// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/host_resolver_impl.h" #if defined(OS_WIN) #include #elif defined(OS_POSIX) #include #endif #include #include #include #include "base/basictypes.h" #include "base/bind.h" #include "base/bind_helpers.h" #include "base/compiler_specific.h" #include "base/debug/debugger.h" #include "base/debug/stack_trace.h" #include "base/message_loop_proxy.h" #include "base/metrics/field_trial.h" #include "base/metrics/histogram.h" #include "base/stl_util.h" #include "base/string_util.h" #include "base/threading/worker_pool.h" #include "base/time.h" #include "base/utf_string_conversions.h" #include "base/values.h" #include "net/base/address_list.h" #include "net/base/address_list_net_log_param.h" #include "net/base/dns_reloader.h" #include "net/base/host_port_pair.h" #include "net/base/host_resolver_proc.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/net_util.h" #if defined(OS_WIN) #include "net/base/winsock_init.h" #endif namespace net { namespace { // Limit the size of hostnames that will be resolved to combat issues in // some platform's resolvers. const size_t kMaxHostLength = 4096; // Helper to mutate the linked list contained by AddressList to the given // port. Note that in general this is dangerous since the AddressList's // data might be shared (and you should use AddressList::SetPort). // // However since we allocated the AddressList ourselves we can safely // do this optimization and avoid reallocating the list. void MutableSetPort(int port, AddressList* addrlist) { struct addrinfo* mutable_head = const_cast(addrlist->head()); SetPortForAllAddrinfos(mutable_head, port); } // We use a separate histogram name for each platform to facilitate the // display of error codes by their symbolic name (since each platform has // different mappings). const char kOSErrorsForGetAddrinfoHistogramName[] = #if defined(OS_WIN) "Net.OSErrorsForGetAddrinfo_Win"; #elif defined(OS_MACOSX) "Net.OSErrorsForGetAddrinfo_Mac"; #elif defined(OS_LINUX) "Net.OSErrorsForGetAddrinfo_Linux"; #else "Net.OSErrorsForGetAddrinfo"; #endif // Gets a list of the likely error codes that getaddrinfo() can return // (non-exhaustive). These are the error codes that we will track via // a histogram. std::vector GetAllGetAddrinfoOSErrors() { int os_errors[] = { #if defined(OS_POSIX) #if !defined(OS_FREEBSD) #if !defined(OS_ANDROID) // EAI_ADDRFAMILY has been declared obsolete in Android's and // FreeBSD's netdb.h. EAI_ADDRFAMILY, #endif // EAI_NODATA has been declared obsolete in FreeBSD's netdb.h. EAI_NODATA, #endif EAI_AGAIN, EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY, EAI_MEMORY, EAI_NONAME, EAI_SERVICE, EAI_SOCKTYPE, EAI_SYSTEM, #elif defined(OS_WIN) // See: http://msdn.microsoft.com/en-us/library/ms738520(VS.85).aspx WSA_NOT_ENOUGH_MEMORY, WSAEAFNOSUPPORT, WSAEINVAL, WSAESOCKTNOSUPPORT, WSAHOST_NOT_FOUND, WSANO_DATA, WSANO_RECOVERY, WSANOTINITIALISED, WSATRY_AGAIN, WSATYPE_NOT_FOUND, // The following are not in doc, but might be to appearing in results :-(. WSA_INVALID_HANDLE, #endif }; // Ensure all errors are positive, as histogram only tracks positive values. for (size_t i = 0; i < arraysize(os_errors); ++i) { os_errors[i] = std::abs(os_errors[i]); } return base::CustomHistogram::ArrayToCustomRanges(os_errors, arraysize(os_errors)); } } // anonymous namespace // static HostResolver* CreateSystemHostResolver(size_t max_concurrent_resolves, size_t max_retry_attempts, NetLog* net_log) { // Maximum of 8 concurrent resolver threads. // Some routers (or resolvers) appear to start to provide host-not-found if // too many simultaneous resolutions are pending. This number needs to be // further optimized, but 8 is what FF currently does. static const size_t kDefaultMaxJobs = 8u; if (max_concurrent_resolves == HostResolver::kDefaultParallelism) max_concurrent_resolves = kDefaultMaxJobs; HostResolverImpl* resolver = new HostResolverImpl(NULL, HostCache::CreateDefaultCache(), max_concurrent_resolves, max_retry_attempts, net_log); return resolver; } static int ResolveAddrInfo(HostResolverProc* resolver_proc, const std::string& host, AddressFamily address_family, HostResolverFlags host_resolver_flags, AddressList* out, int* os_error) { if (resolver_proc) { // Use the custom procedure. return resolver_proc->Resolve(host, address_family, host_resolver_flags, out, os_error); } else { // Use the system procedure (getaddrinfo). return