// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // NOTE(vtl): Some of these tests are inherently flaky (e.g., if run on a // heavily-loaded system). Sorry. |kEpsilonMicros| may be increased to increase // tolerance and reduce observed flakiness. #include "mojo/system/message_pipe_dispatcher.h" #include #include #include "base/memory/ref_counted.h" #include "base/memory/scoped_vector.h" #include "base/rand_util.h" #include "base/threading/platform_thread.h" // For |Sleep()|. #include "base/threading/simple_thread.h" #include "base/time/time.h" #include "mojo/system/message_pipe.h" #include "mojo/system/test_utils.h" #include "mojo/system/waiter.h" #include "mojo/system/waiter_test_utils.h" #include "testing/gtest/include/gtest/gtest.h" namespace mojo { namespace system { namespace { const int64_t kMicrosPerMs = 1000; const int64_t kEpsilonMicros = 15 * kMicrosPerMs; // 15 ms. TEST(MessagePipeDispatcherTest, Basic) { test::Stopwatch stopwatch; int32_t buffer[1]; const uint32_t kBufferSize = static_cast(sizeof(buffer)); uint32_t buffer_size; int64_t elapsed_micros; // Run this test both with |d_0| as port 0, |d_1| as port 1 and vice versa. for (unsigned i = 0; i < 2; i++) { scoped_refptr d_0(new MessagePipeDispatcher()); scoped_refptr d_1(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_0->Init(mp, i); // 0, 1. d_1->Init(mp, i ^ 1); // 1, 0. } Waiter w; // Try adding a writable waiter when already writable. w.Init(); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_WRITABLE, 0)); // Shouldn't need to remove the waiter (it was not added). // Add a readable waiter to |d_0|, then make it readable (by writing to // |d_1|), then wait. w.Init(); EXPECT_EQ(MOJO_RESULT_OK, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 1)); buffer[0] = 123456789; EXPECT_EQ(MOJO_RESULT_OK, d_1->WriteMessage(buffer, kBufferSize, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); stopwatch.Start(); EXPECT_EQ(1, w.Wait(MOJO_DEADLINE_INDEFINITE)); elapsed_micros = stopwatch.Elapsed(); EXPECT_LT(elapsed_micros, kEpsilonMicros); d_0->RemoveWaiter(&w); // Try adding a readable waiter when already readable (from above). w.Init(); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 2)); // Shouldn't need to remove the waiter (it was not added). // Make |d_0| no longer readable (by reading from it). buffer[0] = 0; buffer_size = kBufferSize; EXPECT_EQ(MOJO_RESULT_OK, d_0->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); EXPECT_EQ(kBufferSize, buffer_size); EXPECT_EQ(123456789, buffer[0]); // Wait for zero time for readability on |d_0| (will time out). w.Init(); EXPECT_EQ(MOJO_RESULT_OK, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 3)); stopwatch.Start(); EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, w.Wait(0)); elapsed_micros = stopwatch.Elapsed(); EXPECT_LT(elapsed_micros, kEpsilonMicros); d_0->RemoveWaiter(&w); // Wait for non-zero, finite time for readability on |d_0| (will time out). w.Init(); EXPECT_EQ(MOJO_RESULT_OK, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 3)); stopwatch.Start(); EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, w.Wait(2 * kEpsilonMicros)); elapsed_micros = stopwatch.Elapsed(); EXPECT_GT(elapsed_micros, (2-1) * kEpsilonMicros); EXPECT_LT(elapsed_micros, (2+1) * kEpsilonMicros); d_0->RemoveWaiter(&w); EXPECT_EQ(MOJO_RESULT_OK, d_0->Close()); EXPECT_EQ(MOJO_RESULT_OK, d_1->Close()); } } TEST(MessagePipeDispatcherTest, InvalidParams) { char buffer[1]; MojoHandle handles[1]; scoped_refptr d_0(new MessagePipeDispatcher()); scoped_refptr d_1(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_0->Init(mp, 0); d_1->Init(mp, 1); } // |WriteMessage|: // Null buffer with nonzero buffer size. EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, d_0->WriteMessage(NULL, 1, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); // Huge buffer size. EXPECT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED, d_0->WriteMessage(buffer, std::numeric_limits::max(), NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); // Null handles with nonzero handle count. EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, d_0->WriteMessage(buffer, sizeof(buffer), NULL, 1, MOJO_WRITE_MESSAGE_FLAG_NONE)); // Huge