// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/webm/cluster_builder.h" #include "base/logging.h" #include "media/base/data_buffer.h" namespace media { static const uint8 kClusterHeader[] = { 0x1F, 0x43, 0xB6, 0x75, // CLUSTER ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // cluster(size = 0) 0xE7, // Timecode ID 0x88, // timecode(size=8) 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // timecode value }; const int kClusterHeaderSize = sizeof(kClusterHeader); const int kClusterSizeOffset = 4; const int kClusterTimecodeOffset = 14; static const uint8 kSimpleBlockHeader[] = { 0xA3, // SimpleBlock ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // SimpleBlock(size = 0) }; const int kSimpleBlockHeaderSize = sizeof(kSimpleBlockHeader); const int kSimpleBlockSizeOffset = 1; const int kInitialBufferSize = 32768; Cluster::Cluster(scoped_array data, int size) : data_(data.Pass()), size_(size) {} Cluster::~Cluster() {} ClusterBuilder::ClusterBuilder() { Reset(); } ClusterBuilder::~ClusterBuilder() {} void ClusterBuilder::SetClusterTimecode(int64 cluster_timecode) { DCHECK_EQ(cluster_timecode_, -1); cluster_timecode_ = cluster_timecode; // Write the timecode into the header. uint8* buf = buffer_.get() + kClusterTimecodeOffset; for (int i = 7; i >= 0; --i) { buf[i] = cluster_timecode & 0xff; cluster_timecode >>= 8; } } void ClusterBuilder::AddSimpleBlock(int track_num, int64 timecode, int flags, const uint8* data, int size) { DCHECK_GE(track_num, 0); DCHECK_LE(track_num, 126); DCHECK_GE(flags, 0); DCHECK_LE(flags, 0xff); DCHECK(data); DCHECK_GT(size, 0); DCHECK_NE(cluster_timecode_, -1); int64 timecode_delta = timecode - cluster_timecode_; DCHECK_GE(timecode_delta, -32768); DCHECK_LE(timecode_delta, 32767); int block_size = 4 + size; int bytes_needed = kSimpleBlockHeaderSize + block_size; if (bytes_needed > (buffer_size_ - bytes_used_)) ExtendBuffer(bytes_needed); uint8* buf = buffer_.get() + bytes_used_; int block_offset = bytes_used_; memcpy(buf, kSimpleBlockHeader, kSimpleBlockHeaderSize); UpdateUInt64(block_offset + kSimpleBlockSizeOffset, block_size); buf += kSimpleBlockHeaderSize; buf[0] = 0x80 | (track_num & 0x7F); buf[1] = (timecode_delta >> 8) & 0xff; buf[2] = timecode_delta & 0xff; buf[3] = flags & 0xff; memcpy(buf + 4, data, size); bytes_used_ += bytes_needed; } scoped_ptr ClusterBuilder::Finish() { DCHECK_NE(cluster_timecode_, -1); UpdateUInt64(kClusterSizeOffset, bytes_used_ - (kClusterSizeOffset + 8)); scoped_ptr ret(new Cluster(buffer_.Pass(), bytes_used_)); Reset(); return ret.Pass(); } void ClusterBuilder::Reset() { buffer_size_ = kInitialBufferSize; buffer_.reset(new uint8[buffer_size_]); memcpy(buffer_.get(), kClusterHeader, kClusterHeaderSize); bytes_used_ = kClusterHeaderSize; cluster_timecode_ = -1; } void ClusterBuilder::ExtendBuffer(int bytes_needed) { int new_buffer_size = 2 * buffer_size_; while ((new_buffer_size - bytes_used_) < bytes_needed) new_buffer_size *= 2; scoped_array new_buffer(new uint8[new_buffer_size]); memcpy(new_buffer.get(), buffer_.get(), bytes_used_); buffer_.reset(new_buffer.release()); buffer_size_ = new_buffer_size; } void ClusterBuilder::UpdateUInt64(int offset, int64 value) { DCHECK_LE(offset + 7, buffer_size_); uint8* buf = buffer_.get() + offset; // Fill the last 7 bytes of size field in big-endian order. for (int i = 7; i > 0; i--) { buf[i] = value & 0xff; value >>= 8; } } } // namespace media