SystemHostResolverProc(host, address_family, host_resolver_flags, out, os_error); } } // Extra parameters to attach to the NetLog when the resolve failed. class HostResolveFailedParams : public NetLog::EventParameters { public: HostResolveFailedParams(uint32 attempt_number, int net_error, int os_error) : attempt_number_(attempt_number), net_error_(net_error), os_error_(os_error) { } virtual Value* ToValue() const { DictionaryValue* dict = new DictionaryValue(); if (attempt_number_) dict->SetInteger("attempt_number", attempt_number_); dict->SetInteger("net_error", net_error_); if (os_error_) { dict->SetInteger("os_error", os_error_); #if defined(OS_POSIX) dict->SetString("os_error_string", gai_strerror(os_error_)); #elif defined(OS_WIN) // Map the error code to a human-readable string. LPWSTR error_string = NULL; int size = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 0, // Use the internal message table. os_error_, 0, // Use default language. (LPWSTR)&error_string, 0, // Buffer size. 0); // Arguments (unused). dict->SetString("os_error_string", WideToUTF8(error_string)); LocalFree(error_string); #endif } return dict; } private: const uint32 attempt_number_; const int net_error_; const int os_error_; }; // Parameters representing the information in a RequestInfo object, along with // the associated NetLog::Source. class RequestInfoParameters : public NetLog::EventParameters { public: RequestInfoParameters(const HostResolver::RequestInfo& info, const NetLog::Source& source) : info_(info), source_(source) {} virtual Value* ToValue() const { DictionaryValue* dict = new DictionaryValue(); dict->SetString("host", info_.host_port_pair().ToString()); dict->SetInteger("address_family", static_cast(info_.address_family())); dict->SetBoolean("allow_cached_response", info_.allow_cached_response()); dict->SetBoolean("is_speculative", info_.is_speculative()); dict->SetInteger("priority", info_.priority()); if (source_.is_valid()) dict->Set("source_dependency", source_.ToValue()); return dict; } private: const HostResolver::RequestInfo info_; const NetLog::Source source_; }; // Parameters associated with the creation of a HostResolverImpl::Job. class JobCreationParameters : public NetLog::EventParameters { public: JobCreationParameters(const std::string& host, const NetLog::Source& source) : host_(host), source_(source) {} virtual Value* ToValue() const { DictionaryValue* dict = new DictionaryValue(); dict->SetString("host", host_); dict->Set("source_dependency", source_.ToValue()); return dict; } private: const std::string host_; const NetLog::Source source_; }; //----------------------------------------------------------------------------- class HostResolverImpl::Request { public: Request(const BoundNetLog& source_net_log, const BoundNetLog& request_net_log, const RequestInfo& info, const CompletionCallback& callback, AddressList* addresses) : source_net_log_(source_net_log), request_net_log_(request_net_log), info_(info), job_(NULL), callback_(callback), addresses_(addresses) { } // Mark the request as cancelled. void MarkAsCancelled() { job_ = NULL; addresses_ = NULL; callback_.Reset(); } bool was_cancelled() const { return callback_.is_null(); } void set_job(Job* job) { DCHECK(job != NULL); // Identify which job the request is waiting on. job_ = job; } void OnComplete(int error, const AddressList& addrlist) { if (error == OK) *addresses_ = CreateAddressListUsingPort(addrlist, port()); CompletionCallback callback = callback_; MarkAsCancelled(); callback.Run(error); } int port() const { return info_.port(); } Job* job() const { return job_; } const BoundNetLog& source_net_log() { return source_net_log_; } const BoundNetLog& request_net_log() { return request_net_log_; } const RequestInfo& info() const { return info_; } private: BoundNetLog source_net_log_; BoundNetLog request_net_log_; // The request info that started the request. RequestInfo info_; // The resolve job (running in worker pool) that this request is dependent on. Job* job_; // The user's callback to invoke when the request completes. CompletionCallback callback_; // The address list to save result into. AddressList* addresses_; DISALLOW_COPY_AND_ASSIGN(Request); }; //------------------------------------------------------------------------------ // Provide a common macro to simplify code and readability. We must use a // macros as the underlying HISTOGRAM macro creates static varibles. #define