handle count (implausibly big on some systems -- more than can be // stored in a 32-bit address space). // Note: This may return either |MOJO_RESULT_INVALID_ARGUMENT| or // |MOJO_RESULT_RESOURCE_EXHAUSTED|, depending on whether it's plausible or // not. EXPECT_NE(MOJO_RESULT_OK, d_0->WriteMessage(buffer, sizeof(buffer), handles, std::numeric_limits::max(), MOJO_WRITE_MESSAGE_FLAG_NONE)); // Huge handle count (plausibly big). EXPECT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED, d_0->WriteMessage(buffer, sizeof(buffer), handles, std::numeric_limits::max() / sizeof(handles[0]), MOJO_WRITE_MESSAGE_FLAG_NONE)); // |ReadMessage|: // Null buffer with nonzero buffer size. uint32_t buffer_size = 1; EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, d_0->ReadMessage(NULL, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); // Null handles with nonzero handle count. buffer_size = static_cast(sizeof(buffer)); uint32_t handle_count = 1; EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, d_0->ReadMessage(buffer, &buffer_size, NULL, &handle_count, MOJO_READ_MESSAGE_FLAG_NONE)); EXPECT_EQ(MOJO_RESULT_OK, d_0->Close()); EXPECT_EQ(MOJO_RESULT_OK, d_1->Close()); } // Test what happens when one end is closed (single-threaded test). TEST(MessagePipeDispatcherTest, BasicClosed) { int32_t buffer[1]; const uint32_t kBufferSize = static_cast(sizeof(buffer)); uint32_t buffer_size; // Run this test both with |d_0| as port 0, |d_1| as port 1 and vice versa. for (unsigned i = 0; i < 2; i++) { scoped_refptr d_0(new MessagePipeDispatcher()); scoped_refptr d_1(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_0->Init(mp, i); // 0, 1. d_1->Init(mp, i ^ 1); // 1, 0. } Waiter w; // Write (twice) to |d_1|. buffer[0] = 123456789; EXPECT_EQ(MOJO_RESULT_OK, d_1->WriteMessage(buffer, kBufferSize, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); buffer[0] = 234567890; EXPECT_EQ(MOJO_RESULT_OK, d_1->WriteMessage(buffer, kBufferSize, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); // Try waiting for readable on |d_0|; should fail (already satisfied). w.Init(); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 0)); // Close |d_1|. EXPECT_EQ(MOJO_RESULT_OK, d_1->Close()); // Try waiting for readable on |d_0|; should fail (already satisfied). w.Init(); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 1)); // Read from |d_0|. buffer[0] = 0; buffer_size = kBufferSize; EXPECT_EQ(MOJO_RESULT_OK, d_0->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); EXPECT_EQ(kBufferSize, buffer_size); EXPECT_EQ(123456789, buffer[0]); // Try waiting for readable on |d_0|; should fail (already satisfied). w.Init(); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 2)); // Read again from |d_0|. buffer[0] = 0; buffer_size = kBufferSize; EXPECT_EQ(MOJO_RESULT_OK, d_0->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); EXPECT_EQ(kBufferSize, buffer_size); EXPECT_EQ(234567890, buffer[0]); // Try waiting for readable on |d_0|; should fail (unsatisfiable). w.Init(); EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 3)); // Try waiting for writable on |d_0|; should fail (unsatisfiable). w.Init(); EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, d_0->AddWaiter(&w, MOJO_WAIT_FLAG_WRITABLE, 4)); // Try reading from |d_0|; should fail (nothing to read). buffer[0] = 0; buffer_size = kBufferSize; EXPECT_EQ(MOJO_RESULT_NOT_FOUND, d_0->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); // Try writing to |d_0|; should fail (other end closed). buffer[0] = 345678901; EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, d_0->WriteMessage(buffer, kBufferSize, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); EXPECT_EQ(MOJO_RESULT_OK, d_0->Close()); } } TEST(MessagePipeDispatcherTest, BasicThreaded) { test::Stopwatch stopwatch; int32_t buffer[1]; const uint32_t kBufferSize = static_cast(sizeof(buffer)); uint32_t buffer_size; bool did_wait; MojoResult result; int64_t elapsed_micros; // Run this test both with |d_0| as port 0, |d_1| as port 1 and vice versa. for (unsigned i = 0; i < 2; i++) { scoped_refptr d_0(new MessagePipeDispatcher()); scoped_refptr d_1(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_0->Init(mp, i); // 0, 1. d_1->Init(mp, i ^ 1); // 1, 0. } // Wait for readable on |d_1|, which will become readable after some time. { test::WaiterThread thread(d_1, MOJO_WAIT_FLAG_READABLE, MOJO_DEADLINE_INDEFINITE, 0, &did_wait, &result); stopwatch.Start(); thread.Start(); base::PlatformThread::Sleep( base::TimeDelta::FromMicroseconds(2 * kEpsilonMicros)); // Wake it up by writing to |d_0|. buffer[0] = 123456789; EXPECT_EQ(MOJO_RESULT_OK, d_0->WriteMessage(buffer, kBufferSize, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); } // Joins the thread. elapsed_micros = stopwatch.Elapsed(); EXPECT_TRUE(did_wait); EXPECT_EQ(0, result); EXPECT_GT(elapsed_micros, (2-1) * kEpsilonMicros); EXPECT_LT(elapsed_micros, (2+1) * kEpsilonMicros); // Now |d_1| is already readable. Try waiting for it again. { test::WaiterThread thread(d_1, MOJO_WAIT_FLAG_READABLE, MOJO_DEADLINE_INDEFINITE, 1, &did_wait, &result); stopwatch.Start(); thread.Start(); } // Joins the thread. elapsed_micros = stopwatch.Elapsed(); EXPECT_FALSE(did_wait); EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS, result); EXPECT_LT(elapsed_micros, kEpsilonMicros); // Consume what we wrote to |d_0|. buffer[0] = 0; buffer_size = kBufferSize; EXPECT_EQ(MOJO_RESULT_OK, d_1->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE)); EXPECT_EQ(kBufferSize, buffer_size); EXPECT_EQ(123456789, buffer[0]); // Wait for readable on |d_1| and close |d_0| after some time, which should // cancel that wait. { test::WaiterThread thread(d_1, MOJO_WAIT_FLAG_READABLE, MOJO_DEADLINE_INDEFINITE, 0, &did_wait, &result); stopwatch.Start(); thread.Start(); base::PlatformThread::Sleep( base::TimeDelta::FromMicroseconds(2 * kEpsilonMicros)); EXPECT_EQ(MOJO_RESULT_OK, d_0->Close()); } // Joins the thread. elapsed_micros = stopwatch.Elapsed(); EXPECT_TRUE(did_wait); EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, result); EXPECT_GT(elapsed_micros, (2-1) * kEpsilonMicros); EXPECT_LT(elapsed_micros, (2+1) * kEpsilonMicros); EXPECT_EQ(MOJO_RESULT_OK, d_1->Close()); } for (unsigned i = 0; i < 2; i++) { scoped_refptr d_0(new MessagePipeDispatcher()); scoped_refptr d_1(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_0->Init(mp, i); // 0, 1. d_1->Init(mp, i ^ 1); // 1, 0. } // Wait for readable on |d_1| and close |d_1| after some time, which should // cancel that wait. { test::WaiterThread thread(d_1, MOJO_WAIT_FLAG_READABLE, MOJO_DEADLINE_INDEFINITE, 0, &did_wait, &result); stopwatch.Start(); thread.Start(); base::PlatformThread::Sleep( base::TimeDelta::FromMicroseconds(2 * kEpsilonMicros)); EXPECT_EQ(MOJO_RESULT_OK, d_1->Close()); } // Joins the thread. elapsed_micros = stopwatch.Elapsed(); EXPECT_TRUE(did_wait); EXPECT_EQ(MOJO_RESULT_CANCELLED, result); EXPECT_GT(elapsed_micros, (2-1) * kEpsilonMicros); EXPECT_LT(elapsed_micros, (2+1) * kEpsilonMicros); EXPECT_EQ(MOJO_RESULT_OK, d_0->Close()); } } // Stress test ----------------------------------------------------------------- const size_t kMaxMessageSize = 2000; class WriterThread : public base::SimpleThread { public: // |*messages_written| and |*bytes_written| belong to the thread while it's // alive. WriterThread(scoped_refptr write_dispatcher, size_t* messages_written, size_t* bytes_written) : base::SimpleThread("writer_thread"), write_dispatcher_(write_dispatcher), messages_written_(messages_written), bytes_written_(bytes_written) { *messages_written_ = 0; *bytes_written_ = 0; } virtual ~WriterThread() { Join(); } private: virtual void Run() OVERRIDE { // Make some data to write. unsigned char buffer[kMaxMessageSize]; for (size_t i = 0; i < kMaxMessageSize; i++) buffer[i] = static_cast(i); // Number of messages to write. *messages_written_ = static_cast(base::RandInt(1000, 6000)); // Write messages. for (size_t i = 0; i < *messages_written_; i++) { uint32_t bytes_to_write = static_cast( base::RandInt(1, static_cast(kMaxMessageSize))); EXPECT_EQ(MOJO_RESULT_OK, write_dispatcher_->WriteMessage(buffer, bytes_to_write, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); *bytes_written_ += bytes_to_write; } // Write one last "quit" message. EXPECT_EQ(MOJO_RESULT_OK, write_dispatcher_->WriteMessage("quit", 4, NULL, 0, MOJO_WRITE_MESSAGE_FLAG_NONE)); } const scoped_refptr