// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include "base/android/build_info.h" #include "base/android/jni_android.h" #include "base/android/jni_array.h" #include "base/android/scoped_java_ref.h" #include "base/basictypes.h" #include "base/bind.h" #include "base/callback.h" #include "base/compiler_specific.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_util.h" #include "crypto/openssl_util.h" #include "crypto/scoped_openssl_types.h" #include "jni/AndroidKeyStoreTestUtil_jni.h" #include "net/android/keystore.h" #include "net/android/keystore_openssl.h" #include "net/base/test_data_directory.h" #include "testing/gtest/include/gtest/gtest.h" // Technical note: // // This source file not only checks that signing with // RawSignDigestWithPrivateKey() works correctly, it also verifies that // the generated signature matches 100% of what OpenSSL generates when // calling RSA_sign(NID_md5_sha1,...), DSA_sign(0, ...) or // ECDSA_sign(0, ...). // // That's crucial to ensure that this function can later be used to // implement client certificate support. More specifically, that it is // possible to create a custom EVP_PKEY that uses // RawSignDigestWithPrivateKey() internally to perform RSA/DSA/ECDSA // signing, as invoked by the OpenSSL code at // openssl/ssl/s3_clnt.c:ssl3_send_client_verify(). // // For more details, read the comments in AndroidKeyStore.java. // // Finally, it also checks that using the EVP_PKEY generated with // GetOpenSSLPrivateKeyWrapper() works correctly. namespace net { namespace android { namespace { typedef crypto::ScopedOpenSSL::Type ScopedPKCS8_PRIV_KEY_INFO; typedef base::android::ScopedJavaLocalRef ScopedJava; JNIEnv* InitEnv() { JNIEnv* env = base::android::AttachCurrentThread(); static bool inited = false; if (!inited) { RegisterNativesImpl(env); inited = true; } return env; } // Returns true if running on an Android version older than 4.2 bool IsOnAndroidOlderThan_4_2(void) { const int kAndroid42ApiLevel = 17; int level = base::android::BuildInfo::GetInstance()->sdk_int(); return level < kAndroid42ApiLevel; } // Implements the callback expected by ERR_print_errors_cb(). // used by GetOpenSSLErrorString below. int openssl_print_error_callback(const char* msg, size_t msglen, void* u) { std::string* result = reinterpret_cast(u); result->append(msg, msglen); return 1; } // Retrieves the OpenSSL error as a string std::string GetOpenSSLErrorString(void) { std::string result; ERR_print_errors_cb(openssl_print_error_callback, &result); return result; } // Resize a string to |size| bytes of data, then return its data buffer // address cast as an 'unsigned char*', as expected by OpenSSL functions. // |str| the target string. // |size| the number of bytes to write into the string. // Return the string's new buffer in memory, as an 'unsigned char*' // pointer. unsigned char* OpenSSLWriteInto(std::string* str, size_t size) { return reinterpret_cast(WriteInto(str, size + 1)); } // Load a given private key file into an EVP_PKEY. // |filename| is the key file path. // Returns a new EVP_PKEY on success, NULL on failure. EVP_PKEY* ImportPrivateKeyFile(const char* filename) { // Load file in memory. base::FilePath certs_dir = GetTestCertsDirectory(); base::FilePath file_path = certs_dir.AppendASCII(filename); base::ScopedFILE handle(base::OpenFile(file_path, "rb")); if (!handle.get()) { LOG(ERROR) << "Could not open private key file: " << filename; return NULL; } // Assume it is PEM_encoded. Load it as an EVP_PKEY. EVP_PKEY* pkey = PEM_read_PrivateKey(handle.get(), NULL, NULL, NULL); if (!pkey) { LOG(ERROR) << "Could not load public key file: " << filename << ", " << GetOpenSSLErrorString(); return NULL; } return pkey; } // Convert a private key into its PKCS#8 encoded representation. // |pkey| is the EVP_PKEY handle for the private key. // |pkcs8| will receive the PKCS#8 bytes. // Returns true on success, false otherwise. bool GetPrivateKeyPkcs8Bytes(const crypto::ScopedEVP_PKEY& pkey, std::string* pkcs8) { // Convert to PKCS#8 object. ScopedPKCS8_PRIV_KEY_INFO p8_info(EVP_PKEY2PKCS8(pkey.get())); if (!p8_info.get()) { LOG(ERROR) << "Can't get PKCS#8 private key from EVP_PKEY: " << GetOpenSSLErrorString(); return false; } // Then convert it int len = i2d_PKCS8_PRIV_KEY_INFO(p8_info.get(), NULL); unsigned char* p = OpenSSLWriteInto(pkcs8, static_cast(len)); i2d_PKCS8_PRIV_KEY_INFO(p8_info.get(), &p); return true; } bool ImportPrivateKeyFileAsPkcs8(const char* filename, std::string* pkcs8) { crypto::ScopedEVP_PKEY pkey(ImportPrivateKeyFile(filename)); if (!pkey.get()) return false; return GetPrivateKeyPkcs8Bytes(pkey, pkcs8); } // Same as ImportPrivateKey, but for public ones. EVP_PKEY* ImportPublicKeyFile(const char* filename) { // Load file as PEM data. base::FilePath certs_dir = GetTestCertsDirectory(); base::FilePath file_path = certs_dir.AppendASCII(filename); base::ScopedFILE handle(base::OpenFile(file_path, "rb")); if (!handle.get()) { LOG(ERROR) << "Could not open public key file: " << filename; return NULL; } EVP_PKEY* pkey = PEM_read_PUBKEY(handle.get(), NULL, NULL, NULL); if (!pkey) { LOG(ERROR) << "Could not load public key file: " << filename << ", " << GetOpenSSLErrorString(); return NULL; } return pkey; } // Retrieve a JNI local ref from encoded PKCS#8 data. ScopedJava GetPKCS8PrivateKeyJava(PrivateKeyType key_type, const std::string& pkcs8_key) { JNIEnv* env = InitEnv(); base::android::ScopedJavaLocalRef bytes( base::android::ToJavaByteArray( env, reinterpret_cast(pkcs8_key.data()), pkcs8_key.size())); ScopedJava key( Java_AndroidKeyStoreTestUtil_createPrivateKeyFromPKCS8( env, key_type, bytes.obj())); return key; } const char kTestRsaKeyFile[] = "android-test-key-rsa.pem"; // The RSA test hash must be 36 bytes exactly. const char kTestRsaHash[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; // Retrieve a JNI local ref for our test RSA key. ScopedJava GetRSATestKeyJava() { std::string key; if (!ImportPrivateKeyFileAsPkcs8(kTestRsaKeyFile, &key)) return ScopedJava(); return GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_RSA, key); } const char kTestEcdsaKeyFile[] = "android-test-key-ecdsa.pem"; const char kTestEcdsaPublicKeyFile[] = "android-test-key-ecdsa-public.pem"; // The test hash for ECDSA keys must be 20 bytes exactly. const char kTestEcdsaHash[] = "0123456789ABCDEFGHIJ"; // Retrieve a JNI local ref for our test ECDSA key. ScopedJava GetECDSATestKeyJava() { std::string key; if (!ImportPrivateKeyFileAsPkcs8(kTestEcdsaKeyFile, &key)) return ScopedJava(); return GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_ECDSA, key); } // Call this function to verify that one message signed with our // test ECDSA private key is correct. Since ECDSA signing introduces // random elements in the signature, it is not possible to compare // signature bits directly. However, one can use the public key // to do the check. bool VerifyTestECDSASignature(const base::StringPiece& message, const base::StringPiece& signature) { crypto::ScopedEVP_PKEY pkey(ImportPublicKeyFile(kTestEcdsaPublicKeyFile)); if (!pkey.get()) return false; crypto::ScopedEC_KEY pub_key(EVP_PKEY_get1_EC_KEY(pkey.get())); if (!pub_key.get()) { LOG(ERROR) << "Could not get ECDSA public key: " << GetOpenSSLErrorString(); return false; } const unsigned char* digest = reinterpret_cast(message.data()); int digest_len = static_cast(message.size()); const unsigned char* sigbuf = reinterpret_cast(signature.data()); int siglen = static_cast(signature.size()); int ret = ECDSA_verify( 0, digest, digest_len, sigbuf, siglen, pub_key.get()); if (ret != 1) { LOG(ERROR) << "ECDSA_verify() failed: " << GetOpenSSLErrorString(); return false; } return true; } // Sign a message with OpenSSL, return the result as a string. // |message| is the message to be signed. // |openssl_key| is an OpenSSL EVP_PKEY to use. // |result| receives the result. // Returns true on success, false otherwise. bool SignWithOpenSSL(const base::StringPiece& message, EVP_PKEY* openssl_key, std::string* result) { const unsigned char* digest = reinterpret_cast(message.data()); unsigned int digest_len = static_cast(message.size()); std::string signature; size_t signature_size; size_t max_signature_size; int key_type = EVP_PKEY_id(openssl_key); switch (key_type) { case EVP_PKEY_RSA: { crypto::ScopedRSA rsa(EVP_PKEY_get1_RSA(openssl_key)); if (!rsa.get()) { LOG(ERROR) << "Could not get RSA from EVP_PKEY: " << GetOpenSSLErrorString(); return false; } // With RSA, the signature will always be RSA_size() bytes. max_signature_size = static_cast(RSA_size(rsa.get())); unsigned char* p = OpenSSLWriteInto(&signature, max_signature_size); unsigned int p_len = 0; int ret = RSA_sign( NID_md5_sha1, digest, digest_len, p, &p_len, rsa.get()); if (ret != 1) { LOG(ERROR) << "RSA_sign() failed: " << GetOpenSSLErrorString(); return false; } signature_size = static_cast(p_len); break; } case EVP_PKEY_EC: { crypto::ScopedEC_KEY ecdsa(EVP_PKEY_get1_EC_KEY(openssl_key)); if (!ecdsa.get()) { LOG(ERROR) << "Could not get EC_KEY from EVP_PKEY: " << GetOpenSSLErrorString(); return false; } // Note, the actual signature can be smaller than ECDSA_size() max_signature_size = ECDSA_size(ecdsa.get()); unsigned char* p = OpenSSLWriteInto(&signature, max_signature_size); unsigned int p_len = 0; // Note: first parameter is ignored by function. int ret = ECDSA_sign( 0, digest, digest_len, p, &p_len, ecdsa.get()); if (ret != 1) { LOG(ERROR) << "ECDSA_sign() fialed: " << GetOpenSSLErrorString(); return false; } signature_size = static_cast(p_len); break; } default: LOG(WARNING) << "Invalid OpenSSL key type: " << key_type; return false; } if (signature_size == 0) { LOG(ERROR) << "Signature is empty!"; return false; } if (signature_size > max_signature_size) { LOG(ERROR) << "Signature size mismatch, actual " << signature_size << ", expected <= " << max_signature_size; return false; } signature.resize(signature_size); result->swap(signature); return true; } // Check that a generated signature for a given message matches // OpenSSL output byte-by-byte. // |message| is the input message. // |signature| is the generated signature for the message. // |openssl_key| is a raw EVP_PKEY for the same private key than the // one which was used to generate the signature. // Returns true on success, false otherwise. bool CompareSignatureWithOpenSSL(const base::StringPiece& message, const base::StringPiece& signature, EVP_PKEY* openssl_key) { std::string openssl_signature; SignWithOpenSSL(message, openssl_key, &openssl_signature); if (signature.size() != openssl_signature.size()) { LOG(ERROR) << "Signature size mismatch, actual " << signature.size() << ", expected " << openssl_signature.size(); return false; } for (size_t n = 0; n < signature.size(); ++n) { if (openssl_signature[n] != signature[n]) { LOG(ERROR) << "Signature byte mismatch at index " << n << "actual " << signature[n] << ", expected " << openssl_signature[n]; LOG(ERROR) << "Actual signature : " << base::HexEncode(signature.data(), signature.size()); LOG(ERROR) << "Expected signature: " << base::HexEncode(openssl_signature.data(), openssl_signature.size()); return false; } } return true; } // Sign a message with our platform API. // // |android_key| is a JNI reference to the platform PrivateKey object. // |openssl_key| is a pointer to an OpenSSL key object for the exact // same key content. // |message| is a message. // |result| will receive the result. void DoKeySigning(jobject android_key, EVP_PKEY* openssl_key, const base::StringPiece& message, std::string* result) { // First, get the platform signature. std::vector android_signature; ASSERT_TRUE( RawSignDigestWithPrivateKey(android_key, message, &android_signature)); result->assign( reinterpret_cast(&android_signature[0]), android_signature.size()); } // Sign a message with our OpenSSL EVP_PKEY wrapper around platform // APIS. // // |android_key| is a JNI reference to the platform PrivateKey object. // |openssl_key| is a pointer to an OpenSSL key object for the exact // same key content. // |message| is a message. // |result| will receive the result. void DoKeySigningWithWrapper(EVP_PKEY* wrapper_key, EVP_PKEY* openssl_key, const base::StringPiece& message, std::string* result) { // First, get the platform signature. std::string wrapper_signature; SignWithOpenSSL(message, wrapper_key, &wrapper_signature); ASSERT_NE(0U, wrapper_signature.size()); result->assign( reinterpret_cast(&wrapper_signature[0]), wrapper_signature.size()); } } // namespace TEST(AndroidKeyStore,GetRSAKeyModulus) { crypto::OpenSSLErrStackTracer