// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/formats/mp2t/es_parser_adts.h" #include #include "base/basictypes.h" #include "base/logging.h" #include "base/strings/string_number_conversions.h" #include "media/base/audio_timestamp_helper.h" #include "media/base/bit_reader.h" #include "media/base/buffers.h" #include "media/base/channel_layout.h" #include "media/base/stream_parser_buffer.h" #include "media/formats/common/offset_byte_queue.h" #include "media/formats/mp2t/mp2t_common.h" #include "media/formats/mpeg/adts_constants.h" namespace media { static int ExtractAdtsFrameSize(const uint8* adts_header) { return ((static_cast(adts_header[5]) >> 5) | (static_cast(adts_header[4]) << 3) | ((static_cast(adts_header[3]) & 0x3) << 11)); } static size_t ExtractAdtsFrequencyIndex(const uint8* adts_header) { return ((adts_header[2] >> 2) & 0xf); } static size_t ExtractAdtsChannelConfig(const uint8* adts_header) { return (((adts_header[3] >> 6) & 0x3) | ((adts_header[2] & 0x1) << 2)); } // Return true if buf corresponds to an ADTS syncword. // |buf| size must be at least 2. static bool isAdtsSyncWord(const uint8* buf) { // The first 12 bits must be 1. // The layer field (2 bits) must be set to 0. return (buf[0] == 0xff) && ((buf[1] & 0xf6) == 0xf0); } namespace mp2t { struct EsParserAdts::AdtsFrame { // Pointer to the ES data. const uint8* data; // Frame size; int size; // Frame offset in the ES queue. int64 queue_offset; }; bool EsParserAdts::LookForAdtsFrame(AdtsFrame* adts_frame) { int es_size; const uint8* es; es_queue_->Peek(&es, &es_size); int max_offset = es_size - kADTSHeaderMinSize; if (max_offset <= 0) return false; for (int offset = 0; offset < max_offset; offset++) { const uint8* cur_buf = &es[offset]; if (!isAdtsSyncWord(cur_buf)) continue; int frame_size = ExtractAdtsFrameSize(cur_buf); if (frame_size < kADTSHeaderMinSize) { // Too short to be an ADTS frame. continue; } int remaining_size = es_size - offset; if (remaining_size < frame_size) { // Not a full frame: will resume when we have more data. es_queue_->Pop(offset); return false; } // Check whether there is another frame // |size| apart from the current one. if (remaining_size >= frame_size + 2 && !isAdtsSyncWord(&cur_buf[frame_size])) { continue; } es_queue_->Pop(offset); es_queue_->Peek(&adts_frame->data, &es_size); adts_frame->queue_offset = es_queue_->head(); adts_frame->size = frame_size; DVLOG(LOG_LEVEL_ES) << "ADTS syncword @ pos=" << adts_frame->queue_offset << " frame_size=" << adts_frame->size; DVLOG(LOG_LEVEL_ES) << "ADTS header: " << base::HexEncode(adts_frame->data, kADTSHeaderMinSize); return true; } es_queue_->Pop(max_offset); return false; } void EsParserAdts::SkipAdtsFrame(const AdtsFrame& adts_frame) { DCHECK_EQ(adts_frame.queue_offset, es_queue_->head()); es_queue_->Pop(adts_frame.size); } EsParserAdts::EsParserAdts( const NewAudioConfigCB& new_audio_config_cb, const EmitBufferCB& emit_buffer_cb, bool sbr_in_mimetype) : new_audio_config_cb_(new_audio_config_cb), emit_buffer_cb_(emit_buffer_cb), sbr_in_mimetype_(sbr_in_mimetype), es_queue_(new media::OffsetByteQueue()) { } EsParserAdts::~EsParserAdts() { } bool EsParserAdts::Parse(const uint8* buf, int size, base::TimeDelta pts, base::TimeDelta dts) { // The incoming PTS applies to the access unit that comes just after // the beginning of |buf|. if (pts != kNoTimestamp()) pts_list_.push_back(EsPts(es_queue_->tail(), pts)); // Copy the input data to the ES buffer. es_queue_->Push(buf, size); // Look for every ADTS frame in the ES buffer. AdtsFrame adts_frame; while (LookForAdtsFrame(&adts_frame)) { // Update the audio configuration if needed. DCHECK_GE(adts_frame.size, kADTSHeaderMinSize); if (!UpdateAudioConfiguration(adts_frame.data)) return false; // Get the PTS & the duration of this access unit. while (!pts_list_.empty() && pts_list_.front().first <= adts_frame.queue_offset) { audio_timestamp_helper_->SetBaseTimestamp(pts_list_.front().second); pts_list_.pop_front(); } base::TimeDelta current_pts = audio_timestamp_helper_->GetTimestamp(); base::TimeDelta frame_duration = audio_timestamp_helper_->GetFrameDuration(kSamplesPerAACFrame); // Emit an audio frame. bool is_key_frame = true; // TODO(wolenetz/acolwell): Validate and use a common cross-parser TrackId // type and allow multiple audio tracks. See https://crbug.com/341581. scoped_refptr stream_parser_buffer = StreamParserBuffer::CopyFrom( adts_frame.data, adts_frame.size, is_key_frame, DemuxerStream::AUDIO, 0); stream_parser_buffer->SetDecodeTimestamp(current_pts); stream_parser_buffer->set_timestamp(current_pts); stream_parser_buffer->set_duration(frame_duration); emit_buffer_cb_.Run(stream_parser_buffer); // Update the PTS of the next frame. audio_timestamp_helper_->AddFrames(kSamplesPerAACFrame); // Skip the current frame. SkipAdtsFrame(adts_frame); } return true; } void EsParserAdts::Flush() { } void EsParserAdts::Reset() { es_queue_.reset(new media::OffsetByteQueue()); pts_list_.clear(); last_audio_decoder_config_ = AudioDecoderConfig(); } bool EsParserAdts::UpdateAudioConfiguration(const uint8* adts_header) { size_t frequency_index = ExtractAdtsFrequencyIndex(adts_header); if (frequency_index >= kADTSFrequencyTableSize) { // Frequency index 13 & 14 are reserved // while 15 means that the frequency is explicitly written // (not supported). return false; } size_t channel_configuration = ExtractAdtsChannelConfig(adts_header); if (channel_configuration == 0 || channel_configuration >= kADTSChannelLayoutTableSize) { // TODO(damienv): Add support for inband channel configuration. return false; } // TODO(damienv): support HE-AAC frequency doubling (SBR) // based on the incoming ADTS profile. int samples_per_second = kADTSFrequencyTable[frequency_index]; int adts_profile = (adts_header[2] >> 6) & 0x3; // The following code is written according to ISO 14496 Part 3 Table 1.11 and // Table 1.22. (Table 1.11 refers to the capping to 48000, Table 1.22 refers // to SBR doubling the AAC sample rate.) // TODO(damienv) : Extend sample rate cap to 96kHz for Level 5 content. int extended_samples_per_second = sbr_in_mimetype_ ? std::min(2 * samples_per_second, 48000) : samples_per_second; // The following code is written according to ISO 14496 Part 3 Table 1.13 - // Syntax of AudioSpecificConfig. uint16 extra_data_int = // Note: adts_profile is in the range [0,3], since the ADTS header only // allows two bits for its value. ((adts_profile + 1) << 11) + (frequency_index << 7) + (channel_configuration << 3); uint8 extra_data[2] = { static_cast(extra_data_int >> 8), static_cast(extra_data_int & 0xff) }; AudioDecoderConfig audio_decoder_config( kCodecAAC, kSampleFormatS16, kADTSChannelLayoutTable[channel_configuration], extended_samples_per_second, extra_data, arraysize(extra_data), false); if (!audio_decoder_config.Matches(last_audio_decoder_config_)) { DVLOG(1) << "Sampling frequency: " << samples_per_second; DVLOG(1) << "Extended sampling frequency: " << extended_samples_per_second; DVLOG(1) << "Channel config: " << channel_configuration; DVLOG(1) << "Adts profile: " << adts_profile; // Reset the timestamp helper to use a new time scale. if (audio_timestamp_helper_) { base::TimeDelta base_timestamp = audio_timestamp_helper_->GetTimestamp(); audio_timestamp_helper_.reset( new AudioTimestampHelper(samples_per_second)); audio_timestamp_helper_->SetBaseTimestamp(base_timestamp); } else { audio_timestamp_helper_.reset( new AudioTimestampHelper(samples_per_second)); } // Audio config notification. last_audio_decoder_config_ = audio_decoder_config; new_audio_config_cb_.Run(audio_decoder_config); } return true; } } // namespace mp2t } // namespace media