// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/base_paths.h" #include "base/cpu.h" #include "base/file_util.h" #include "base/logging.h" #include "base/path_service.h" #include "media/base/djb2.h" #include "media/base/simd/convert_rgb_to_yuv.h" #include "media/base/simd/convert_yuv_to_rgb.h" #include "media/base/simd/filter_yuv.h" #include "media/base/yuv_convert.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/rect.h" // Size of raw image. static const int kSourceWidth = 640; static const int kSourceHeight = 360; static const int kSourceYSize = kSourceWidth * kSourceHeight; static const int kSourceUOffset = kSourceYSize; static const int kSourceVOffset = kSourceYSize * 5 / 4; static const int kScaledWidth = 1024; static const int kScaledHeight = 768; static const int kDownScaledWidth = 512; static const int kDownScaledHeight = 320; static const int kBpp = 4; // Surface sizes for various test files. static const int kYUV12Size = kSourceYSize * 12 / 8; static const int kYUV16Size = kSourceYSize * 16 / 8; static const int kYUY2Size = kSourceYSize * 16 / 8; static const int kRGBSize = kSourceYSize * kBpp; static const int kRGBSizeScaled = kScaledWidth * kScaledHeight * kBpp; static const int kRGB24Size = kSourceYSize * 3; static const int kRGBSizeConverted = kSourceYSize * kBpp; // Helper for reading test data into a scoped_array. static void ReadData(const base::FilePath::CharType* filename, int expected_size, scoped_ptr* data) { data->reset(new uint8[expected_size]); base::FilePath path; CHECK(PathService::Get(base::DIR_SOURCE_ROOT, &path)); path = path.Append(FILE_PATH_LITERAL("media")) .Append(FILE_PATH_LITERAL("test")) .Append(FILE_PATH_LITERAL("data")) .Append(filename); // Verify file size is correct. int64 actual_size = 0; file_util::GetFileSize(path, &actual_size); CHECK_EQ(actual_size, expected_size); // Verify bytes read are correct. int bytes_read = file_util::ReadFile( path, reinterpret_cast(data->get()), expected_size); CHECK_EQ(bytes_read, expected_size); } static void ReadYV12Data(scoped_ptr* data) { ReadData(FILE_PATH_LITERAL("bali_640x360_P420.yuv"), kYUV12Size, data); } static void ReadYV16Data(scoped_ptr* data) { ReadData(FILE_PATH_LITERAL("bali_640x360_P422.yuv"), kYUV16Size, data); } static void ReadRGB24Data(scoped_ptr* data) { ReadData(FILE_PATH_LITERAL("bali_640x360_RGB24.rgb"), kRGB24Size, data); } static void ReadYUY2Data(scoped_ptr* data) { ReadData(FILE_PATH_LITERAL("bali_640x360_YUY2.yuv"), kYUY2Size, data); } TEST(YUVConvertTest, YV12) { // Allocate all surfaces. scoped_ptr yuv_bytes; scoped_ptr rgb_bytes(new uint8[kRGBSize]); scoped_ptr rgb_converted_bytes(new uint8[kRGBSizeConverted]); // Read YUV reference data from file. ReadYV12Data(&yuv_bytes); // Convert a frame of YUV to 32 bit ARGB. media::ConvertYUVToRGB32(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_converted_bytes.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride media::YV12); uint32 rgb_hash = DJB2Hash(rgb_converted_bytes.get(), kRGBSizeConverted, kDJB2HashSeed); EXPECT_EQ(2413171226u, rgb_hash); } TEST(YUVConvertTest, YV16) { // Allocate all surfaces. scoped_ptr yuv_bytes; scoped_ptr rgb_bytes(new uint8[kRGBSize]); scoped_ptr rgb_converted_bytes(new uint8[kRGBSizeConverted]); // Read YUV reference data from file. ReadYV16Data(&yuv_bytes); // Convert a frame of YUV to 32 bit ARGB. media::ConvertYUVToRGB32(yuv_bytes.get(), // Y yuv_bytes.get() + kSourceUOffset, // U yuv_bytes.get() + kSourceYSize * 3 / 2, // V rgb_converted_bytes.