// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/renderers/audio_renderer_impl.h" #include #include #include #include #include "base/bind.h" #include "base/callback.h" #include "base/callback_helpers.h" #include "base/logging.h" #include "base/single_thread_task_runner.h" #include "base/time/default_tick_clock.h" #include "build/build_config.h" #include "media/base/audio_buffer.h" #include "media/base/audio_buffer_converter.h" #include "media/base/audio_hardware_config.h" #include "media/base/audio_splicer.h" #include "media/base/bind_to_current_loop.h" #include "media/base/demuxer_stream.h" #include "media/base/media_log.h" #include "media/base/timestamp_constants.h" #include "media/filters/audio_clock.h" #include "media/filters/decrypting_demuxer_stream.h" namespace media { AudioRendererImpl::AudioRendererImpl( const scoped_refptr& task_runner, media::AudioRendererSink* sink, ScopedVector decoders, const AudioHardwareConfig& hardware_config, const scoped_refptr& media_log) : task_runner_(task_runner), expecting_config_changes_(false), sink_(sink), audio_buffer_stream_( new AudioBufferStream(task_runner, std::move(decoders), media_log)), hardware_config_(hardware_config), media_log_(media_log), tick_clock_(new base::DefaultTickClock()), last_audio_memory_usage_(0), playback_rate_(0.0), state_(kUninitialized), buffering_state_(BUFFERING_HAVE_NOTHING), rendering_(false), sink_playing_(false), pending_read_(false), received_end_of_stream_(false), rendered_end_of_stream_(false), weak_factory_(this) { audio_buffer_stream_->set_splice_observer(base::Bind( &AudioRendererImpl::OnNewSpliceBuffer, weak_factory_.GetWeakPtr())); audio_buffer_stream_->set_config_change_observer(base::Bind( &AudioRendererImpl::OnConfigChange, weak_factory_.GetWeakPtr())); } AudioRendererImpl::~AudioRendererImpl() { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); // If Render() is in progress, this call will wait for Render() to finish. // After this call, the |sink_| will not call back into |this| anymore. sink_->Stop(); if (!init_cb_.is_null()) base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_ABORT); } void AudioRendererImpl::StartTicking() { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK(!rendering_); rendering_ = true; base::AutoLock auto_lock(lock_); // Wait for an eventual call to SetPlaybackRate() to start rendering. if (playback_rate_ == 0) { DCHECK(!sink_playing_); return; } StartRendering_Locked(); } void AudioRendererImpl::StartRendering_Locked() { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK_EQ(state_, kPlaying); DCHECK(!sink_playing_); DCHECK_NE(playback_rate_, 0.0); lock_.AssertAcquired(); sink_playing_ = true; base::AutoUnlock auto_unlock(lock_); sink_->Play(); } void AudioRendererImpl::StopTicking() { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK(rendering_); rendering_ = false; base::AutoLock auto_lock(lock_); // Rendering should have already been stopped with a zero playback rate. if (playback_rate_ == 0) { DCHECK(!sink_playing_); return; } StopRendering_Locked(); } void AudioRendererImpl::StopRendering_Locked() { DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK_EQ(state_, kPlaying); DCHECK(sink_playing_); lock_.AssertAcquired(); sink_playing_ = false; base::AutoUnlock auto_unlock(lock_); sink_->Pause(); stop_rendering_time_ = last_render_time_; } void AudioRendererImpl::SetMediaTime(base::TimeDelta time) { DVLOG(1) << __FUNCTION__ << "(" << time << ")"; DCHECK(task_runner_->BelongsToCurrentThread()); base::AutoLock auto_lock(lock_); DCHECK(!rendering_); DCHECK_EQ(state_, kFlushed); start_timestamp_ = time; ended_timestamp_ = kInfiniteDuration(); last_render_time_ = stop_rendering_time_ = base::TimeTicks(); first_packet_timestamp_ = kNoTimestamp(); last_media_timestamp_ = base::TimeDelta(); audio_clock_.reset(new AudioClock(time, audio_parameters_.sample_rate())); } base::TimeDelta AudioRendererImpl::CurrentMediaTime() { base::AutoLock auto_lock(lock_); // Return the current time based on the known extents of the rendered