// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file contains an implementation of a VP9 bitstream parser. #include "media/filters/vp9_parser.h" #include #include "base/logging.h" #include "base/macros.h" #include "base/numerics/safe_conversions.h" namespace { const int kMaxLoopFilterLevel = 63; // Helper function for Vp9Parser::ReadTiles. Defined as get_min_log2_tile_cols // in spec. int GetMinLog2TileCols(int sb64_cols) { const int kMaxTileWidthB64 = 64; int min_log2 = 0; while ((kMaxTileWidthB64 << min_log2) < sb64_cols) min_log2++; return min_log2; } // Helper function for Vp9Parser::ReadTiles. Defined as get_max_log2_tile_cols // in spec. int GetMaxLog2TileCols(int sb64_cols) { const int kMinTileWidthB64 = 4; int max_log2 = 1; while ((sb64_cols >> max_log2) >= kMinTileWidthB64) max_log2++; return max_log2 - 1; } } // namespace namespace media { bool Vp9FrameHeader::IsKeyframe() const { // When show_existing_frame is true, the frame header does not precede an // actual frame to be decoded, so frame_type does not apply (and is not read // from the stream). return !show_existing_frame && frame_type == KEYFRAME; } Vp9Parser::FrameInfo::FrameInfo(const uint8_t* ptr, off_t size) : ptr(ptr), size(size) {} Vp9Parser::Vp9Parser() { Reset(); } Vp9Parser::~Vp9Parser() {} void Vp9Parser::SetStream(const uint8_t* stream, off_t stream_size) { DCHECK(stream); stream_ = stream; bytes_left_ = stream_size; frames_.clear(); } void Vp9Parser::Reset() { stream_ = nullptr; bytes_left_ = 0; frames_.clear(); memset(&segmentation_, 0, sizeof(segmentation_)); memset(&loop_filter_, 0, sizeof(loop_filter_)); memset(&ref_slots_, 0, sizeof(ref_slots_)); } uint8_t Vp9Parser::ReadProfile() { uint8_t profile = 0; // LSB first. if (reader_.ReadBool()) profile |= 1; if (reader_.ReadBool()) profile |= 2; if (profile > 2 && reader_.ReadBool()) profile += 1; return profile; } bool Vp9Parser::VerifySyncCode() { const int kSyncCode = 0x498342; if (reader_.ReadLiteral(8 * 3) != kSyncCode) { DVLOG(1) << "Invalid frame sync code"; return false; } return true; } bool Vp9Parser::ReadBitDepthColorSpaceSampling(Vp9FrameHeader* fhdr) { if (fhdr->profile == 2 || fhdr->profile == 3) { fhdr->bit_depth = reader_.ReadBool() ? 12 : 10; } else { fhdr->bit_depth = 8; } fhdr->color_space = static_cast(reader_.ReadLiteral(3)); if (fhdr->color_space != Vp9ColorSpace::SRGB) { fhdr->yuv_range = reader_.ReadBool(); if (fhdr->profile == 1 || fhdr->profile == 3) { fhdr->subsampling_x = reader_.ReadBool() ? 1 : 0; fhdr->subsampling_y = reader_.ReadBool() ? 1 : 0; if (fhdr->subsampling_x == 1 && fhdr->subsampling_y == 1) { DVLOG(1) << "4:2:0 color not supported in profile 1 or 3"; return false; } bool reserved = reader_.ReadBool(); if (reserved) { DVLOG(1) << "reserved bit set"; return false; } } else { fhdr->subsampling_x = fhdr->subsampling_y = 1; } } else { if (fhdr->profile == 1 || fhdr->profile == 3) { fhdr->subsampling_x = fhdr->subsampling_y = 0; bool reserved = reader_.ReadBool(); if (reserved) { DVLOG(1) << "reserved bit set"; return false; } } else { DVLOG(1) << "4:4:4 color not supported in profile 0 or 2"; return false; } } return true; } void Vp9Parser::ReadFrameSize(Vp9FrameHeader* fhdr) { fhdr->width = reader_.ReadLiteral(16) + 1; fhdr->height = reader_.ReadLiteral(16) + 1; } bool Vp9Parser::ReadFrameSizeFromRefs(Vp9FrameHeader* fhdr) { for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) { if (reader_.ReadBool()) { fhdr->width = ref_slots_[i].width; fhdr->height = ref_slots_[i].height; const int kMaxDimension = 1 << 16; if (fhdr->width == 0 || fhdr->width > kMaxDimension || fhdr->height == 0 || fhdr->height > kMaxDimension) { DVLOG(1) << "The size of reference frame is out of range: " << ref_slots_[i].width << "," << ref_slots_[i].height; return false; } return true; } } fhdr->width = reader_.ReadLiteral(16) + 1; fhdr->height = reader_.ReadLiteral(16) + 1; return true; } void Vp9Parser::ReadDisplayFrameSize(Vp9FrameHeader* fhdr) { if (reader_.ReadBool()) { fhdr->display_width = reader_.ReadLiteral(16) + 1; fhdr->display_height = reader_.ReadLiteral(16) + 1; } else { fhdr->display_width = fhdr->width; fhdr->display_height = fhdr->height; } } Vp9InterpFilter Vp9Parser::ReadInterpFilter() { if (reader_.ReadBool()) return Vp9InterpFilter::SWICHABLE; // The mapping table for next two bits. const Vp9InterpFilter table[] = { Vp9InterpFilter::EIGHTTAP_SMOOTH, Vp9InterpFilter::EIGHTTAP, Vp9InterpFilter::EIGHTTAP_SHARP, Vp9InterpFilter::BILINEAR, }; return table[reader_.ReadLiteral(2)]; } void Vp9Parser::ReadLoopFilter() { loop_filter_.filter_level = reader_.ReadLiteral(6); loop_filter_.sharpness_level = reader_.ReadLiteral(3); loop_filter_.mode_ref_delta_update = false; loop_filter_.mode_ref_delta_enabled = reader_.ReadBool(); if (loop_filter_.mode_ref_delta_enabled) { loop_filter_.mode_ref_delta_update = reader_.ReadBool(); if (loop_filter_.mode_ref_delta_update) { for (size_t i = 0; i < Vp9LoopFilter::VP9_FRAME_MAX; i++) { loop_filter_.update_ref_deltas[i] = reader_.ReadBool(); if (loop_filter_.update_ref_deltas[i]) loop_filter_.ref_deltas[i] = reader_.ReadSignedLiteral(6); } for (size_t i = 0; i < Vp9LoopFilter::kNumModeDeltas; i++) { loop_filter_.update_mode_deltas[i] = reader_.ReadBool(); if (loop_filter_.update_mode_deltas[i]) loop_filter_.mode_deltas[i] = reader_.ReadLiteral(6); } } } } void Vp9Parser::ReadQuantization(Vp9QuantizationParams* quants) { quants->base_qindex = reader_.ReadLiteral(8); if (reader_.ReadBool()) quants->y_dc_delta = reader_.ReadSignedLiteral(4); if (reader_.ReadBool()) quants->uv_ac_delta = reader_.ReadSignedLiteral(4); if (reader_.ReadBool()) quants->uv_dc_delta = reader_.ReadSignedLiteral(4); } void Vp9Parser::ReadSegmentationMap() { for (size_t i = 0; i < Vp9Segmentation::kNumTreeProbs; i++) { segmentation_.tree_probs[i] = reader_.ReadBool() ? reader_.ReadLiteral(8) : kVp9MaxProb; } for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++) segmentation_.pred_probs[i] = kVp9MaxProb; segmentation_.temporal_update = reader_.ReadBool(); if (segmentation_.temporal_update) { for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++) { if (reader_.ReadBool()) segmentation_.pred_probs[i] = reader_.ReadLiteral(8); } } } void Vp9Parser::ReadSegmentationData() { segmentation_.abs_delta = reader_.ReadBool(); const int kFeatureDataBits[] = {8, 6, 2, 0}; const bool kFeatureDataSigned[] = {true, true, false, false}; for (size_t i = 0; i < Vp9Segmentation::kNumSegments; i++) { for (size_t j = 0; j < Vp9Segmentation::SEG_LVL_MAX; j++) { int16_t data = 0; segmentation_.feature_enabled[i][j] = reader_.ReadBool(); if (segmentation_.feature_enabled[i][j]) { data = reader_.ReadLiteral(kFeatureDataBits[j]); if (kFeatureDataSigned[j]) if (reader_.ReadBool()) data = -data; } segmentation_.feature_data[i][j] = data; } } } void Vp9Parser::ReadSegmentation() { segmentation_.update_map = false; segmentation_.update_data = false; segmentation_.enabled = reader_.ReadBool(); if (!segmentation_.enabled) return; segmentation_.update_map = reader_.ReadBool(); if (segmentation_.update_map) ReadSegmentationMap(); segmentation_.update_data = reader_.ReadBool(); if (segmentation_.update_data) ReadSegmentationData(); } void Vp9Parser::ReadTiles(Vp9FrameHeader* fhdr) { int sb64_cols = (fhdr->width + 63) / 64; int min_log2_tile_cols = GetMinLog2TileCols(sb64_cols); int max_log2_tile_cols = GetMaxLog2TileCols(sb64_cols); int max_ones = max_log2_tile_cols - min_log2_tile_cols; fhdr->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && reader_.ReadBool()) fhdr->log2_tile_cols++; fhdr->log2_tile_rows = reader_.ReadBool() ? 1 : 0; if (fhdr->log2_tile_rows > 0 && reader_.ReadBool()) fhdr->log2_tile_rows++; } bool Vp9Parser::ParseUncompressedHeader(const uint8_t* stream, off_t frame_size, Vp9FrameHeader* fhdr) { reader_.Initialize(stream, frame_size); fhdr->data = stream; fhdr->frame_size = frame_size; // frame marker if (reader_.ReadLiteral(2) != 0x2) return false; fhdr->profile = ReadProfile(); if (fhdr->profile >= kVp9MaxProfile) { DVLOG(1) << "Unsupported bitstream profile"; return false; } fhdr->show_existing_frame = reader_.ReadBool(); if (fhdr->show_existing_frame) { fhdr->frame_to_show = reader_.ReadLiteral(3); fhdr->show_frame = true; if (!reader_.IsValid()) { DVLOG(1) << "parser reads beyond the end of buffer"; return false; } fhdr->uncompressed_header_size = reader_.GetBytesRead(); return true; } fhdr->frame_type = static_cast(reader_.ReadBool()); fhdr->show_frame = reader_.ReadBool(); fhdr->error_resilient_mode = reader_.ReadBool(); if (fhdr->IsKeyframe()) { if (!VerifySyncCode()) return false; if (!ReadBitDepthColorSpaceSampling(fhdr)) return false; fhdr->refresh_flags = 0xff; ReadFrameSize(fhdr); ReadDisplayFrameSize(fhdr); } else { if (!fhdr->show_frame) fhdr->intra_only = reader_.ReadBool(); if (!fhdr->error_resilient_mode) fhdr->reset_context = reader_.ReadLiteral(2); if (fhdr->intra_only) { if (!VerifySyncCode()) return false; if (fhdr->profile > 0) { if (!ReadBitDepthColorSpaceSampling(fhdr)) return false; } else { fhdr->bit_depth = 8; fhdr->color_space = Vp9ColorSpace::BT_601; fhdr->subsampling_x = fhdr->subsampling_y = 1; } fhdr->refresh_flags = reader_.ReadLiteral(8); ReadFrameSize(fhdr); ReadDisplayFrameSize(fhdr); } else { fhdr->refresh_flags = reader_.ReadLiteral(8); for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) { fhdr->frame_refs[i] = reader_.ReadLiteral(kVp9NumRefFramesLog2); fhdr->ref_sign_biases[i] = reader_.ReadBool(); } if (!ReadFrameSizeFromRefs(fhdr)) return false; ReadDisplayFrameSize(fhdr); fhdr->allow_high_precision_mv = reader_.ReadBool(); fhdr->interp_filter = ReadInterpFilter(); } } if (fhdr->error_resilient_mode) { fhdr->frame_parallel_decoding_mode = true; } else { fhdr->refresh_frame_context = reader_.ReadBool(); fhdr->frame_parallel_decoding_mode = reader_.ReadBool(); } fhdr->frame_context_idx = reader_.ReadLiteral(2); if (fhdr->IsKeyframe() || fhdr->intra_only) SetupPastIndependence(); ReadLoopFilter(); ReadQuantization(&fhdr->quant_params); ReadSegmentation(); ReadTiles(fhdr); fhdr->first_partition_size = reader_.ReadLiteral(16); if (fhdr->first_partition_size == 0) { DVLOG(1) << "invalid header size"; return false; } if (!reader_.IsValid()) { DVLOG(1) << "parser reads beyond the end of buffer"; return false; } fhdr->uncompressed_header_size = reader_.GetBytesRead(); SetupSegmentationDequant(fhdr->quant_params); SetupLoopFilter(); UpdateSlots(fhdr); return true; } void Vp9Parser::UpdateSlots(const Vp9FrameHeader* fhdr) { for (size_t i = 0; i < kVp9NumRefFrames; i++) { if (fhdr->RefreshFlag(i)) { ref_slots_[i].width = fhdr->width; ref_slots_[i].height = fhdr->height; } } } Vp9Parser::Result Vp9Parser::ParseNextFrame(Vp9FrameHeader* fhdr) { if (frames_.empty()) { // No frames to be decoded, if there is no more stream, request more. if (!stream_) return kEOStream; // New stream to be parsed, parse it and fill frames_. if (!ParseSuperframe()) { DVLOG(1) << "Failed parsing superframes"; return kInvalidStream; } } DCHECK(!frames_.empty()); FrameInfo frame_info = frames_.front(); frames_.pop_front(); memset(fhdr, 0, sizeof(*fhdr)); if (!ParseUncompressedHeader(frame_info.ptr, frame_info.size, fhdr)) return kInvalidStream; return kOk; } bool Vp9Parser::ParseSuperframe() { const uint8_t* stream = stream_; off_t bytes_left = bytes_left_; DCHECK(frames_.empty()); // Make sure we don't parse stream_ more than once. stream_ = nullptr; bytes_left_ = 0; if (bytes_left < 1) return false; // If this is a superframe, the last byte in the stream will contain the // superframe marker. If not, the whole buffer contains a single frame. uint8_t marker = *(stream + bytes_left - 1); if ((marker & 0xe0) != 0xc0) { frames_.push_back(FrameInfo(stream, bytes_left)); return true; } DVLOG(1) << "Parsing a superframe"; // The bytes immediately before the superframe marker constitute superframe // index, which stores information about sizes of each frame in it. // Calculate its size and set index_ptr to the beginning of it. size_t num_frames = (marker & 0x7) + 1; size_t mag = ((marker >> 3) & 0x3) + 1; off_t index_size = 2 + mag * num_frames; if (bytes_left < index_size) return false; const uint8_t* index_ptr = stream + bytes_left - index_size; if (marker != *index_ptr) return false; ++index_ptr; bytes_left -= index_size; // Parse frame information contained in the index and add a pointer to and // size of each frame to frames_. for (size_t i = 0; i < num_frames; ++i) { uint32_t size = 0; for (size_t j = 0; j < mag; ++j) { size |= *index_ptr << (j * 8); ++index_ptr; } if (base::checked_cast(size) > bytes_left) { DVLOG(1) << "Not enough data in the buffer for frame " << i; return false; } frames_.push_back(FrameInfo(stream, size)); stream += size; bytes_left -= size; DVLOG(1) << "Frame " << i << ", size: " << size; } return true; } void Vp9Parser::ResetLoopfilter() { loop_filter_.mode_ref_delta_enabled = true; loop_filter_.mode_ref_delta_update = true; const int8_t default_ref_deltas[] = {1, 0, -1, -1}; static_assert( arraysize(default_ref_deltas) == arraysize(loop_filter_.ref_deltas), "ref_deltas arrays of incorrect size"); for (size_t i = 0; i < arraysize(loop_filter_.ref_deltas); ++i) loop_filter_.ref_deltas[i] = default_ref_deltas[i]; memset(loop_filter_.mode_deltas, 0, sizeof(loop_filter_.mode_deltas)); } void Vp9Parser::SetupPastIndependence() { memset(&segmentation_, 0, sizeof(segmentation_)); ResetLoopfilter(); } const size_t QINDEX_RANGE = 256; const int16_t kDcQLookup[QINDEX_RANGE] = { 4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76, 77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174, 177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247, 250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292, 296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344, 