// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/logging.h" #include "base/macros.h" #include "media/cast/sender/vp8_quantizer_parser.h" namespace media { namespace cast { namespace { // Vp8BitReader is a re-implementation of a subset of the VP8 entropy decoder. // It is used to decompress the VP8 bitstream for the purposes of quickly // parsing the VP8 frame headers. It is mostly the exact same implementation // found in third_party/libvpx_new/.../vp8/decoder/dboolhuff.h except that only // the portion of the implementation needed to parse the frame headers is // present. As of this writing, the implementation in libvpx could not be // re-used because of the way that the code is structured, and lack of the // necessary parts being exported. class Vp8BitReader { public: Vp8BitReader(const uint8_t* data, size_t size) : encoded_data_(data), encoded_data_end_(data + size) { Vp8DecoderReadBytes(); } ~Vp8BitReader() {} // Decode one bit. The output is 0 or 1. unsigned int DecodeBit(); // Decode a value with |num_bits|. The decoding order is MSB first. unsigned int DecodeValue(unsigned int num_bits); private: // Read new bytes frome the encoded data buffer until |bit_count_| > 0. void Vp8DecoderReadBytes(); const uint8_t* encoded_data_; // Current byte to decode. const uint8_t* const encoded_data_end_; // The end of the byte to decode. // The following two variables are maintained by the decoder. // General decoding rule: // If |value_| is in the range of 0 to half of |range_|, output 0. // Otherwise output 1. // |range_| and |value_| need to be shifted when necessary to avoid underflow. unsigned int range_ = 255; unsigned int value_ = 0; // Number of valid bits left to decode. Initializing it to -8 to let the // decoder load two bytes at the beginning. The lower byte is used as // a buffer byte. During the decoding, decoder needs to call // Vp8DecoderReadBytes() to load new bytes when it becomes negative. int bit_count_ = -8; DISALLOW_COPY_AND_ASSIGN(Vp8BitReader); }; // The number of bits to be left-shifted to make the variable range_ over 128. const uint8_t vp8_shift[128] = { 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // Mapping from the q_index(0-127) to the quantizer value(0-63). const uint8_t vp8_quantizer_lookup[128] = { 0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63}; void Vp8BitReader::Vp8DecoderReadBytes() { int shift = -bit_count_; while ((shift >= 0) && (encoded_data_ < encoded_data_end_)) { bit_count_ += 8; value_ |= static_cast(*encoded_data_) << shift; ++encoded_data_; shift -= 8; } } unsigned int Vp8BitReader::DecodeBit() { unsigned int decoded_bit = 0; unsigned int split = 1 + (((range_ - 1) * 128) >> 8); if (bit_count_ < 0) { Vp8DecoderReadBytes(); } DCHECK_GE(bit_count_, 0); unsigned int shifted_split = split << 8; if (value_ >= shifted_split) { range_ -= split; value_ -= shifted_split; decoded_bit = 1; } else { range_ = split; } if (range_ < 128) { int shift = vp8_shift[range_]; range_ <<= shift; value_ <<= shift; bit_count_ -= shift; } return decoded_bit; } unsigned int Vp8BitReader::DecodeValue(unsigned int num_bits) { unsigned int decoded_value = 0; for (int i = static_cast(num_bits) - 1; i >= 0; i--) { decoded_value |= (DecodeBit() << i); } return decoded_value; } // Parse the Segment Header part in the first partition. void ParseSegmentHeader(Vp8BitReader* bit_reader) { const bool segmentation_enabled = (bit_reader->DecodeBit() != 0); DVLOG(2) << "segmentation_enabled:" << segmentation_enabled; if (segmentation_enabled) { const bool update_mb_segmentation_map = (bit_reader->DecodeBit() != 0); const bool update_mb_segmentation_data = (bit_reader->DecodeBit() != 0); DVLOG(2) << "update_mb_segmentation_data:" << update_mb_segmentation_data; if (update_mb_segmentation_data) { bit_reader->DecodeBit(); for (int i = 0; i < 4; ++i) { if (bit_reader->DecodeBit()) { bit_reader->DecodeValue(7 + 1); // Parse 7 bits value + 1 sign bit. } } for (int i = 0; i < 4; ++i) { if (bit_reader->DecodeBit()) { bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. } } } if (update_mb_segmentation_map) { for (int i = 0; i < 3; ++i) { if (bit_reader->DecodeBit()) { bit_reader->DecodeValue(8); } } } } } // Parse the Filter Header in the first partition. void ParseFilterHeader(Vp8BitReader* bit_reader) { // Parse 1 bit filter_type + 6 bits loop_filter_level + 3 bits // sharpness_level. bit_reader->DecodeValue(1 + 6 + 3); if (bit_reader->DecodeBit()) { if (bit_reader->DecodeBit()) { for (int i = 0; i < 4; ++i) { if (bit_reader->DecodeBit()) { bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. } } for (int i = 0; i < 4; ++i) { if (bit_reader->DecodeBit()) { bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. } } } } } } // unnamed namespace int ParseVp8HeaderQuantizer(const uint8_t* encoded_data, size_t size) { DCHECK(encoded_data); if (size <= 3) { return -1; } const bool is_key = !(encoded_data[0] & 1); const unsigned int header_3bytes = encoded_data[0] | (encoded_data[1] << 8) | (encoded_data[2] << 16); // Parse the size of the first partition. unsigned int partition_size = (header_3bytes >> 5); encoded_data += 3; // Skip 3 bytes. size -= 3; if (is_key) { if (size <= 7) { return -1; } encoded_data += 7; // Skip 7 bytes. size -= 7; } if (size < partition_size) { return -1; } Vp8BitReader bit_reader(encoded_data, partition_size); if (is_key) { bit_reader.DecodeValue(1 + 1); // Parse two bits: color_space + clamp_type. } ParseSegmentHeader(&bit_reader); ParseFilterHeader(&bit_reader); // Parse the number of coefficient data partitions. bit_reader.DecodeValue(2); // Parse the base q_index. uint8_t q_index = static_cast(bit_reader.DecodeValue(7)); if (q_index > 127) { return 63; } return vp8_quantizer_lookup[q_index]; } } // namespace cast } // namespace media