write_dispatcher_; size_t* const messages_written_; size_t* const bytes_written_; DISALLOW_COPY_AND_ASSIGN(WriterThread); }; class ReaderThread : public base::SimpleThread { public: // |*messages_read| and |*bytes_read| belong to the thread while it's alive. ReaderThread(scoped_refptr read_dispatcher, size_t* messages_read, size_t* bytes_read) : base::SimpleThread("reader_thread"), read_dispatcher_(read_dispatcher), messages_read_(messages_read), bytes_read_(bytes_read) { *messages_read_ = 0; *bytes_read_ = 0; } virtual ~ReaderThread() { Join(); } private: virtual void Run() OVERRIDE { unsigned char buffer[kMaxMessageSize]; MojoResult result; Waiter w; // Read messages. for (;;) { // Wait for it to be readable. w.Init(); result = read_dispatcher_->AddWaiter(&w, MOJO_WAIT_FLAG_READABLE, 0); EXPECT_TRUE(result == MOJO_RESULT_OK || result == MOJO_RESULT_ALREADY_EXISTS) << "result: " << result; if (result == MOJO_RESULT_OK) { // Actually need to wait. EXPECT_EQ(0, w.Wait(MOJO_DEADLINE_INDEFINITE)); read_dispatcher_->RemoveWaiter(&w); } // Now, try to do the read. // Clear the buffer so that we can check the result. memset(buffer, 0, sizeof(buffer)); uint32_t buffer_size = static_cast(sizeof(buffer)); result = read_dispatcher_->ReadMessage(buffer, &buffer_size, NULL, NULL, MOJO_READ_MESSAGE_FLAG_NONE); EXPECT_TRUE(result == MOJO_RESULT_OK || result == MOJO_RESULT_NOT_FOUND) << "result: " << result; // We're racing with others to read, so maybe we failed. if (result == MOJO_RESULT_NOT_FOUND) continue; // In which case, try again. // Check for quit. if (buffer_size == 4 && memcmp("quit", buffer, 4) == 0) return; EXPECT_GE(buffer_size, 1u); EXPECT_LE(buffer_size, kMaxMessageSize); EXPECT_TRUE(IsValidMessage(buffer, buffer_size)); (*messages_read_)++; *bytes_read_ += buffer_size; } } static bool IsValidMessage(const unsigned char* buffer, uint32_t message_size) { size_t i; for (i = 0; i < message_size; i++) { if (buffer[i] != static_cast(i)) return false; } // Check that the remaining bytes weren't stomped on. for (; i < kMaxMessageSize; i++) { if (buffer[i] != 0) return false; } return true; } const scoped_refptr read_dispatcher_; size_t* const messages_read_; size_t* const bytes_read_; DISALLOW_COPY_AND_ASSIGN(ReaderThread); }; TEST(MessagePipeDispatcherTest, Stress) { static const size_t kNumWriters = 30; static const size_t kNumReaders = kNumWriters; scoped_refptr d_write(new MessagePipeDispatcher()); scoped_refptr d_read(new MessagePipeDispatcher()); { scoped_refptr mp(new MessagePipe()); d_write->Init(mp, 0); d_read->Init(mp, 1); } size_t messages_written[kNumWriters]; size_t bytes_written[kNumWriters]; size_t messages_read[kNumReaders]; size_t bytes_read[kNumReaders]; { // Make writers. ScopedVector writers; for (size_t i = 0; i < kNumWriters; i++) { writers.push_back( new WriterThread(d_write, &messages_written[i], &bytes_written[i])); } // Make readers. ScopedVector readers; for (size_t i = 0; i < kNumReaders; i++) { readers.push_back( new ReaderThread(d_read, &messages_read[i], &bytes_read[i])); } // Start writers. for (size_t i = 0; i < kNumWriters; i++) writers[i]->Start(); // Start readers. for (size_t i = 0; i < kNumReaders; i++) readers[i]->Start(); // TODO(vtl): Maybe I should have an event that triggers all the threads to // start doing stuff for real (so that the first ones created/started aren't // advantaged). } // Joins all the threads. size_t total_messages_written = 0; size_t total_bytes_written = 0; for (size_t i = 0; i < kNumWriters; i++) { total_messages_written += messages_written[i]; total_bytes_written += bytes_written[i]; } size_t total_messages_read = 0; size_t total_bytes_read = 0; for (size_t i = 0; i < kNumReaders; i++) { total_messages_read += messages_read[i]; total_bytes_read += bytes_read[i]; // We'd have to be really unlucky to have read no messages on a thread. EXPECT_GT(messages_read[i], 0u) << "reader: " << i; EXPECT_GE(bytes_read[i], messages_read[i]) << "reader: " << i; } EXPECT_EQ(total_messages_written, total_messages_read); EXPECT_EQ(total_bytes_written, total_bytes_read); EXPECT_EQ(MOJO_RESULT_OK, d_write->Close()); EXPECT_EQ(MOJO_RESULT_OK, d_read->Close()); } } // namespace } // namespace system } // namespace mojo