// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // yuv_row internal functions to handle YUV conversion and scaling to RGB. // These functions are used from both yuv_convert.cc and yuv_scale.cc. // TODO(fbarchard): Write function that can handle rotation and scaling. #ifndef MEDIA_BASE_YUV_ROW_H_ #define MEDIA_BASE_YUV_ROW_H_ #include "base/basictypes.h" extern "C" { // Can only do 1x. // This is the second fastest of the scalers. void FastConvertYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width); // Can do 1x, half size or any scale down by an integer amount. // Step can be negative (mirroring, rotate 180). // This is the third fastest of the scalers. void ConvertYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width, int step); // Rotate is like Convert, but applies different step to Y versus U and V. // This allows rotation by 90 or 270, by stepping by stride. // This is the forth fastest of the scalers. void RotateConvertYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width, int ystep, int uvstep); // Doubler does 4 pixels at a time. Each pixel is replicated. // This is the fastest of the scalers. void DoubleYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width); // Handles arbitrary scaling up or down. // Mirroring is supported, but not 90 or 270 degree rotation. // Chroma is under sampled every 2 pixels for performance. void ScaleYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width, int source_dx); // Handles arbitrary scaling up or down with bilinear filtering. // Mirroring is supported, but not 90 or 270 degree rotation. // Chroma is under sampled every 2 pixels for performance. // This is the slowest of the scalers. void LinearScaleYUVToRGB32Row(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width, int source_dx); void FastConvertRGB32ToYUVRow(const uint8* rgb_buf_1, const uint8* rgb_buf_2, uint8* y_buf_1, uint8* y_buf_2, uint8* u_buf, uint8* v_buf, int width); #if defined(_MSC_VER) #define SIMD_ALIGNED(var) __declspec(align(16)) var #else #define SIMD_ALIGNED(var) var __attribute__((aligned(16))) #endif extern SIMD_ALIGNED(int16 kCoefficientsRgbY[768][4]); // Method to force C version. //#define USE_MMX 0 //#define USE_SSE2 0 #if !defined(USE_MMX) // Windows, Mac and Linux/BSD use MMX #if defined(__MMX__) || defined(_MSC_VER) #define USE_MMX 1 #else #define USE_MMX 0 #endif #endif #if !defined(USE_SSE2) #if defined(__SSE2__) || defined(ARCH_CPU_X86_64) || _M_IX86_FP==2 #define USE_SSE2 1 #else #define USE_SSE2 0 #endif #endif // x64 uses MMX2 (SSE) so emms is not required. // Warning C4799: function has no EMMS instruction. // EMMS() is slow and should be called by the calling function once per image. #if USE_MMX && !defined(ARCH_CPU_X86_64) #if defined(_MSC_VER) #define EMMS() __asm emms #pragma warning(disable: 4799) #else #define EMMS() asm("emms") #endif #else #define EMMS() #endif } // extern "C" #endif // MEDIA_BASE_YUV_ROW_H_