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride media::YV16); uint32 rgb_hash = DJB2Hash(rgb_converted_bytes.get(), kRGBSizeConverted, kDJB2HashSeed); EXPECT_EQ(4222342047u, rgb_hash); } struct YUVScaleTestData { YUVScaleTestData(media::YUVType y, media::ScaleFilter s, uint32 r) : yuv_type(y), scale_filter(s), rgb_hash(r) { } media::YUVType yuv_type; media::ScaleFilter scale_filter; uint32 rgb_hash; }; class YUVScaleTest : public ::testing::TestWithParam { public: YUVScaleTest() { switch (GetParam().yuv_type) { case media::YV12: ReadYV12Data(&yuv_bytes_); break; case media::YV16: ReadYV16Data(&yuv_bytes_); break; } rgb_bytes_.reset(new uint8[kRGBSizeScaled]); } // Helpers for getting the proper Y, U and V plane offsets. uint8* y_plane() { return yuv_bytes_.get(); } uint8* u_plane() { return yuv_bytes_.get() + kSourceYSize; } uint8* v_plane() { switch (GetParam().yuv_type) { case media::YV12: return yuv_bytes_.get() + kSourceVOffset; case media::YV16: return yuv_bytes_.get() + kSourceYSize * 3 / 2; } return NULL; } scoped_ptr yuv_bytes_; scoped_ptr rgb_bytes_; }; TEST_P(YUVScaleTest, NoScale) { media::ScaleYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UvStride kSourceWidth * kBpp, // RgbStride GetParam().yuv_type, media::ROTATE_0, GetParam().scale_filter); uint32 yuv_hash = DJB2Hash(rgb_bytes_.get(), kRGBSize, kDJB2HashSeed); media::ConvertYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride GetParam().yuv_type); uint32 rgb_hash = DJB2Hash(rgb_bytes_.get(), kRGBSize, kDJB2HashSeed); EXPECT_EQ(yuv_hash, rgb_hash); } TEST_P(YUVScaleTest, Normal) { media::ScaleYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kScaledWidth, kScaledHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UvStride kScaledWidth * kBpp, // RgbStride GetParam().yuv_type, media::ROTATE_0, GetParam().scale_filter); uint32 rgb_hash = DJB2Hash(rgb_bytes_.get(), kRGBSizeScaled, kDJB2HashSeed); EXPECT_EQ(GetParam().rgb_hash, rgb_hash); } TEST_P(YUVScaleTest, ZeroSourceSize) { media::ScaleYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output 0, 0, // Dimensions kScaledWidth, kScaledHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UvStride kScaledWidth * kBpp, // RgbStride GetParam().yuv_type, media::ROTATE_0, GetParam().scale_filter); // Testing for out-of-bound read/writes with AddressSanitizer. } TEST_P(YUVScaleTest, ZeroDestinationSize) { media::ScaleYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions 0, 0, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UvStride kScaledWidth * kBpp, // RgbStride GetParam().yuv_type, media::ROTATE_0, GetParam().scale_filter); // Testing for out-of-bound read/writes with AddressSanitizer. } TEST_P(YUVScaleTest, OddWidthAndHeightNotCrash) { media::ScaleYUVToRGB32(y_plane(), // Y u_plane(), // U v_plane(), // V rgb_bytes_.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions 3, 3, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UvStride kScaledWidth * kBpp, // RgbStride GetParam().yuv_type, media::ROTATE_0, GetParam().scale_filter); } INSTANTIATE_TEST_CASE_P( YUVScaleFormats, YUVScaleTest, ::testing::Values( YUVScaleTestData(media::YV12, media::FILTER_NONE, 4136904952u), YUVScaleTestData(media::YV16, media::FILTER_NONE, 1501777547u), YUVScaleTestData(media::YV12, media::FILTER_BILINEAR, 3164274689u), YUVScaleTestData(media::YV16, media::FILTER_BILINEAR, 3095878046u))); // This tests a known worst case YUV value, and for