err_trace(FROM_HERE); InitEnv(); // Load the test RSA key. crypto::ScopedEVP_PKEY pkey(ImportPrivateKeyFile(kTestRsaKeyFile)); ASSERT_TRUE(pkey.get()); // Convert it to encoded PKCS#8 bytes. std::string pkcs8_data; ASSERT_TRUE(GetPrivateKeyPkcs8Bytes(pkey, &pkcs8_data)); // Create platform PrivateKey object from it. ScopedJava key_java = GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_RSA, pkcs8_data); ASSERT_FALSE(key_java.is_null()); // Retrieve the corresponding modulus through JNI std::vector modulus_java; ASSERT_TRUE(GetRSAKeyModulus(key_java.obj(), &modulus_java)); // Create an OpenSSL BIGNUM from it. crypto::ScopedBIGNUM bn( BN_bin2bn(reinterpret_cast(&modulus_java[0]), static_cast(modulus_java.size()), NULL)); ASSERT_TRUE(bn.get()); // Compare it to the one in the RSA key, they must be identical. crypto::ScopedRSA rsa(EVP_PKEY_get1_RSA(pkey.get())); ASSERT_TRUE(rsa.get()) << GetOpenSSLErrorString(); ASSERT_EQ(0, BN_cmp(bn.get(), rsa.get()->n)); } TEST(AndroidKeyStore,GetPrivateKeyTypeRSA) { crypto::OpenSSLErrStackTracer err_trace(FROM_HERE); ScopedJava rsa_key = GetRSATestKeyJava(); ASSERT_FALSE(rsa_key.is_null()); EXPECT_EQ(PRIVATE_KEY_TYPE_RSA, GetPrivateKeyType(rsa_key.obj())); } TEST(AndroidKeyStore,SignWithPrivateKeyRSA) { ScopedJava rsa_key = GetRSATestKeyJava(); ASSERT_FALSE(rsa_key.is_null()); if (IsOnAndroidOlderThan_4_2()) { LOG(INFO) << "This test can't run on Android < 4.2"; return; } crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestRsaKeyFile)); ASSERT_TRUE(openssl_key.get()); std::string message = kTestRsaHash; ASSERT_EQ(36U, message.size()); std::string signature; DoKeySigning(rsa_key.obj(), openssl_key.get(), message, &signature); ASSERT_TRUE( CompareSignatureWithOpenSSL(message, signature, openssl_key.get())); // All good. } TEST(AndroidKeyStore,SignWithWrapperKeyRSA) { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); ScopedJava rsa_key = GetRSATestKeyJava(); ASSERT_FALSE(rsa_key.is_null()); crypto::ScopedEVP_PKEY wrapper_key( GetOpenSSLPrivateKeyWrapper(rsa_key.obj())); ASSERT_TRUE(wrapper_key.get() != NULL); crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestRsaKeyFile)); ASSERT_TRUE(openssl_key.get()); // Check that RSA_size() works properly on the wrapper key. EXPECT_EQ(EVP_PKEY_size(openssl_key.get()), EVP_PKEY_size(wrapper_key.get())); // Message size must be 36 for RSA_sign(NID_md5_sha1,...) to return // without an error. std::string message = kTestRsaHash; ASSERT_EQ(36U, message.size()); std::string signature; DoKeySigningWithWrapper(wrapper_key.get(), openssl_key.get(), message, &signature); ASSERT_TRUE( CompareSignatureWithOpenSSL(message, signature, openssl_key.get())); } TEST(AndroidKeyStore,GetPrivateKeyTypeECDSA) { crypto::OpenSSLErrStackTracer err_trace(FROM_HERE); ScopedJava ecdsa_key = GetECDSATestKeyJava(); ASSERT_FALSE(ecdsa_key.is_null()); EXPECT_EQ(PRIVATE_KEY_TYPE_ECDSA, GetPrivateKeyType(ecdsa_key.obj())); } TEST(AndroidKeyStore,SignWithPrivateKeyECDSA) { ScopedJava ecdsa_key = GetECDSATestKeyJava(); ASSERT_FALSE(ecdsa_key.is_null()); crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestEcdsaKeyFile)); ASSERT_TRUE(openssl_key.get()); std::string message = kTestEcdsaHash; std::string signature; DoKeySigning(ecdsa_key.obj(), openssl_key.get(), message, &signature); ASSERT_TRUE(VerifyTestECDSASignature(message, signature)); } TEST(AndroidKeyStore, SignWithWrapperKeyECDSA) { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); ScopedJava ecdsa_key = GetECDSATestKeyJava(); ASSERT_FALSE(ecdsa_key.is_null()); crypto::ScopedEVP_PKEY wrapper_key( GetOpenSSLPrivateKeyWrapper(ecdsa_key.obj())); ASSERT_TRUE(wrapper_key.get()); crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestEcdsaKeyFile)); ASSERT_TRUE(openssl_key.get()); // Check that ECDSA size works correctly on the wrapper. EXPECT_EQ(EVP_PKEY_size(openssl_key.get()), EVP_PKEY_size(wrapper_key.get())); std::string message = kTestEcdsaHash; std::string signature; DoKeySigningWithWrapper(wrapper_key.get(), openssl_key.get(), message, &signature); ASSERT_TRUE(VerifyTestECDSASignature(message, signature)); } } // namespace android } // namespace net