DNS_HISTOGRAM(name, time) UMA_HISTOGRAM_CUSTOM_TIMES(name, time, \ base::TimeDelta::FromMicroseconds(1), base::TimeDelta::FromHours(1), 100) // This class represents a request to the worker pool for a "getaddrinfo()" // call. class HostResolverImpl::Job : public base::RefCountedThreadSafe { public: Job(int id, HostResolverImpl* resolver, const Key& key, const BoundNetLog& source_net_log, NetLog* net_log) : id_(id), key_(key), resolver_(resolver), origin_loop_(base::MessageLoopProxy::current()), resolver_proc_(resolver->effective_resolver_proc()), unresponsive_delay_(resolver->unresponsive_delay()), attempt_number_(0), completed_attempt_number_(0), completed_attempt_error_(ERR_UNEXPECTED), had_non_speculative_request_(false), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_HOST_RESOLVER_IMPL_JOB)) { DCHECK(resolver); net_log_.BeginEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB, make_scoped_refptr( new JobCreationParameters(key.hostname, source_net_log.source()))); } // Attaches a request to this job. The job takes ownership of |req| and will // take care to delete it. void AddRequest(Request* req) { DCHECK(origin_loop_->BelongsToCurrentThread()); req->request_net_log().BeginEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH, make_scoped_refptr(new NetLogSourceParameter( "source_dependency", net_log_.source()))); req->set_job(this); requests_.push_back(req); if (!req->info().is_speculative()) had_non_speculative_request_ = true; } void Start() { DCHECK(origin_loop_->BelongsToCurrentThread()); StartLookupAttempt(); } void StartLookupAttempt() { DCHECK(origin_loop_->BelongsToCurrentThread()); base::TimeTicks start_time = base::TimeTicks::Now(); ++attempt_number_; // Dispatch the lookup attempt to a worker thread. if (!base::WorkerPool::PostTask( FROM_HERE, base::Bind(&Job::DoLookup, this, start_time, attempt_number_), true)) { NOTREACHED(); // Since we could be running within Resolve() right now, we can't just // call OnLookupComplete(). Instead we must wait until Resolve() has // returned (IO_PENDING). origin_loop_->PostTask( FROM_HERE, base::Bind(&Job::OnLookupComplete, this, AddressList(), start_time, attempt_number_, ERR_UNEXPECTED, 0)); return; } net_log_.AddEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_STARTED, make_scoped_refptr(new NetLogIntegerParameter( "attempt_number", attempt_number_))); // Post a task to check if we get the results within a given time. // OnCheckForComplete has the potential for starting a new attempt on a // different worker thread if none of our outstanding attempts have // completed yet. if (attempt_number_ <= resolver_->max_retry_attempts()) { origin_loop_->PostDelayedTask( FROM_HERE, base::Bind(&Job::OnCheckForComplete, this), unresponsive_delay_.InMilliseconds()); } } // Cancels the current job. The Job will be orphaned. Any outstanding resolve // attempts running on worker threads will continue running. Only once all the // attempts complete will the final reference to this Job be released. void Cancel() { DCHECK(origin_loop_->BelongsToCurrentThread()); net_log_.AddEvent(NetLog::TYPE_CANCELLED, NULL); HostResolver* resolver = resolver_; resolver_ = NULL; // End here to prevent issues when a Job outlives the HostResolver that // spawned it. net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB, NULL); // We will call HostResolverImpl::CancelRequest(Request*) on each one // in order to notify any observers. for (RequestsList::const_iterator it = requests_.begin(); it != requests_.end(); ++it) { HostResolverImpl::Request* req = *it; if (!req->was_cancelled()) resolver->CancelRequest(req); } } bool was_cancelled() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return resolver_ == NULL; } bool was_completed() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return completed_attempt_number_ > 0; } const Key& key() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return key_; } int id() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return id_; } const RequestsList& requests() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return requests_; } // Returns the first request attached to the job. const Request* initial_request() const { DCHECK(origin_loop_->BelongsToCurrentThread()); DCHECK(!requests_.empty()); return requests_[0]; } // Returns true if |req_info| can be fulfilled by this job. bool CanServiceRequest(const RequestInfo& req_info) const { DCHECK(origin_loop_->BelongsToCurrentThread()); return key_ == resolver_->GetEffectiveKeyForRequest(req_info); } private: friend class base::RefCountedThreadSafe; ~Job() { // Free the requests attached to this job. STLDeleteElements(&requests_); } // WARNING: This code runs inside a worker pool. The shutdown code cannot // wait for it to finish, so we must be very careful here about using other // objects (like MessageLoops, Singletons, etc). During shutdown these objects // may no longer exist. Multiple DoLookups() could be running in parallel, so // any state inside of |this| must not mutate . void DoLookup(const base::TimeTicks& start_time, const uint32 attempt_number) { AddressList results; int os_error = 0; // Running on the worker thread int error = ResolveAddrInfo(resolver_proc_, key_.hostname, key_.address_family, key_.host_resolver_flags, &results, &os_error); origin_loop_->PostTask( FROM_HERE, base::Bind(&Job::OnLookupComplete, this, results, start_time, attempt_number, error, os_error)); } // Callback to see if DoLookup() has finished or not (runs on origin thread). void OnCheckForComplete() { DCHECK(origin_loop_->BelongsToCurrentThread()); if (was_completed() || was_cancelled()) return; DCHECK(resolver_); unresponsive_delay_ *= resolver_->retry_factor(); StartLookupAttempt(); } // Callback for when DoLookup() completes (runs on origin thread). void OnLookupComplete(const AddressList& results, const base::TimeTicks& start_time, const uint32 attempt_number, int error, const int os_error) { DCHECK(origin_loop_->BelongsToCurrentThread()); DCHECK(error || results.head()); bool was_retry_attempt = attempt_number > 1; if (!was_cancelled()) { scoped_refptr params; if (error != OK) { params = new HostResolveFailedParams(attempt_number, error, os_error); } else { params = new NetLogIntegerParameter("attempt_number", attempt_number_); } net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_FINISHED, params); // If host is already resolved, then record data and return. if (was_completed()) { // If this is the first attempt that is finishing later, then record // data for the first attempt. Won't contaminate with retry attempt's // data. if (!was_retry_attempt) RecordPerformanceHistograms(start_time, error, os_error); RecordAttemptHistograms(start_time, attempt_number, error, os_error); return; } // Copy the results from the first worker thread that resolves the host. results_ = results; completed_attempt_number_ = attempt_number; completed_attempt_error_ = error; } // Ideally the following code would be part of host_resolver_proc.cc, // however it isn't safe to call NetworkChangeNotifier from worker // threads. So we do it here on the IO thread instead. if (error != OK && NetworkChangeNotifier::IsOffline()) error = ERR_INTERNET_DISCONNECTED; // We will record data for the first attempt. Don't contaminate with retry // attempt's data. if (!was_retry_attempt) RecordPerformanceHistograms(start_time, error, os_error); RecordAttemptHistograms(start_time, attempt_number, error, os_error); if (was_cancelled()) return; if (was_retry_attempt) { // If retry attempt finishes before 1st attempt, then get stats on how // much time is saved by having spawned an extra attempt. retry_attempt_finished_time_ = base::TimeTicks::Now(); } scoped_refptr params; if (error != OK) { params = new HostResolveFailedParams(0, error, os_error); } else { params = new AddressListNetLogParam(results_); } // End here to prevent issues when a Job outlives the HostResolver that // spawned it. net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB, params); DCHECK(!requests_.empty()); // Use the port number of the first request. if (error == OK) MutableSetPort(requests_[0]->port(), &results_); resolver_->OnJobComplete(this, error, os_error, results_); } void RecordPerformanceHistograms(const base::TimeTicks& start_time, const int error, const int os_error) const { DCHECK(origin_loop_->BelongsToCurrentThread()); enum Category { // Used in HISTOGRAM_ENUMERATION. RESOLVE_SUCCESS, RESOLVE_FAIL, RESOLVE_SPECULATIVE_SUCCESS, RESOLVE_SPECULATIVE_FAIL, RESOLVE_MAX, // Bounding value. }; int category = RESOLVE_MAX; // Illegal value for later DCHECK only. base::TimeDelta duration = base::TimeTicks::Now() - start_time; if (error == OK) { if (had_non_speculative_request_) { category = RESOLVE_SUCCESS; DNS_HISTOGRAM("DNS.ResolveSuccess", duration); } else { category = RESOLVE_SPECULATIVE_SUCCESS; DNS_HISTOGRAM("DNS.ResolveSpeculativeSuccess", duration); } // Log DNS lookups based on address_family. This will help us determine // if IPv4 or IPv4/6 lookups are faster or slower. switch(key_.address_family) { case ADDRESS_FAMILY_IPV4: DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV4", duration); break; case ADDRESS_FAMILY_IPV6: DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV6", duration); break; case ADDRESS_FAMILY_UNSPECIFIED: DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_UNSPEC", duration); break; } } else { if (had_non_speculative_request_) { category = RESOLVE_FAIL; DNS_HISTOGRAM("DNS.ResolveFail", duration); } else { category = RESOLVE_SPECULATIVE_FAIL; DNS_HISTOGRAM("DNS.ResolveSpeculativeFail", duration); } // Log DNS lookups based on address_family. This will help us determine // if IPv4 or IPv4/6 lookups are faster or slower. switch(key_.address_family) { case ADDRESS_FAMILY_IPV4: DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV4", duration); break; case ADDRESS_FAMILY_IPV6: DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV6", duration); break; case ADDRESS_FAMILY_UNSPECIFIED: DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_UNSPEC", duration); break; } UMA_HISTOGRAM_CUSTOM_ENUMERATION(kOSErrorsForGetAddrinfoHistogramName, std::abs(os_error), GetAllGetAddrinfoOSErrors()); } DCHECK_LT(category, static_cast(RESOLVE_MAX)); // Be sure it was set. UMA_HISTOGRAM_ENUMERATION("DNS.ResolveCategory", category, RESOLVE_MAX); static const bool show_speculative_experiment_histograms = base::FieldTrialList::TrialExists("DnsImpact"); if (show_speculative_experiment_histograms) { UMA_HISTOGRAM_ENUMERATION( base::FieldTrial::MakeName("DNS.ResolveCategory", "DnsImpact"), category, RESOLVE_MAX); if (RESOLVE_SUCCESS == category) { DNS_HISTOGRAM(base::FieldTrial::MakeName("DNS.ResolveSuccess", "DnsImpact"), duration); } } static const bool show_parallelism_experiment_histograms = base::FieldTrialList::TrialExists("DnsParallelism"); if (show_parallelism_experiment_histograms) { UMA_HISTOGRAM_ENUMERATION( base::FieldTrial::MakeName("DNS.ResolveCategory", "DnsParallelism"), category, RESOLVE_MAX); if (RESOLVE_SUCCESS == category) { DNS_HISTOGRAM(base::FieldTrial::MakeName("DNS.ResolveSuccess", "DnsParallelism"), duration); } } } void RecordAttemptHistograms(const base::TimeTicks& start_time, const uint32 attempt_number, const int error, const int os_error) const { bool first_attempt_to_complete = completed_attempt_number_ == attempt_number; bool is_first_attempt = (attempt_number == 1); if (first_attempt_to_complete) { // If this was first attempt to complete, then record the resolution // status of the attempt. if (completed_attempt_error_ == OK) { UMA_HISTOGRAM_ENUMERATION( "DNS.AttemptFirstSuccess", attempt_number, 100); } else { UMA_HISTOGRAM_ENUMERATION( "DNS.AttemptFirstFailure", attempt_number, 100); } } if (error == OK) UMA_HISTOGRAM_ENUMERATION("DNS.AttemptSuccess", attempt_number, 100); else UMA_HISTOGRAM_ENUMERATION("DNS.AttemptFailure", attempt_number, 100); // If first attempt didn't finish before retry attempt, then calculate stats // on how much time is saved by having spawned an extra attempt. if (!first_attempt_to_complete && is_first_attempt && !was_cancelled()) { DNS_HISTOGRAM("DNS.AttemptTimeSavedByRetry", base::TimeTicks::Now() - retry_attempt_finished_time_); } if (was_cancelled() || !first_attempt_to_complete) { // Count those attempts which completed after the job was already canceled // OR after the job was already completed by an earlier attempt (so in // effect). UMA_HISTOGRAM_ENUMERATION("DNS.AttemptDiscarded", attempt_number, 100); // Record if job is cancelled. if (was_cancelled()) UMA_HISTOGRAM_ENUMERATION("DNS.AttemptCancelled", attempt_number, 100); } base::TimeDelta duration = base::TimeTicks::Now() - start_time; if (error == OK) DNS_HISTOGRAM("DNS.AttemptSuccessDuration", duration); else DNS_HISTOGRAM("DNS.AttemptFailDuration", duration); } // Immutable. Can be read from either thread, const int id_; // Set on the origin thread, read on the worker thread. Key key_; // Only used on the origin thread (where Resolve was called). HostResolverImpl* resolver_; RequestsList requests_; // The requests waiting on this job. // Used to post ourselves onto the origin thread. scoped_refptr origin_loop_; // Hold an owning reference to the HostResolverProc that we are going to use. // This may not be the