overflow. TEST(YUVConvertTest, Clamp) { // Allocate all surfaces. scoped_ptr yuv_bytes(new uint8[1]); scoped_ptr rgb_bytes(new uint8[1]); scoped_ptr rgb_converted_bytes(new uint8[1]); // Values that failed previously in bug report. unsigned char y = 255u; unsigned char u = 255u; unsigned char v = 19u; // Prefill extra large destination buffer to test for overflow. unsigned char rgb[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; unsigned char expected[8] = { 255, 255, 104, 255, 4, 5, 6, 7 }; // Convert a frame of YUV to 32 bit ARGB. media::ConvertYUVToRGB32(&y, // Y &u, // U &v, // V &rgb[0], // RGB output 1, 1, // Dimensions 0, // YStride 0, // UVStride 0, // RGBStride media::YV12); int expected_test = memcmp(rgb, expected, sizeof(expected)); EXPECT_EQ(0, expected_test); } TEST(YUVConvertTest, RGB24ToYUV) { // Allocate all surfaces. scoped_ptr rgb_bytes; scoped_ptr yuv_converted_bytes(new uint8[kYUV12Size]); // Read RGB24 reference data from file. ReadRGB24Data(&rgb_bytes); // Convert to I420. media::ConvertRGB24ToYUV(rgb_bytes.get(), yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, kSourceWidth, kSourceHeight, // Dimensions kSourceWidth * 3, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride uint32 rgb_hash = DJB2Hash(yuv_converted_bytes.get(), kYUV12Size, kDJB2HashSeed); EXPECT_EQ(320824432u, rgb_hash); } TEST(YUVConvertTest, RGB32ToYUV) { // Allocate all surfaces. scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes(new uint8[kRGBSize]); scoped_ptr yuv_converted_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_converted_bytes(new uint8[kRGBSize]); // Read YUV reference data from file. base::FilePath yuv_url; EXPECT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &yuv_url)); yuv_url = yuv_url.Append(FILE_PATH_LITERAL("media")) .Append(FILE_PATH_LITERAL("test")) .Append(FILE_PATH_LITERAL("data")) .Append(FILE_PATH_LITERAL("bali_640x360_P420.yuv")); EXPECT_EQ(static_cast(kYUV12Size), file_util::ReadFile(yuv_url, reinterpret_cast(yuv_bytes.get()), static_cast(kYUV12Size))); // Convert a frame of YUV to 32 bit ARGB. media::ConvertYUVToRGB32(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride media::YV12); // Convert RGB32 to YV12. media::ConvertRGB32ToYUV(rgb_bytes.get(), yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, kSourceWidth, kSourceHeight, // Dimensions kSourceWidth * 4, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride // Convert YV12 back to RGB32. media::ConvertYUVToRGB32(yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, rgb_converted_bytes.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride media::YV12); int error = 0; for (int i = 0; i < kRGBSize; ++i) { int diff = rgb_converted_bytes[i] - rgb_bytes[i]; if (diff < 0) diff = -diff; error += diff; } // Make sure error is within bound. DVLOG(1) << "Average error per channel: " << error / kRGBSize; EXPECT_GT(5, error / kRGBSize); } TEST(YUVConvertTest, YUY2ToYUV) { // Allocate all surfaces. scoped_ptr yuy_bytes; scoped_ptr yuv_converted_bytes(new uint8[kYUV12Size]); // Read YUY reference data from file. ReadYUY2Data(&yuy_bytes); // Convert to I420. media::ConvertYUY2ToYUV(yuy_bytes.get(), yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, kSourceWidth, kSourceHeight); uint32 yuy_hash = DJB2Hash(yuv_converted_bytes.get(), kYUV12Size, kDJB2HashSeed); EXPECT_EQ(666823187u, yuy_hash); } TEST(YUVConvertTest, DownScaleYUVToRGB32WithRect) { // Read YUV reference data from file. base::FilePath