// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The purpose of this file is determine what bitrate to use for mirroring. // Ideally this should be as much as possible, without causing any frames to // arrive late. // The current algorithm is to measure how much bandwidth we've been using // recently. We also keep track of how much data has been queued up for sending // in a virtual "buffer" (this virtual buffer represents all the buffers between // the sender and the receiver, including retransmissions and so forth.) // If we estimate that our virtual buffer is mostly empty, we try to use // more bandwidth than our recent usage, otherwise we use less. #include "media/cast/sender/congestion_control.h" #include "base/logging.h" #include "media/cast/cast_config.h" #include "media/cast/cast_defines.h" namespace media { namespace cast { class AdaptiveCongestionControl : public CongestionControl { public: AdaptiveCongestionControl(base::TickClock* clock, uint32 max_bitrate_configured, uint32 min_bitrate_configured, double max_frame_rate); ~AdaptiveCongestionControl() override; void UpdateRtt(base::TimeDelta rtt) override; void UpdateTargetPlayoutDelay(base::TimeDelta delay) override; // Called when an encoded frame is sent to the transport. void SendFrameToTransport(uint32 frame_id, size_t frame_size, base::TimeTicks when) override; // Called when we receive an ACK for a frame. void AckFrame(uint32 frame_id, base::TimeTicks when) override; // Returns the bitrate we should use for the next frame. uint32 GetBitrate(base::TimeTicks playout_time, base::TimeDelta playout_delay) override; private: struct FrameStats { FrameStats(); // Time this frame was sent to the transport. base::TimeTicks sent_time; // Time this frame was acked. base::TimeTicks ack_time; // Size of encoded frame in bits. size_t frame_size; }; // Calculate how much "dead air" (idle time) there is between two frames. static base::TimeDelta DeadTime(const FrameStats& a, const FrameStats& b); // Get the FrameStats for a given |frame_id|. // Note: Older FrameStats will be removed automatically. FrameStats* GetFrameStats(uint32 frame_id); // Discard old FrameStats. void PruneFrameStats(); // Calculate a safe bitrate. This is based on how much we've been // sending in the past. double CalculateSafeBitrate(); // For a given frame, calculate when it might be acked. // (Or return the time it was acked, if it was.) base::TimeTicks EstimatedAckTime(uint32 frame_id, double bitrate); // Calculate when we start sending the data for a given frame. // This is done by calculating when we were done sending the previous // frame, but obviously can't be less than |sent_time| (if known). base::TimeTicks EstimatedSendingTime(uint32 frame_id, double bitrate); base::TickClock* const clock_; // Not owned by this class. const uint32 max_bitrate_configured_; const uint32 min_bitrate_configured_; const double max_frame_rate_; std::deque frame_stats_; uint32 last_frame_stats_; uint32 last_acked_frame_; uint32 last_encoded_frame_; base::TimeDelta rtt_; size_t history_size_; size_t acked_bits_in_history_; base::TimeDelta dead_time_in_history_; DISALLOW_COPY_AND_ASSIGN(AdaptiveCongestionControl); }; class FixedCongestionControl : public CongestionControl { public: FixedCongestionControl(uint32 bitrate) : bitrate_(bitrate) {} ~FixedCongestionControl() override {} void UpdateRtt(base::TimeDelta rtt) override {} void UpdateTargetPlayoutDelay(base::TimeDelta delay) override {} // Called when an encoded frame is sent to the transport. void SendFrameToTransport(uint32 frame_id, size_t frame_size, base::TimeTicks when) override {} // Called when we receive an ACK for a