// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef MEDIA_CAST_CAST_DEFINES_H_ #define MEDIA_CAST_CAST_DEFINES_H_ #include #include #include #include #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/time/time.h" #include "media/cast/net/cast_transport_config.h" namespace media { namespace cast { const uint32 kVideoFrequency = 90000; const int kMinSampleRateForEncoding = 8000; const uint32 kStartFrameId = UINT32_C(0xffffffff); // This is an important system-wide constant. This limits how much history the // implementation must retain in order to process the acknowledgements of past // frames. // This value is carefully choosen such that it fits in the 8-bits range for // frame IDs. It is also less than half of the full 8-bits range such that we // can handle wrap around and compare two frame IDs. const int kMaxUnackedFrames = 120; const int64 kCastMessageUpdateIntervalMs = 33; const int64 kNackRepeatIntervalMs = 30; // Success/in-progress/failure status codes bubbled up to clients via // StatusChangeCallbacks. enum OperationalStatus { // Client should not send frames yet (sender), or should not expect to receive // frames yet (receiver). STATUS_UNINITIALIZED, // Client may now send or receive frames. STATUS_INITIALIZED, // Codec is being re-initialized. Client may continue sending frames, but // some may be ignored/dropped until a transition back to STATUS_INITIALIZED. STATUS_CODEC_REINIT_PENDING, // Session has halted due to invalid configuration. STATUS_INVALID_CONFIGURATION, // Session has halted due to an unsupported codec. STATUS_UNSUPPORTED_CODEC, // Session has halted due to a codec initialization failure. Note that this // can be reported after STATUS_INITIALIZED/STATUS_CODEC_REINIT_PENDING if the // codec was re-initialized during the session. STATUS_CODEC_INIT_FAILED, // Session has halted due to a codec runtime failure. STATUS_CODEC_RUNTIME_ERROR, }; enum DefaultSettings { kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR. kDefaultAudioSamplingRate = 48000, kDefaultMaxQp = 63, kDefaultMinQp = 4, kDefaultMaxFrameRate = 30, kDefaultNumberOfVideoBuffers = 1, kDefaultRtcpIntervalMs = 500, kDefaultRtpHistoryMs = 1000, kDefaultRtpMaxDelayMs = 100, kDefaultRtpAudioPayloadType = 127, kDefaultRtpVideoPayloadType = 96, kDefaultMinVideoBitRate = 50, kDefaultMaxVideoBitRate = 2000, }; enum PacketType { kNewPacket, kNewPacketCompletingFrame, kDuplicatePacket, kTooOldPacket, }; // kRtcpCastAllPacketsLost is used in PacketIDSet and // on the wire to mean that ALL packets for a particular // frame are lost. const uint16 kRtcpCastAllPacketsLost = 0xffff; // kRtcpCastLastPacket is used in PacketIDSet to ask for // the last packet of a frame to be retransmitted. const uint16 kRtcpCastLastPacket = 0xfffe; const size_t kMinLengthOfRtcp = 8; // Basic RTP header + cast header. const size_t kMinLengthOfRtp = 12 + 6; // Each uint16 represents one packet id within a cast frame. // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket. typedef std::set PacketIdSet; // Each uint8 represents one cast frame. typedef std::map MissingFramesAndPacketsMap; // TODO(pwestin): Re-factor the functions bellow into a class with static // methods. // January 1970, in NTP seconds. // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on // 1 January 1900. static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800); // Magic fractional unit. Used to convert time (in microseconds) to/from // fractional NTP seconds. static const double kMagicFractionalUnit = 4.294967296E3; // The maximum number of Cast receiver events to keep in history for the // purpose of sending the events through RTCP. // The number chosen should be more than the number of events that can be // stored in a RTCP packet. static const size_t kReceiverRtcpEventHistorySize = 512; inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) { return (frame_id != prev_frame_id) && static_cast(frame_id - prev_frame_id) < 0x80000000; } inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) { return (timestamp != prev_timestamp) && static_cast(timestamp - prev_timestamp) < 0x80000000; } inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) { return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id); } inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) { return (packet_id != prev_packet_id) && static_cast(packet_id - prev_packet_id) < 0x8000; } inline bool IsNewerSequenceNumber(uint16 sequence_number, uint16 prev_sequence_number) { // Same function as IsNewerPacketId just different data and name. return IsNewerPacketId(sequence_number, prev_sequence_number); } // Create a NTP diff from seconds and fractions of seconds; delay_fraction is // fractions of a second where 0x80000000 is half a second. inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) { return ((delay_seconds & 0x0000FFFF) << 16) + ((delay_fraction & 0xFFFF0000) >> 16); } inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) { uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000; delay_ms >>= 16; delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000; return base::TimeDelta::FromMilliseconds(delay_ms); } inline void ConvertTimeToFractions(int64 ntp_time_us, uint32* seconds, uint32* fractions) { DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative"; const int64 seconds_component = ntp_time_us / base::Time::kMicrosecondsPerSecond; // NTP time will overflow in the year 2036. Also, make sure unit tests don't // regress and use an origin past the year 2036. If this overflows here, the // inverse calculation fails to compute the correct TimeTicks value, throwing // off the entire system. DCHECK_LT(seconds_component, INT64_C(4263431296)) << "One year left to fix the NTP year 2036 wrap-around issue!"; *seconds = static_cast(seconds_component); *fractions = static_cast( (ntp_time_us % base::Time::kMicrosecondsPerSecond) * kMagicFractionalUnit); } inline void ConvertTimeTicksToNtp(const base::TimeTicks& time, uint32* ntp_seconds, uint32* ntp_fractions) { base::TimeDelta elapsed_since_unix_epoch = time - base::TimeTicks::UnixEpoch(); int64 ntp_time_us = elapsed_since_unix_epoch.InMicroseconds() + (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond); ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions); } inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds, uint32 ntp_fractions) { // We need to ceil() here because the calculation of |fractions| in // ConvertTimeToFractions() effectively does a floor(). int64 ntp_time_us = ntp_seconds * base::Time::kMicrosecondsPerSecond + static_cast(std::ceil(ntp_fractions / kMagicFractionalUnit)); base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds( ntp_time_us - (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond)); return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch; } inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) { DCHECK_GT(rtp_timebase, 0); return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase; } inline int64 TimeDeltaToRtpDelta(base::TimeDelta delta, int rtp_timebase) { DCHECK_GT(rtp_timebase, 0); return delta * rtp_timebase / base::TimeDelta::FromSeconds(1); } } // namespace cast } // namespace media #endif // MEDIA_CAST_CAST_DEFINES_H_