// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "mojo/public/cpp/utility/run_loop.h" #include #include #include #include "mojo/public/cpp/utility/lib/thread_local.h" #include "mojo/public/cpp/utility/run_loop_handler.h" namespace mojo { namespace { internal::ThreadLocalPointer current_run_loop; const MojoTimeTicks kInvalidTimeTicks = static_cast(0); } // namespace // State needed for one iteration of WaitMany(). struct RunLoop::WaitState { WaitState() : deadline(MOJO_DEADLINE_INDEFINITE) {} std::vector handles; std::vector handle_signals; MojoDeadline deadline; }; struct RunLoop::RunState { RunState() : should_quit(false) {} bool should_quit; }; RunLoop::RunLoop() : run_state_(nullptr), next_handler_id_(0), next_sequence_number_(0) { assert(!current()); current_run_loop.Set(this); } RunLoop::~RunLoop() { assert(current() == this); NotifyHandlers(MOJO_RESULT_ABORTED, IGNORE_DEADLINE); current_run_loop.Set(nullptr); } // static void RunLoop::SetUp() { current_run_loop.Allocate(); } // static void RunLoop::TearDown() { assert(!current()); current_run_loop.Free(); } // static RunLoop* RunLoop::current() { return current_run_loop.Get(); } void RunLoop::AddHandler(RunLoopHandler* handler, const Handle& handle, MojoHandleSignals handle_signals, MojoDeadline deadline) { assert(current() == this); assert(handler); assert(handle.is_valid()); // Assume it's an error if someone tries to reregister an existing handle. assert(0u == handler_data_.count(handle)); HandlerData handler_data; handler_data.handler = handler; handler_data.handle_signals = handle_signals; handler_data.deadline = (deadline == MOJO_DEADLINE_INDEFINITE) ? kInvalidTimeTicks : GetTimeTicksNow() + static_cast(deadline); handler_data.id = next_handler_id_++; handler_data_[handle] = handler_data; } void RunLoop::RemoveHandler(const Handle& handle) { assert(current() == this); handler_data_.erase(handle); } bool RunLoop::HasHandler(const Handle& handle) const { return handler_data_.find(handle) != handler_data_.end(); } void RunLoop::Run() { RunInternal(UNTIL_EMPTY); } void RunLoop::RunUntilIdle() { RunInternal(UNTIL_IDLE); } void RunLoop::RunInternal(RunMode run_mode) { assert(current() == this); RunState* old_state = run_state_; RunState run_state; run_state_ = &run_state; for (;;) { bool did_work = DoDelayedWork(); if (run_state.should_quit) break; did_work |= Wait(run_mode == UNTIL_IDLE); if (run_state.should_quit) break; if (!did_work && run_mode == UNTIL_IDLE) break; } run_state_ = old_state; } bool RunLoop::DoDelayedWork() { MojoTimeTicks now = GetTimeTicksNow(); if (!delayed_tasks_.empty() && delayed_tasks_.top().run_time <= now) { PendingTask task = delayed_tasks_.top(); delayed_tasks_.pop(); task.task.Run(); return true; } return false; } void RunLoop::Quit() { assert(current() == this); if (run_state_) run_state_->should_quit = true; } void RunLoop::PostDelayedTask(const Closure& task, MojoTimeTicks delay) { assert(current() == this); MojoTimeTicks run_time = delay + GetTimeTicksNow(); delayed_tasks_.push(PendingTask(task, run_time, next_sequence_number_++)); } bool RunLoop::Wait(bool non_blocking) { const WaitState wait_state = GetWaitState(non_blocking); if (wait_state.handles.empty()) { if (delayed_tasks_.empty()) Quit(); return false; } const WaitManyResult wmr = WaitMany(wait_state.handles, wait_state.handle_signals, wait_state.deadline, nullptr); if (!wmr.IsIndexValid()) { assert(wmr.result == MOJO_RESULT_DEADLINE_EXCEEDED); return NotifyHandlers(MOJO_RESULT_DEADLINE_EXCEEDED, CHECK_DEADLINE); } Handle handle = wait_state.handles[wmr.index]; assert(handler_data_.find(handle) != handler_data_.end()); RunLoopHandler* handler = handler_data_[handle].handler; switch (wmr.result) { case MOJO_RESULT_OK: handler->OnHandleReady(handle); return true; case MOJO_RESULT_INVALID_ARGUMENT: case MOJO_RESULT_FAILED_PRECONDITION: // Remove the handle first, this way if OnHandleError() tries to remove // the handle our iterator isn't invalidated. handler_data_.erase(handle); handler->OnHandleError(handle, wmr.result); return true; default: assert(false); return false; } } bool RunLoop::NotifyHandlers(MojoResult error, CheckDeadline check) { bool notified = false; // Make a copy in case someone tries to add/remove new handlers as part of // notifying. const HandleToHandlerData cloned_handlers(handler_data_); const MojoTimeTicks now(GetTimeTicksNow()); for (HandleToHandlerData::const_iterator i = cloned_handlers.begin(); i != cloned_handlers.end(); ++i) { // Only check deadline exceeded if that's what we're notifying. if (check == CHECK_DEADLINE && (i->second.deadline == kInvalidTimeTicks || i->second.deadline > now)) { continue; } // Since we're iterating over a clone of the handlers, verify the handler // is still valid before notifying. if (handler_data_.find(i->first) == handler_data_.end() || handler_data_[i->first].id != i->second.id) { continue; } RunLoopHandler* handler = i->second.handler; handler_data_.erase(i->first); handler->OnHandleError(i->first, error); notified = true; } return notified; } RunLoop::WaitState RunLoop::GetWaitState(bool non_blocking) const { WaitState wait_state; MojoTimeTicks min_time = kInvalidTimeTicks; for (HandleToHandlerData::const_iterator i = handler_data_.begin(); i != handler_data_.end(); ++i) { wait_state.handles.push_back(i->first); wait_state.handle_signals.push_back(i->second.handle_signals); if (!non_blocking && i->second.deadline != kInvalidTimeTicks && (min_time == kInvalidTimeTicks || i->second.deadline < min_time)) { min_time = i->second.deadline; } } if (!delayed_tasks_.empty()) { MojoTimeTicks delayed_min_time = delayed_tasks_.top().run_time; if (min_time == kInvalidTimeTicks) min_time = delayed_min_time; else min_time = std::min(min_time, delayed_min_time); } if (non_blocking) { wait_state.deadline = static_cast(0); } else if (min_time != kInvalidTimeTicks) { const MojoTimeTicks now = GetTimeTicksNow(); if (min_time < now) wait_state.deadline = static_cast(0); else wait_state.deadline = static_cast(min_time - now); } return wait_state; } RunLoop::PendingTask::PendingTask(const Closure& task, MojoTimeTicks run_time, uint64_t sequence_number) : task(task), run_time(run_time), sequence_number(sequence_number) { } RunLoop::PendingTask::~PendingTask() { } bool RunLoop::PendingTask::operator<(const RunLoop::PendingTask& other) const { if (run_time != other.run_time) { // std::priority_queue<> puts the least element at the end of the queue. We // want the soonest eligible task to be at the head of the queue, so // run_times further in the future are considered lesser. return run_time > other.run_time; } return sequence_number > other.sequence_number; } } // namespace mojo