// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef MOJO_PUBLIC_CPP_BINDINGS_BINDING_H_ #define MOJO_PUBLIC_CPP_BINDINGS_BINDING_H_ #include #include "base/macros.h" #include "mojo/public/c/environment/async_waiter.h" #include "mojo/public/cpp/bindings/callback.h" #include "mojo/public/cpp/bindings/interface_ptr.h" #include "mojo/public/cpp/bindings/interface_ptr_info.h" #include "mojo/public/cpp/bindings/interface_request.h" #include "mojo/public/cpp/bindings/lib/binding_state.h" #include "mojo/public/cpp/system/core.h" namespace mojo { class AssociatedGroup; // Represents the binding of an interface implementation to a message pipe. // When the |Binding| object is destroyed, the binding between the message pipe // and the interface is torn down and the message pipe is closed, leaving the // interface implementation in an unbound state. // // Example: // // #include "foo.mojom.h" // // class FooImpl : public Foo { // public: // explicit FooImpl(InterfaceRequest request) // : binding_(this, request.Pass()) {} // // // Foo implementation here. // // private: // Binding binding_; // }; // // class MyFooFactory : public InterfaceFactory { // public: // void Create(..., InterfaceRequest request) override { // auto f = new FooImpl(request.Pass()); // // Do something to manage the lifetime of |f|. Use StrongBinding<> to // // delete FooImpl on connection errors. // } // }; // // The caller may specify a |MojoAsyncWaiter| to be used by the connection when // waiting for calls to arrive. Normally it is fine to use the default waiter. // However, the caller may provide their own implementation if needed. The // |Binding| will not take ownership of the waiter, and the waiter must outlive // the |Binding|. The provided waiter must be able to signal the implementation // which generally means it needs to be able to schedule work on the thread the // implementation runs on. If writing library code that has to work on different // types of threads callers may need to provide different waiter // implementations. // // This class is thread hostile while bound to a message pipe. All calls to this // class must be from the thread that bound it. The interface implementation's // methods will be called from the thread that bound this. If a Binding is not // bound to a message pipe, it may be bound or destroyed on any thread. template class Binding { public: using GenericInterface = typename Interface::GenericInterface; // Constructs an incomplete binding that will use the implementation |impl|. // The binding may be completed with a subsequent call to the |Bind| method. // Does not take ownership of |impl|, which must outlive the binding. explicit Binding(Interface* impl) : internal_state_(impl) {} // Constructs a completed binding of message pipe |handle| to implementation // |impl|. Does not take ownership of |impl|, which must outlive the binding. // See class comment for definition of |waiter|. Binding(Interface* impl, ScopedMessagePipeHandle handle, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) : Binding(impl) { Bind(std::move(handle), waiter); } // Constructs a completed binding of |impl| to a new message pipe, passing the // client end to |ptr|, which takes ownership of it. The caller is expected to // pass |ptr| on to the client of the service. Does not take ownership of any // of the parameters. |impl| must outlive the binding. |ptr| only needs to // last until the constructor returns. See class comment for definition of // |waiter|. Binding(Interface* impl, InterfacePtr* ptr, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) : Binding(impl) { Bind(ptr, waiter); } // Constructs a completed binding of |impl| to the message pipe endpoint in // |request|, taking ownership of the endpoint. Does not take ownership of // |impl|, which must outlive the binding. See class comment for definition of // |waiter|. Binding(Interface* impl, InterfaceRequest request, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) : Binding(impl) { Bind(request.PassMessagePipe(), waiter); } // Tears down the binding, closing the message pipe and leaving the interface // implementation unbound. ~Binding() {} // Returns an InterfacePtr bound to one end of a pipe whose other end is // bound to |this|. InterfacePtr CreateInterfacePtrAndBind() { InterfacePtr interface_ptr; Bind(&interface_ptr); return interface_ptr; } // Completes a binding that was constructed with only an interface // implementation. Takes ownership of |handle| and binds it to the previously // specified implementation. See class comment for definition of |waiter|. void Bind( ScopedMessagePipeHandle handle, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) { internal_state_.Bind(std::move(handle), waiter); } // Completes a binding that was constructed with only an interface // implementation by creating a new message pipe, binding one end of it to the // previously specified implementation, and passing the other to |ptr|, which // takes ownership of it. The caller is expected to pass |ptr| on to the // eventual client of the service. Does not take ownership of |ptr|. See // class comment for definition of |waiter|. void Bind( InterfacePtr* ptr, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) { MessagePipe pipe; ptr->Bind(InterfacePtrInfo(std::move(pipe.handle0), Interface::Version_), waiter); Bind(std::move(pipe.handle1), waiter); } // Completes a binding that was constructed with only an interface // implementation by removing the message pipe endpoint from |request| and // binding it to the previously specified implementation. See class comment // for definition of |waiter|. void Bind( InterfaceRequest request, const MojoAsyncWaiter* waiter = Environment::GetDefaultAsyncWaiter()) { Bind(request.PassMessagePipe(), waiter); } // Whether there are any associated interfaces running on the pipe currently. bool HasAssociatedInterfaces() const { return internal_state_.HasAssociatedInterfaces(); } // Stops processing incoming messages until // ResumeIncomingMethodCallProcessing(), or WaitForIncomingMethodCall(). // Outgoing messages are still sent. // // No errors are detected on the message pipe while paused. // // This method may only be called if the object has been bound to a message // pipe and there are no associated interfaces running. void PauseIncomingMethodCallProcessing() { CHECK(!HasAssociatedInterfaces()); internal_state_.PauseIncomingMethodCallProcessing(); } void ResumeIncomingMethodCallProcessing() { internal_state_.ResumeIncomingMethodCallProcessing(); } // Blocks the calling thread until either a call arrives on the previously // bound message pipe, the deadline is exceeded, or an error occurs. Returns // true if a method was successfully read and dispatched. // // This method may only be called if the object has been bound to a message // pipe and there are no associated interfaces running. bool WaitForIncomingMethodCall( MojoDeadline deadline = MOJO_DEADLINE_INDEFINITE) { CHECK(!HasAssociatedInterfaces()); return internal_state_.WaitForIncomingMethodCall(deadline); } // Closes the message pipe that was previously bound. Put this object into a // state where it can be rebound to a new pipe. void Close() { internal_state_.Close(); } // Unbinds the underlying pipe from this binding and returns it so it can be // used in another context, such as on another thread or with a different // implementation. Put this object into a state where it can be rebound to a // new pipe. // // This method may only be called if the object has been bound to a message // pipe and there are no associated interfaces running. // // TODO(yzshen): For now, users need to make sure there is no one holding // on to associated interface endpoint handles at both sides of the // message pipe in order to call this method. We need a way to forcefully // invalidate associated interface endpoint handles. InterfaceRequest Unbind() { CHECK(!HasAssociatedInterfaces()); return internal_state_.Unbind(); } // Sets an error handler that will be called if a connection error occurs on // the bound message pipe. // // This method may only be called after this Binding has been bound to a // message pipe. The error handler will be reset when this Binding is unbound // or closed. void set_connection_error_handler(const Closure& error_handler) { DCHECK(is_bound()); internal_state_.set_connection_error_handler(error_handler); } // Returns the interface implementation that was previously specified. Caller // does not take ownership. Interface* impl() { return internal_state_.impl(); } // Indicates whether the binding has been completed (i.e., whether a message // pipe has been bound to the implementation). bool is_bound() const { return internal_state_.is_bound(); } // Returns the value of the handle currently bound to this Binding which can // be used to make explicit Wait/WaitMany calls. Requires that the Binding be // bound. Ownership of the handle is retained by the Binding, it is not // transferred to the caller. MessagePipeHandle handle() const { return internal_state_.handle(); } // Returns the associated group that this object belongs to. Returns null if: // - this object is not bound; or // - the interface doesn't have methods to pass associated interface // pointers or requests. AssociatedGroup* associated_group() { return internal_state_.associated_group(); } // Exposed for testing, should not generally be used. void EnableTestingMode() { internal_state_.EnableTestingMode(); } private: internal::BindingState internal_state_; DISALLOW_COPY_AND_ASSIGN(Binding); }; } // namespace mojo #endif // MOJO_PUBLIC_CPP_BINDINGS_BINDING_H_