349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406, 411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482, 489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590, 602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775, 796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139, 1184, 1232, 1282, 1336, }; const int16_t kAcQLookup[QINDEX_RANGE] = { 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432, 440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540, 550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676, 689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848, 864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343, 1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828, }; static_assert(arraysize(kDcQLookup) == arraysize(kAcQLookup), "quantizer lookup arrays of incorrect size"); #define CLAMP_Q(q) \ std::min(std::max(static_cast(0), q), arraysize(kDcQLookup) - 1) size_t Vp9Parser::GetQIndex(const Vp9QuantizationParams& quant, size_t segid) const { if (segmentation_.FeatureEnabled(segid, Vp9Segmentation::SEG_LVL_ALT_Q)) { int16_t feature_data = segmentation_.FeatureData(segid, Vp9Segmentation::SEG_LVL_ALT_Q); size_t q_index = segmentation_.abs_delta ? feature_data : quant.base_qindex + feature_data; return CLAMP_Q(q_index); } return quant.base_qindex; } void Vp9Parser::SetupSegmentationDequant(const Vp9QuantizationParams& quant) { if (segmentation_.enabled) { for (size_t i = 0; i < Vp9Segmentation::kNumSegments; ++i) { const size_t q_index = GetQIndex(quant, i); segmentation_.y_dequant[i][0] = kDcQLookup[CLAMP_Q(q_index + quant.y_dc_delta)]; segmentation_.y_dequant[i][1] = kAcQLookup[CLAMP_Q(q_index)]; segmentation_.uv_dequant[i][0] = kDcQLookup[CLAMP_Q(q_index + quant.uv_dc_delta)]; segmentation_.uv_dequant[i][1] = kAcQLookup[CLAMP_Q(q_index + quant.uv_ac_delta)]; } } else { const size_t q_index = quant.base_qindex; segmentation_.y_dequant[0][0] = kDcQLookup[CLAMP_Q(q_index + quant.y_dc_delta)]; segmentation_.y_dequant[0][1] = kAcQLookup[CLAMP_Q(q_index)]; segmentation_.uv_dequant[0][0] = kDcQLookup[CLAMP_Q(q_index + quant.uv_dc_delta)]; segmentation_.uv_dequant[0][1] = kAcQLookup[CLAMP_Q(q_index + quant.uv_ac_delta)]; } } #undef CLAMP_Q #define CLAMP_LF(l) std::min(std::max(0, l), kMaxLoopFilterLevel) void Vp9Parser::SetupLoopFilter() { if (!loop_filter_.filter_level) return; int scale = loop_filter_.filter_level < 32 ? 1 : 2; for (size_t i = 0; i < Vp9Segmentation::kNumSegments; ++i) { int level = loop_filter_.filter_level; if (segmentation_.FeatureEnabled(i, Vp9Segmentation::SEG_LVL_ALT_LF)) { int feature_data = segmentation_.FeatureData(i, Vp9Segmentation::SEG_LVL_ALT_LF); level = CLAMP_LF(segmentation_.abs_delta ? feature_data : level + feature_data); } if (!loop_filter_.mode_ref_delta_enabled) { memset(loop_filter_.lvl[i], level, sizeof(loop_filter_.lvl[i])); } else { loop_filter_.lvl[i][Vp9LoopFilter::VP9_FRAME_INTRA][0] = CLAMP_LF( level + loop_filter_.ref_deltas[Vp9LoopFilter::VP9_FRAME_INTRA] * scale); loop_filter_.lvl[i][Vp9LoopFilter::VP9_FRAME_INTRA][1] = 0; for (size_t type = Vp9LoopFilter::VP9_FRAME_LAST; type < Vp9LoopFilter::VP9_FRAME_MAX; ++type) { for (size_t mode = 0; mode < Vp9LoopFilter::kNumModeDeltas; ++mode) { loop_filter_.lvl[i][type][mode] = CLAMP_LF(level + loop_filter_.ref_deltas[type] * scale + loop_filter_.mode_deltas[mode] * scale); } } } } } #undef CLAMP_LF } // namespace media