frame. void AckFrame(uint32 frame_id, base::TimeTicks when) override {} // Returns the bitrate we should use for the next frame. uint32 GetBitrate(base::TimeTicks playout_time, base::TimeDelta playout_delay) override { return bitrate_; } private: uint32 bitrate_; DISALLOW_COPY_AND_ASSIGN(FixedCongestionControl); }; CongestionControl* NewAdaptiveCongestionControl( base::TickClock* clock, uint32 max_bitrate_configured, uint32 min_bitrate_configured, double max_frame_rate) { return new AdaptiveCongestionControl(clock, max_bitrate_configured, min_bitrate_configured, max_frame_rate); } CongestionControl* NewFixedCongestionControl(uint32 bitrate) { return new FixedCongestionControl(bitrate); } // This means that we *try* to keep our buffer 90% empty. // If it is less full, we increase the bandwidth, if it is more // we decrease the bandwidth. Making this smaller makes the // congestion control more aggressive. static const double kTargetEmptyBufferFraction = 0.9; // This is the size of our history in frames. Larger values makes the // congestion control adapt slower. static const size_t kHistorySize = 100; AdaptiveCongestionControl::FrameStats::FrameStats() : frame_size(0) { } AdaptiveCongestionControl::AdaptiveCongestionControl( base::TickClock* clock, uint32 max_bitrate_configured, uint32 min_bitrate_configured, double max_frame_rate) : clock_(clock), max_bitrate_configured_(max_bitrate_configured), min_bitrate_configured_(min_bitrate_configured), max_frame_rate_(max_frame_rate), last_frame_stats_(static_cast(-1)), last_acked_frame_(static_cast(-1)), last_encoded_frame_(static_cast(-1)), history_size_(kHistorySize), acked_bits_in_history_(0) { DCHECK_GE(max_bitrate_configured, min_bitrate_configured) << "Invalid config"; frame_stats_.resize(2); base::TimeTicks now = clock->NowTicks(); frame_stats_[0].ack_time = now; frame_stats_[0].sent_time = now; frame_stats_[1].ack_time = now; DCHECK(!frame_stats_[0].ack_time.is_null()); } CongestionControl::~CongestionControl() {} AdaptiveCongestionControl::~AdaptiveCongestionControl() {} void AdaptiveCongestionControl::UpdateRtt(base::TimeDelta rtt) { rtt_ = (7 * rtt_ + rtt) / 8; } void AdaptiveCongestionControl::UpdateTargetPlayoutDelay( base::TimeDelta delay) { const int max_unacked_frames = std::min(kMaxUnackedFrames, 1 + static_cast(delay * max_frame_rate_ / base::TimeDelta::FromSeconds(1))); DCHECK_GT(max_unacked_frames, 0); history_size_ = max_unacked_frames + kHistorySize; PruneFrameStats(); } // Calculate how much "dead air" there is between two frames. base::TimeDelta AdaptiveCongestionControl::DeadTime(const FrameStats& a, const FrameStats& b) { if (b.sent_time > a.ack_time) { return b.sent_time - a.ack_time; } else { return base::TimeDelta(); } } double AdaptiveCongestionControl::CalculateSafeBitrate() { double transmit_time = (GetFrameStats(last_acked_frame_)->ack_time - frame_stats_.front().sent_time - dead_time_in_history_).InSecondsF(); if (acked_bits_in_history_ == 0 || transmit_time <= 0.0) { return min_bitrate_configured_; } return acked_bits_in_history_ / std::max(transmit_time, 1E-3); } AdaptiveCongestionControl::FrameStats* AdaptiveCongestionControl::GetFrameStats(uint32 frame_id) { int32 offset = static_cast(frame_id - last_frame_stats_); DCHECK_LT(offset, static_cast(kHistorySize)); if (offset > 0) { frame_stats_.resize(frame_stats_.size() + offset); last_frame_stats_ += offset; offset = 0; } PruneFrameStats(); offset += frame_stats_.size() - 1; if (offset < 0 || offset >= static_cast(frame_stats_.size())) { return NULL; } return &frame_stats_[offset]; } void AdaptiveCongestionControl::PruneFrameStats() { while (frame_stats_.size() > history_size_) { DCHECK_GT(frame_stats_.size(), 1UL); DCHECK(!frame_stats_[0].ack_time.is_null()); acked_bits_in_history_ -= frame_stats_[0].frame_size; dead_time_in_history_ -= DeadTime(frame_stats_[0], frame_stats_[1]); DCHECK_GE(acked_bits_in_history_, 0UL); VLOG(2) << "DT: " << dead_time_in_history_.InSecondsF(); DCHECK_GE(dead_time_in_history_.InSecondsF(), 0.0); frame_stats_.pop_front(); } } void AdaptiveCongestionControl::AckFrame(uint32 frame_id, base::TimeTicks when) { FrameStats* frame_stats = GetFrameStats(last_acked_frame_); while (IsNewerFrameId(frame_id, last_acked_frame_)) { FrameStats* last_frame_stats = frame_stats; frame_stats = GetFrameStats(last_acked_frame_ + 1); DCHECK(frame_stats); if (frame_stats->sent_time.is_null()) { // Can't ack a frame that hasn't been sent yet. return; } last_acked_frame_++; if (when < frame_stats->sent_time) when = frame_stats->sent_time; frame_stats->ack_time = when; acked_bits_in_history_ += frame_stats->frame_size; dead_time_in_history_ += DeadTime(*last_frame_stats, *frame_stats); } } void AdaptiveCongestionControl::SendFrameToTransport(uint32 frame_id, size_t frame_size, base::TimeTicks when) { last_encoded_frame_ = frame_id; FrameStats* frame_stats = GetFrameStats(frame_id); DCHECK(frame_stats); frame_stats->frame_size = frame_size; frame_stats->sent_time = when; } base::TimeTicks AdaptiveCongestionControl::EstimatedAckTime(uint32 frame_id, double bitrate) { FrameStats* frame_stats = GetFrameStats(frame_id); DCHECK(frame_stats); if (frame_stats->ack_time.is_null()) { DCHECK(frame_stats->frame_size) << "frame_id: " << frame_id; base::TimeTicks ret = EstimatedSendingTime(frame_id, bitrate); ret += base::TimeDelta::FromSecondsD(frame_stats->frame_size / bitrate); ret += rtt_; base::TimeTicks now = clock_->NowTicks(); if (ret < now) { // This is a little counter-intuitive, but it seems to work. // Basically, when we estimate that the ACK should have already happened, // we figure out how long ago it should have happened and guess that the // ACK will happen half of that time in the future. This will cause some // over-estimation when acks are late, which is actually what we want. return now + (now - ret) / 2; } else { return ret; } } else { return frame_stats->ack_time; } } base::TimeTicks AdaptiveCongestionControl::EstimatedSendingTime( uint32 frame_id, double bitrate) { FrameStats* frame_stats = GetFrameStats(frame_id); DCHECK(frame_stats); base::TimeTicks ret = EstimatedAckTime(frame_id - 1, bitrate) - rtt_; if (frame_stats->sent_time.is_null()) { // Not sent yet, but we can't start sending it in the past. return std::max(ret, clock_->NowTicks()); } else { return std::max(ret, frame_stats->sent_time); } } uint32 AdaptiveCongestionControl::GetBitrate(base::TimeTicks playout_time, base::TimeDelta playout_delay) { double safe_bitrate = CalculateSafeBitrate(); // Estimate when we might start sending the next frame. base::TimeDelta time_to_catch_up = playout_time - EstimatedSendingTime(last_encoded_frame_ + 1, safe_bitrate); double empty_buffer_fraction = time_to_catch_up.InSecondsF() / playout_delay.InSecondsF(); empty_buffer_fraction = std::min(empty_buffer_fraction, 1.0); empty_buffer_fraction = std::max(empty_buffer_fraction, 0.0); uint32 bits_per_second = static_cast( safe_bitrate * empty_buffer_fraction / kTargetEmptyBufferFraction); VLOG(3) << " FBR:" << (bits_per_second / 1E6) << " EBF:" << empty_buffer_fraction << " SBR:" << (safe_bitrate / 1E6); bits_per_second = std::max(bits_per_second, min_bitrate_configured_); bits_per_second = std::min(bits_per_second, max_bitrate_configured_); return bits_per_second; } } // namespace cast } // namespace media