audio // data plus an estimate based on the last time those values were calculated. base::TimeDelta current_media_time = audio_clock_->front_timestamp(); if (!last_render_time_.is_null()) { current_media_time += tick_clock_->NowTicks() - last_render_time_; if (current_media_time > audio_clock_->back_timestamp()) current_media_time = audio_clock_->back_timestamp(); } // Clamp current media time to the last reported value, this prevents higher // level clients from seeing time go backwards based on inaccurate or spurious // delay values reported to the AudioClock. // // It is expected that such events are transient and will be recovered as // rendering continues over time. if (current_media_time < last_media_timestamp_) { DVLOG(2) << __FUNCTION__ << ": " << last_media_timestamp_ << " (clamped), actual: " << current_media_time; return last_media_timestamp_; } DVLOG(2) << __FUNCTION__ << ": " << current_media_time; last_media_timestamp_ = current_media_time; return current_media_time; } bool AudioRendererImpl::GetWallClockTimes( const std::vector& media_timestamps, std::vector* wall_clock_times) { base::AutoLock auto_lock(lock_); DCHECK(wall_clock_times->empty()); // When playback is paused (rate is zero), assume a rate of 1.0. const double playback_rate = playback_rate_ ? playback_rate_ : 1.0; const bool is_time_moving = sink_playing_ && playback_rate_ && !last_render_time_.is_null() && stop_rendering_time_.is_null(); // Pre-compute the time until playback of the audio buffer extents, since // these values are frequently used below. const base::TimeDelta time_until_front = audio_clock_->TimeUntilPlayback(audio_clock_->front_timestamp()); const base::TimeDelta time_until_back = audio_clock_->TimeUntilPlayback(audio_clock_->back_timestamp()); if (media_timestamps.empty()) { // Return the current media time as a wall clock time while accounting for // frames which may be in the process of play out. wall_clock_times->push_back(std::min( std::max(tick_clock_->NowTicks(), last_render_time_ + time_until_front), last_render_time_ + time_until_back)); return is_time_moving; } wall_clock_times->reserve(media_timestamps.size()); for (const auto& media_timestamp : media_timestamps) { // When time was or is moving and the requested media timestamp is within // range of played out audio, we can provide an exact conversion. if (!last_render_time_.is_null() && media_timestamp >= audio_clock_->front_timestamp() && media_timestamp <= audio_clock_->back_timestamp()) { wall_clock_times->push_back( last_render_time_ + audio_clock_->TimeUntilPlayback(media_timestamp)); continue; } base::TimeDelta base_timestamp, time_until_playback; if (media_timestamp < audio_clock_->front_timestamp()) { base_timestamp = audio_clock_->front_timestamp(); time_until_playback = time_until_front; } else { base_timestamp = audio_clock_->back_timestamp(); time_until_playback = time_until_back; } // In practice, most calls will be estimates given the relatively small // window in which clients can get the actual time. wall_clock_times->push_back(last_render_time_ + time_until_playback + (media_timestamp - base_timestamp) / playback_rate); } return is_time_moving; } TimeSource* AudioRendererImpl::GetTimeSource() { return this; } void AudioRendererImpl::Flush(const base::Closure& callback) { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); base::AutoLock auto_lock(lock_); DCHECK_EQ(state_, kPlaying); DCHECK(flush_cb_.is_null()); flush_cb_ = callback; ChangeState_Locked(kFlushing); if (pending_read_) return; ChangeState_Locked(kFlushed); DoFlush_Locked(); } void AudioRendererImpl::DoFlush_Locked() { DCHECK(task_runner_->BelongsToCurrentThread()); lock_.AssertAcquired(); DCHECK(!pending_read_); DCHECK_EQ(state_, kFlushed); audio_buffer_stream_->Reset(base::Bind(&AudioRendererImpl::ResetDecoderDone, weak_factory_.GetWeakPtr())); } void AudioRendererImpl::ResetDecoderDone() { DCHECK(task_runner_->BelongsToCurrentThread()); { base::AutoLock auto_lock(lock_); DCHECK_EQ(state_, kFlushed); DCHECK(!flush_cb_.is_null()); received_end_of_stream_ = false; rendered_end_of_stream_ = false; // Flush() may have been called while underflowed/not fully buffered. if (buffering_state_ != BUFFERING_HAVE_NOTHING) SetBufferingState_Locked(BUFFERING_HAVE_NOTHING); splicer_->Reset(); if (buffer_converter_) buffer_converter_->Reset(); algorithm_->FlushBuffers(); } // Changes in buffering state are always posted. Flush callback must only be // run after buffering state has been set back to nothing. task_runner_->PostTask(FROM_HERE, base::ResetAndReturn(&flush_cb_)); } void AudioRendererImpl::StartPlaying() { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); base::AutoLock auto_lock(lock_); DCHECK(!sink_playing_); DCHECK_EQ(state_, kFlushed); DCHECK_EQ(buffering_state_, BUFFERING_HAVE_NOTHING); DCHECK(!pending_read_) << "Pending read must complete before seeking"; ChangeState_Locked(kPlaying); AttemptRead_Locked(); } void AudioRendererImpl::Initialize( DemuxerStream* stream, const PipelineStatusCB& init_cb, CdmContext* cdm_context, const StatisticsCB& statistics_cb, const BufferingStateCB& buffering_state_cb, const base::Closure& ended_cb, const PipelineStatusCB& error_cb, const base::Closure& waiting_for_decryption_key_cb) { DVLOG(1) << __FUNCTION__; DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK(stream); DCHECK_EQ(stream->type(), DemuxerStream::AUDIO); DCHECK(!init_cb.is_null()); DCHECK(!statistics_cb.is_null()); DCHECK(!buffering_state_cb.is_null()); DCHECK(!ended_cb.is_null()); DCHECK(!error_cb.is_null()); DCHECK_EQ(kUninitialized, state_); DCHECK(sink_.get()); state_ = kInitializing; // Always post |init_cb_| because |this| could be destroyed if initialization // failed. init_cb_ = BindToCurrentLoop(init_cb); buffering_state_cb_ = buffering_state_cb; ended_cb_ = ended_cb; error_cb_ = error_cb; statistics_cb_ = statistics_cb; const AudioParameters& hw_params = hardware_config_.GetOutputConfig(); expecting_config_changes_ = stream->SupportsConfigChanges(); if (!expecting_config_changes_ || !hw_params.IsValid() || hw_params.format() == AudioParameters::AUDIO_FAKE) { // The actual buffer size is controlled via the size of the AudioBus // provided to Render(), so just choose something reasonable here for looks. int buffer_size = stream->audio_decoder_config().samples_per_second() / 100; audio_parameters_.Reset( AudioParameters::AUDIO_PCM_LOW_LATENCY, stream->audio_decoder_config().channel_layout(), stream->audio_decoder_config().samples_per_second(), stream->audio_decoder_config().bits_per_channel(), buffer_size); buffer_converter_.reset(); } else { // To allow for seamless sample rate adaptations (i.e. changes from say // 16kHz to 48kHz), always resample to the hardware rate. int sample_rate = hw_params.sample_rate(); int preferred_buffer_size = hw_params.frames_per_buffer(); #if defined(OS_CHROMEOS) // On ChromeOS let the OS level resampler handle resampling unless the // initial sample rate is too low; this allows support for sample rate // adaptations where necessary. if (stream->audio_decoder_config().samples_per_second() >= 44100) { sample_rate = stream->audio_decoder_config().samples_per_second(); preferred_buffer_size = 0; // No preference. } #endif audio_parameters_.Reset( hw_params.format(), // Always use the source's channel layout to avoid premature downmixing // (http://crbug.com/379288), platform specific issues around channel // layouts (http://crbug.com/266674), and unnecessary upmixing overhead. stream->audio_decoder_config().channel_layout(), sample_rate, hw_params.bits_per_sample(), AudioHardwareConfig::GetHighLatencyBufferSize(sample_rate, preferred_buffer_size)); } audio_clock_.reset( new AudioClock(base::TimeDelta(), audio_parameters_.sample_rate())); audio_buffer_stream_->Initialize( stream, base::Bind(&AudioRendererImpl::OnAudioBufferStreamInitialized, weak_factory_.GetWeakPtr()), cdm_context, statistics_cb, waiting_for_decryption_key_cb); } void AudioRendererImpl::OnAudioBufferStreamInitialized(bool success) { DVLOG(1) << __FUNCTION__ << ": " << success; DCHECK(task_runner_->BelongsToCurrentThread()); base::AutoLock auto_lock(lock_); if (!success) { state_ = kUninitialized; base::ResetAndReturn(&init_cb_).Run(DECODER_ERROR_NOT_SUPPORTED); return; } if (!audio_parameters_.IsValid()) { DVLOG(1) << __FUNCTION__ << ": Invalid audio parameters: " << audio_parameters_.AsHumanReadableString(); ChangeState_Locked(kUninitialized); base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_INITIALIZATION_FAILED); return; } if (expecting_config_changes_) buffer_converter_.reset(new AudioBufferConverter(audio_parameters_)); splicer_.reset(new AudioSplicer(audio_parameters_.sample_rate(), media_log_)); // We're all good! Continue initializing the rest of the audio renderer // based on the decoder format. algorithm_.reset(new AudioRendererAlgorithm()); algorithm_->Initialize(audio_parameters_); ChangeState_Locked(kFlushed); { base::AutoUnlock auto_unlock(lock_); sink_->Initialize(audio_parameters_, this); sink_->Start(); // Some sinks play on start... sink_->Pause(); } DCHECK(!sink_playing_); base::ResetAndReturn(&init_cb_).Run(PIPELINE_OK); } void AudioRendererImpl::SetVolume(float volume) { DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK(sink_.get()); sink_->SetVolume(volume); } void AudioRendererImpl::DecodedAudioReady( AudioBufferStream::Status status, const scoped_refptr& buffer) { DVLOG(2) << __FUNCTION__ << "(" << status << ")"; DCHECK(task_runner_->BelongsToCurrentThread()); base::AutoLock auto_lock(lock_); DCHECK(state_ != kUninitialized); CHECK(pending_read_); pending_read_ = false; if (status == AudioBufferStream::ABORTED || status == AudioBufferStream::DEMUXER_READ_ABORTED) { HandleAbortedReadOrDecodeError(PIPELINE_OK); return; } if (status == AudioBufferStream::DECODE_ERROR) { HandleAbortedReadOrDecodeError(PIPELINE_ERROR_DECODE); return; } DCHECK_EQ(status, AudioBufferStream::OK); DCHECK(buffer.get()); if (state_ == kFlushing) { ChangeState_Locked(kFlushed); DoFlush_Locked(); return; } if (expecting_config_changes_) { DCHECK(buffer_converter_); buffer_converter_->AddInput(buffer); while (buffer_converter_->HasNextBuffer()) { if (!splicer_->AddInput(buffer_converter_->GetNextBuffer())) { HandleAbortedReadOrDecodeError(AUDIO_RENDERER_ERROR_SPLICE_FAILED); return; } } } else { if (!splicer_->AddInput(buffer)) { HandleAbortedReadOrDecodeError(AUDIO_RENDERER_ERROR_SPLICE_FAILED); return; } } if (!splicer_->HasNextBuffer()) { AttemptRead_Locked(); return; } bool need_another_buffer = false; while (splicer_->HasNextBuffer()) need_another_buffer = HandleSplicerBuffer_Locked(splicer_->GetNextBuffer()); if (!need_another_buffer && !CanRead_Locked()) return; AttemptRead_Locked(); } bool AudioRendererImpl::HandleSplicerBuffer_Locked( const scoped_refptr& buffer) { lock_.AssertAcquired(); if (buffer->end_of_stream()) { received_end_of_stream_ = true; } else { if (state_ == kPlaying) { if (IsBeforeStartTime(buffer)) return true; // Trim off any additional time before the start timestamp. const base::TimeDelta trim_time = start_timestamp_ - buffer->timestamp(); if (trim_time > base::TimeDelta()) { buffer->TrimStart(buffer->frame_count() * (static_cast(trim_time.InMicroseconds()) / buffer->duration().InMicroseconds())); } // If the entire buffer was trimmed, request a new one. if (!buffer->frame_count()) return true; } if (state_ != kUninitialized) algorithm_->EnqueueBuffer(buffer); } // Store the timestamp of the first packet so we know when to start actual // audio playback. if (first_packet_timestamp_ == kNoTimestamp()) first_packet_timestamp_ = buffer->timestamp(); const size_t memory_usage = algorithm_->GetMemoryUsage(); PipelineStatistics stats; stats.audio_memory_usage = memory_usage - last_audio_memory_usage_; last_audio_memory_usage_ = memory_usage; task_runner_->PostTask(FROM_HERE, base::Bind(statistics_cb_, stats)); switch (state_) { case kUninitialized: case kInitializing: case kFlushing: NOTREACHED(); return false; case kFlushed: DCHECK(!pending_read_); return false; case kPlaying: if (buffer->end_of_stream() || algorithm_->IsQueueFull()) { if (buffering_state_ == BUFFERING_HAVE_NOTHING) SetBufferingState_Locked(BUFFERING_HAVE_ENOUGH); return false; } return true; } return false; } void AudioRendererImpl::AttemptRead() { base::AutoLock auto_lock(lock_); AttemptRead_Locked(); } void AudioRendererImpl::AttemptRead_Locked() { DCHECK(task_runner_->BelongsToCurrentThread()); lock_.AssertAcquired(); if (!CanRead_Locked()) return; pending_read_ = true; audio_buffer_stream_->Read(base::Bind(&AudioRendererImpl::DecodedAudioReady, weak_factory_.GetWeakPtr())); } bool AudioRendererImpl::CanRead_Locked() { lock_.AssertAcquired(); switch (state_) { case kUninitialized: case kInitializing: case kFlushing: case kFlushed: return false; case kPlaying: break; } return !pending_read_ && !received_end_of_stream_ && !algorithm_->IsQueueFull(); } void AudioRendererImpl::SetPlaybackRate(double playback_rate) { DVLOG(1) << __FUNCTION__ << "(" << playback_rate << ")"; DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK_GE(playback_rate, 0); DCHECK(sink_.get()); base::AutoLock auto_lock(lock_); // We have two cases here: // Play: current_playback_rate == 0 && playback_rate != 0 // Pause: current_playback_rate != 0 && playback_rate == 0 double current_playback_rate = playback_rate_; playback_rate_ = playback_rate; if (!rendering_) return; if (current_playback_rate == 0 && playback_rate != 0) { StartRendering_Locked(); return; } if (current_playback_rate != 0 && playback_rate == 0) { StopRendering_Locked(); return; } } bool AudioRendererImpl::IsBeforeStartTime( const scoped_refptr& buffer) { DCHECK_EQ(state_, kPlaying); return buffer.get() && !buffer->end_of_stream() && (buffer->timestamp() + buffer->duration()) < start_timestamp_; } int AudioRendererImpl::Render(AudioBus* audio_bus, uint32_t frames_delayed, uint32_t frames_skipped) { const int frames_requested = audio_bus->frames(); DVLOG(4) << __FUNCTION__ << " frames_delayed:" << frames_delayed << " frames_skipped:" << frames_skipped << " frames_requested:" << frames_requested; int frames_written = 0; { base::AutoLock auto_lock(lock_); last_render_time_ = tick_clock_->NowTicks(); if (!stop_rendering_time_.is_null()) { audio_clock_->CompensateForSuspendedWrites( last_render_time_ - stop_rendering_time_, frames_delayed); stop_rendering_time_ = base::TimeTicks(); } // Ensure Stop() hasn't destroyed our |algorithm_| on the pipeline thread. if (!algorithm_) { audio_clock_->WroteAudio(0, frames_requested, frames_delayed, playback_rate_); return 0; } if (playback_rate_ == 0) { audio_clock_->WroteAudio(0, frames_requested, frames_delayed, playback_rate_); return 0; } // Mute audio by returning 0 when not playing. if (state_ != kPlaying) { audio_clock_->WroteAudio(0, frames_requested, frames_delayed, playback_rate_); return 0; } // Delay playback by writing silence if we haven't reached the first // timestamp yet; this can occur if the video starts before the audio. if (algorithm_->frames_buffered() > 0) { CHECK_NE(first_packet_timestamp_, kNoTimestamp()); CHECK_GE(first_packet_timestamp_, base::TimeDelta()); const base::TimeDelta play_delay = first_packet_timestamp_ - audio_clock_->back_timestamp(); if (play_delay > base::TimeDelta()) { DCHECK_EQ(frames_written, 0); // Don't multiply |play_delay| out since it can be a huge value on // poorly encoded media and multiplying by the sample rate could cause // the value to overflow. if (play_delay.InSecondsF() > static_cast(frames_requested) / audio_parameters_.sample_rate()) { frames_written = frames_requested; } else { frames_written = play_delay.InSecondsF() * audio_parameters_.sample_rate(); } audio_bus->ZeroFramesPartial(0, frames_written); } // If there's any space left, actually render the audio; this is where the // aural magic happens. if (frames_written < frames_requested) { frames_written += algorithm_->FillBuffer( audio_bus, frames_written, frames_requested - frames_written, playback_rate_); } } // We use the following conditions to determine end of playback: // 1) Algorithm can