yuv_url; EXPECT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &yuv_url)); yuv_url = yuv_url.Append(FILE_PATH_LITERAL("media")) .Append(FILE_PATH_LITERAL("test")) .Append(FILE_PATH_LITERAL("data")) .Append(FILE_PATH_LITERAL("bali_640x360_P420.yuv")); const size_t size_of_yuv = kSourceYSize * 12 / 8; // 12 bpp. scoped_ptr yuv_bytes(new uint8[size_of_yuv]); EXPECT_EQ(static_cast(size_of_yuv), file_util::ReadFile(yuv_url, reinterpret_cast(yuv_bytes.get()), static_cast(size_of_yuv))); // Scale the full frame of YUV to 32 bit ARGB. // The API currently only supports down-scaling, so we don't test up-scaling. const size_t size_of_rgb_scaled = kDownScaledWidth * kDownScaledHeight * kBpp; scoped_ptr rgb_scaled_bytes(new uint8[size_of_rgb_scaled]); gfx::Rect sub_rect(0, 0, kDownScaledWidth, kDownScaledHeight); // We can't compare with the full-frame scaler because it uses slightly // different sampling coordinates. media::ScaleYUVToRGB32WithRect( yuv_bytes.get(), // Y yuv_bytes.get() + kSourceUOffset, // U yuv_bytes.get() + kSourceVOffset, // V rgb_scaled_bytes.get(), // Rgb output kSourceWidth, kSourceHeight, // Dimensions kDownScaledWidth, kDownScaledHeight, // Dimensions sub_rect.x(), sub_rect.y(), // Dest rect sub_rect.right(), sub_rect.bottom(), // Dest rect kSourceWidth, // YStride kSourceWidth / 2, // UvStride kDownScaledWidth * kBpp); // RgbStride uint32 rgb_hash_full_rect = DJB2Hash(rgb_scaled_bytes.get(), size_of_rgb_scaled, kDJB2HashSeed); // Re-scale sub-rectangles and verify the results are the same. int next_sub_rect = 0; while (!sub_rect.IsEmpty()) { // Scale a partial rectangle. media::ScaleYUVToRGB32WithRect( yuv_bytes.get(), // Y yuv_bytes.get() + kSourceUOffset, // U yuv_bytes.get() + kSourceVOffset, // V rgb_scaled_bytes.get(), // Rgb output kSourceWidth, kSourceHeight, // Dimensions kDownScaledWidth, kDownScaledHeight, // Dimensions sub_rect.x(), sub_rect.y(), // Dest rect sub_rect.right(), sub_rect.bottom(), // Dest rect kSourceWidth, // YStride kSourceWidth / 2, // UvStride kDownScaledWidth * kBpp); // RgbStride uint32 rgb_hash_sub_rect = DJB2Hash(rgb_scaled_bytes.get(), size_of_rgb_scaled, kDJB2HashSeed); EXPECT_EQ(rgb_hash_full_rect, rgb_hash_sub_rect); // Now pick choose a quarter rect of this sub-rect. if (next_sub_rect & 1) sub_rect.set_x(sub_rect.x() + sub_rect.width() / 2); if (next_sub_rect & 2) sub_rect.set_y(sub_rect.y() + sub_rect.height() / 2); sub_rect.set_width(sub_rect.width() / 2); sub_rect.set_height(sub_rect.height() / 2); next_sub_rect++; } } #if !defined(ARCH_CPU_ARM_FAMILY) TEST(YUVConvertTest, RGB32ToYUV_SSE2_MatchReference) { base::CPU cpu; if (!cpu.has_sse2()) { LOG(WARNING) << "System doesn't support SSE2, test not executed."; return; } // Allocate all surfaces. scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes(new uint8[kRGBSize]); scoped_ptr yuv_converted_bytes(new uint8[kYUV12Size]); scoped_ptr yuv_reference_bytes(new uint8[kYUV12Size]); ReadYV12Data(&yuv_bytes); // Convert a frame of YUV to 32 bit ARGB. media::ConvertYUVToRGB32( yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes.get(), // RGB output kSourceWidth, kSourceHeight, // Dimensions kSourceWidth, // YStride kSourceWidth / 2, // UVStride kSourceWidth * kBpp, // RGBStride media::YV12); // Convert RGB32 to YV12 with SSE2 version. media::ConvertRGB32ToYUV_SSE2( rgb_bytes.get(), yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, kSourceWidth, kSourceHeight, // Dimensions kSourceWidth * 4, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride // Convert RGB32 to YV12 with reference version. media::ConvertRGB32ToYUV_SSE2_Reference( rgb_bytes.get(), yuv_reference_bytes.get(), yuv_reference_bytes.get() + kSourceUOffset, yuv_reference_bytes.get() + kSourceVOffset, kSourceWidth, kSourceHeight, // Dimensions kSourceWidth * 4, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride // Now convert a odd width and height, this overrides part of the buffer // generated above but that is fine because the point of this test is to // match the result with the reference code. // Convert RGB32 to YV12 with SSE2 version. media::ConvertRGB32ToYUV_SSE2( rgb_bytes.get(), yuv_converted_bytes.get(), yuv_converted_bytes.get() + kSourceUOffset, yuv_converted_bytes.get() + kSourceVOffset, 7, 7, // Dimensions kSourceWidth * 4, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride // Convert RGB32 to YV12 with reference version. media::ConvertRGB32ToYUV_SSE2_Reference( rgb_bytes.get(), yuv_reference_bytes.get(), yuv_reference_bytes.get() + kSourceUOffset, yuv_reference_bytes.get() + kSourceVOffset, 7, 7, // Dimensions kSourceWidth * 4, // RGBStride kSourceWidth, // YStride kSourceWidth / 2); // UVStride int error = 0; for (int i = 0; i < kYUV12Size; ++i) { int diff = yuv_reference_bytes[i] - yuv_converted_bytes[i]; if (diff < 0) diff = -diff; error += diff; } // Make sure there's no difference from the reference. EXPECT_EQ(0, error); } TEST(YUVConvertTest, ConvertYUVToRGB32Row_MMX) { base::CPU cpu; if (!cpu.has_mmx()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; ConvertYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth); ConvertYUVToRGB32Row_MMX(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, ConvertYUVToRGB32Row_SSE) { base::CPU cpu; if (!cpu.has_sse()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; ConvertYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth); ConvertYUVToRGB32Row_SSE(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, ScaleYUVToRGB32Row_MMX) { base::CPU cpu; if (!cpu.has_mmx()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. ScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); ScaleYUVToRGB32Row_MMX(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, ScaleYUVToRGB32Row_SSE) { base::CPU cpu; if (!cpu.has_sse()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. ScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); ScaleYUVToRGB32Row_SSE(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, LinearScaleYUVToRGB32Row_MMX) { base::CPU cpu; if (!cpu.has_mmx()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. LinearScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); LinearScaleYUVToRGB32Row_MMX(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, LinearScaleYUVToRGB32Row_SSE) { base::CPU cpu; if (!cpu.has_sse()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. LinearScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); LinearScaleYUVToRGB32Row_SSE(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, FilterYUVRows_C_OutOfBounds) { scoped_ptr src(new uint8[16]); scoped_ptr dst(new uint8[16]); memset(src.get(), 0xff, 16); memset(dst.get(), 0, 16); media::FilterYUVRows_C(dst.get(), src.get(), src.get(), 1, 255); EXPECT_EQ(255u, dst[0]); for (int i = 1; i < 16; ++i) { EXPECT_EQ(0u, dst[i]) << " not equal at " << i; } } #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) TEST(YUVConvertTest, FilterYUVRows_MMX_OutOfBounds) { base::CPU cpu; if (!cpu.has_mmx()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr src(new uint8[16]); scoped_ptr dst(new uint8[16]); memset(src.get(), 0xff, 16); memset(dst.get(), 0, 16); media::FilterYUVRows_MMX(dst.get(), src.get(), src.get(), 1, 255); media::EmptyRegisterState(); EXPECT_EQ(255u, dst[0]); for (int i = 1; i < 16; ++i) { EXPECT_EQ(0u, dst[i]); } } #endif // defined(MEDIA_MMX_INTRINSICS_AVAILABLE) TEST(YUVConvertTest, FilterYUVRows_SSE2_OutOfBounds) { base::CPU cpu; if (!cpu.has_sse2()) { LOG(WARNING) << "System not supported. Test skipped."; return; } scoped_ptr src(new uint8[16]); scoped_ptr dst(new uint8[16]); memset(src.get(), 0xff, 16); memset(dst.get(), 0, 16); media::FilterYUVRows_SSE2(dst.get(), src.get(), src.get(), 1, 255); EXPECT_EQ(255u, dst[0]); for (int i = 1; i < 16; ++i) { EXPECT_EQ(0u, dst[i]); } } #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) TEST(YUVConvertTest, FilterYUVRows_MMX_UnalignedDestination) { base::CPU cpu; if (!cpu.has_mmx()) { LOG(WARNING) << "System not supported. Test skipped."; return; } const int kSize = 32; scoped_ptr src(new uint8[kSize]); scoped_ptr dst_sample(new uint8[kSize]); scoped_ptr dst(new uint8[kSize]); memset(dst_sample.get(), 0, kSize); memset(dst.get(), 0, kSize); for (int i = 0; i < kSize; ++i) src[i] = 100 + i; media::FilterYUVRows_C(dst_sample.get(), src.get(), src.get(), 17, 128); // Generate an unaligned output address. uint8* dst_ptr = reinterpret_cast( (reinterpret_cast(dst.get() + 8) & ~7) + 1); media::FilterYUVRows_MMX(dst_ptr, src.get(), src.get(), 17, 128); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(dst_sample.get(), dst_ptr, 17)); } #endif // defined(MEDIA_MMX_INTRINSICS_AVAILABLE) TEST(YUVConvertTest, FilterYUVRows_SSE2_UnalignedDestination) { base::CPU cpu; if (!cpu.has_sse2()) { LOG(WARNING) << "System not supported. Test skipped."; return; } const int kSize = 64; scoped_ptr src(new uint8[kSize]); scoped_ptr dst_sample(new uint8[kSize]); scoped_ptr dst(new uint8[kSize]); memset(dst_sample.get(), 0, kSize); memset(dst.get(), 0, kSize); for (int i = 0; i < kSize; ++i) src[i] = 100 + i; media::FilterYUVRows_C(dst_sample.get(), src.get(), src.get(), 37, 128); // Generate an unaligned output address. uint8* dst_ptr = reinterpret_cast( (reinterpret_cast(dst.get() + 16) & ~15) + 1); media::FilterYUVRows_SSE2(dst_ptr, src.get(), src.get(), 37, 128); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(dst_sample.get(), dst_ptr, 37)); } #if defined(ARCH_CPU_X86_64) TEST(YUVConvertTest, ScaleYUVToRGB32Row_SSE2_X64) { scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. ScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); ScaleYUVToRGB32Row_SSE2_X64(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } TEST(YUVConvertTest, LinearScaleYUVToRGB32Row_MMX_X64) { scoped_ptr yuv_bytes(new uint8[kYUV12Size]); scoped_ptr rgb_bytes_reference(new uint8[kRGBSize]); scoped_ptr rgb_bytes_converted(new uint8[kRGBSize]); ReadYV12Data(&yuv_bytes); const int kWidth = 167; const int kSourceDx = 80000; // This value means a scale down. LinearScaleYUVToRGB32Row_C(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_reference.get(), kWidth, kSourceDx); LinearScaleYUVToRGB32Row_MMX_X64(yuv_bytes.get(), yuv_bytes.get() + kSourceUOffset, yuv_bytes.get() + kSourceVOffset, rgb_bytes_converted.get(), kWidth, kSourceDx); media::EmptyRegisterState(); EXPECT_EQ(0, memcmp(rgb_bytes_reference.get(), rgb_bytes_converted.get(), kWidth * kBpp)); } #endif // defined(ARCH_CPU_X86_64) #endif // defined(ARCH_CPU_X86_FAMILY)