy = source_height * kFractionMax / height; int source_dx_uv = source_dx; if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { int tmp = height; height = width; width = tmp; tmp = source_height; source_height = source_width; source_width = tmp; int original_dx = source_dx; int original_dy = source_dy; source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits; source_dy = original_dx; if (view_rotate == ROTATE_90) { y_pitch = -1; uv_pitch = -1; source_height = -source_height; } else { y_pitch = 1; uv_pitch = 1; } } // Need padding because FilterRows() will write 1 to 16 extra pixels // after the end for SSE2 version. uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; uint8* ybuf = reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); uint8* ubuf = ybuf + kFilterBufferSize; uint8* vbuf = ubuf + kFilterBufferSize; // TODO(fbarchard): Fixed point math is off by 1 on negatives. int yscale_fixed = (source_height << kFractionBits) / height; // TODO(fbarchard): Split this into separate function for better efficiency. for (int y = 0; y < height; ++y) { uint8* dest_pixel = rgb_buf + y * rgb_pitch; int source_y_subpixel = (y * yscale_fixed); if (yscale_fixed >= (kFractionMax * 2)) { source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. } int source_y = source_y_subpixel >> kFractionBits; const uint8* y0_ptr = y_buf + source_y * y_pitch; const uint8* y1_ptr = y0_ptr + y_pitch; const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; const uint8* u1_ptr = u0_ptr + uv_pitch; const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; const uint8* v1_ptr = v0_ptr + uv_pitch; // vertical scaler uses 16.8 fixed point int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; int source_uv_fraction = ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; const uint8* y_ptr = y0_ptr; const uint8* u_ptr = u0_ptr; const uint8* v_ptr = v0_ptr; // Apply vertical filtering if necessary. // TODO(fbarchard): Remove memcpy when not necessary. if (filter & media::FILTER_BILINEAR_V) { if (yscale_fixed != kFractionMax && source_y_fraction && ((source_y + 1) < source_height)) { FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); } else { memcpy(ybuf, y0_ptr, source_width); } y_ptr = ybuf; ybuf[source_width] = ybuf[source_width-1]; int uv_source_width = (source_width + 1) / 2; if (yscale_fixed != kFractionMax && source_uv_fraction && (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); } else { memcpy(ubuf, u0_ptr, uv_source_width); memcpy(vbuf, v0_ptr, uv_source_width); } u_ptr = ubuf; v_ptr = vbuf; ubuf[uv_source_width] = ubuf[uv_source_width - 1]; vbuf[uv_source_width] = vbuf[uv_source_width - 1]; } if (source_dx == kFractionMax) { // Not scaled FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width); } else { if (filter & FILTER_BILINEAR_H) { LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } else { // Specialized scalers and rotation. #if USE_MMX && defined(_MSC_VER) if (width == (source_width * 2)) { DoubleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width); } else if ((source_dx & kFractionMask) == 0) { // Scaling by integer scale factor. ie half. ConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx >> kFractionBits); } else if (source_dx_uv == source_dx) { // Not rotated. ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } else { RotateConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx >> kFractionBits, source_dx_uv >> kFractionBits); } #else ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); #endif } } } // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms. EMMS(); } } // namespace media