not fill the audio callback buffer // 2) We received an end of stream buffer // 3) We haven't already signalled that we've ended // 4) We've played all known audio data sent to hardware // // We use the following conditions to determine underflow: // 1) Algorithm can not fill the audio callback buffer // 2) We have NOT received an end of stream buffer // 3) We are in the kPlaying state // // Otherwise the buffer has data we can send to the device. // // Per the TimeSource API the media time should always increase even after // we've rendered all known audio data. Doing so simplifies scenarios where // we have other sources of media data that need to be scheduled after audio // data has ended. // // That being said, we don't want to advance time when underflowed as we // know more decoded frames will eventually arrive. If we did, we would // throw things out of sync when said decoded frames arrive. int frames_after_end_of_stream = 0; if (frames_written == 0) { if (received_end_of_stream_) { if (ended_timestamp_ == kInfiniteDuration()) ended_timestamp_ = audio_clock_->back_timestamp(); frames_after_end_of_stream = frames_requested; } else if (state_ == kPlaying && buffering_state_ != BUFFERING_HAVE_NOTHING) { algorithm_->IncreaseQueueCapacity(); SetBufferingState_Locked(BUFFERING_HAVE_NOTHING); } } audio_clock_->WroteAudio(frames_written + frames_after_end_of_stream, frames_requested, frames_delayed, playback_rate_); if (CanRead_Locked()) { task_runner_->PostTask(FROM_HERE, base::Bind(&AudioRendererImpl::AttemptRead, weak_factory_.GetWeakPtr())); } if (audio_clock_->front_timestamp() >= ended_timestamp_ && !rendered_end_of_stream_) { rendered_end_of_stream_ = true; task_runner_->PostTask(FROM_HERE, ended_cb_); } } DCHECK_LE(frames_written, frames_requested); return frames_written; } void AudioRendererImpl::OnRenderError() { MEDIA_LOG(ERROR, media_log_) << "audio render error"; // Post to |task_runner_| as this is called on the audio callback thread. task_runner_->PostTask(FROM_HERE, base::Bind(error_cb_, AUDIO_RENDERER_ERROR)); } void AudioRendererImpl::HandleAbortedReadOrDecodeError(PipelineStatus status) { DCHECK(task_runner_->BelongsToCurrentThread()); lock_.AssertAcquired(); switch (state_) { case kUninitialized: case kInitializing: NOTREACHED(); return; case kFlushing: ChangeState_Locked(kFlushed); if (status == PIPELINE_OK) { DoFlush_Locked(); return; } MEDIA_LOG(ERROR, media_log_) << "audio error during flushing, status: " << MediaLog::PipelineStatusToString(status); error_cb_.Run(status); base::ResetAndReturn(&flush_cb_).Run(); return; case kFlushed: case kPlaying: if (status != PIPELINE_OK) { MEDIA_LOG(ERROR, media_log_) << "audio error during playing, status: " << MediaLog::PipelineStatusToString(status); error_cb_.Run(status); } return; } } void AudioRendererImpl::ChangeState_Locked(State new_state) { DVLOG(1) << __FUNCTION__ << " : " << state_ << " -> " << new_state; lock_.AssertAcquired(); state_ = new_state; } void AudioRendererImpl::OnNewSpliceBuffer(base::TimeDelta splice_timestamp) { DCHECK(task_runner_->BelongsToCurrentThread()); splicer_->SetSpliceTimestamp(splice_timestamp); } void AudioRendererImpl::OnConfigChange() { DCHECK(task_runner_->BelongsToCurrentThread()); DCHECK(expecting_config_changes_); buffer_converter_->ResetTimestampState(); // Drain flushed buffers from the converter so the AudioSplicer receives all // data ahead of any OnNewSpliceBuffer() calls. Since discontinuities should // only appear after config changes, AddInput() should never fail here. while (buffer_converter_->HasNextBuffer()) CHECK(splicer_->AddInput(buffer_converter_->GetNextBuffer())); } void AudioRendererImpl::SetBufferingState_Locked( BufferingState buffering_state) { DVLOG(1) << __FUNCTION__ << " : " << buffering_state_ << " -> " << buffering_state; DCHECK_NE(buffering_state_, buffering_state); lock_.AssertAcquired(); buffering_state_ = buffering_state; task_runner_->PostTask(FROM_HERE, base::Bind(buffering_state_cb_, buffering_state_)); } } // namespace media