current resolver procedure by the time we call // ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning // reference ensures that it remains valid until we are done. scoped_refptr resolver_proc_; // The amount of time after starting a resolution attempt until deciding to // retry. base::TimeDelta unresponsive_delay_; // Keeps track of the number of attempts we have made so far to resolve the // host. Whenever we start an attempt to resolve the host, we increase this // number. uint32 attempt_number_; // The index of the attempt which finished first (or 0 if the job is still in // progress). uint32 completed_attempt_number_; // The result (a net error code) from the first attempt to complete. int completed_attempt_error_; // The time when retry attempt was finished. base::TimeTicks retry_attempt_finished_time_; // True if a non-speculative request was ever attached to this job // (regardless of whether or not it was later cancelled. // This boolean is used for histogramming the duration of jobs used to // service non-speculative requests. bool had_non_speculative_request_; AddressList results_; BoundNetLog net_log_; DISALLOW_COPY_AND_ASSIGN(Job); }; //----------------------------------------------------------------------------- // This class represents a request to the worker pool for a "probe for IPv6 // support" call. class HostResolverImpl::IPv6ProbeJob : public base::RefCountedThreadSafe { public: explicit IPv6ProbeJob(HostResolverImpl* resolver) : resolver_(resolver), origin_loop_(base::MessageLoopProxy::current()) { DCHECK(resolver); } void Start() { DCHECK(origin_loop_->BelongsToCurrentThread()); if (was_cancelled()) return; const bool kIsSlow = true; base::WorkerPool::PostTask( FROM_HERE, base::Bind(&IPv6ProbeJob::DoProbe, this), kIsSlow); } // Cancels the current job. void Cancel() { DCHECK(origin_loop_->BelongsToCurrentThread()); if (was_cancelled()) return; resolver_ = NULL; // Read/write ONLY on origin thread. } private: friend class base::RefCountedThreadSafe; ~IPv6ProbeJob() { } bool was_cancelled() const { DCHECK(origin_loop_->BelongsToCurrentThread()); return !resolver_; } // Run on worker thread. void DoProbe() { // Do actual testing on this thread, as it takes 40-100ms. AddressFamily family = IPv6Supported() ? ADDRESS_FAMILY_UNSPECIFIED : ADDRESS_FAMILY_IPV4; origin_loop_->PostTask( FROM_HERE, base::Bind(&IPv6ProbeJob::OnProbeComplete, this, family)); } // Callback for when DoProbe() completes. void OnProbeComplete(AddressFamily address_family) { DCHECK(origin_loop_->BelongsToCurrentThread()); if (was_cancelled()) return; resolver_->IPv6ProbeSetDefaultAddressFamily(address_family); } // Used/set only on origin thread. HostResolverImpl* resolver_; // Used to post ourselves onto the origin thread. scoped_refptr origin_loop_; DISALLOW_COPY_AND_ASSIGN(IPv6ProbeJob); }; //----------------------------------------------------------------------------- // We rely on the priority enum values being sequential having starting at 0, // and increasing for lower priorities. COMPILE_ASSERT(HIGHEST == 0u && LOWEST > HIGHEST && IDLE > LOWEST && NUM_PRIORITIES > IDLE, priority_indexes_incompatible); // JobPool contains all the information relating to queued requests, including // the limits on how many jobs are allowed to be used for this category of // requests. class HostResolverImpl::JobPool { public: JobPool(size_t max_outstanding_jobs, size_t max_pending_requests) : num_outstanding_jobs_(0u) { SetConstraints(max_outstanding_jobs, max_pending_requests); } ~JobPool() { // Free the pending requests. for (size_t i = 0; i < arraysize(pending_requests_); ++i) STLDeleteElements(&pending_requests_[i]); } // Sets the constraints for this pool. See SetPoolConstraints() for the // specific meaning of these parameters. void SetConstraints(size_t max_outstanding_jobs, size_t max_pending_requests) { CHECK_NE(max_outstanding_jobs, 0u); max_outstanding_jobs_ = max_outstanding_jobs; max_pending_requests_ = max_pending_requests; } // Returns the number of pending requests enqueued to this pool. // A pending request is one waiting to be attached to a job. size_t GetNumPendingRequests() const { size_t total = 0u; for (size_t i = 0u; i < arraysize(pending_requests_); ++i) total += pending_requests_[i].size(); return total; } bool HasPendingRequests() const { return GetNumPendingRequests() > 0u; } // Enqueues a request to this pool. As a result of enqueing this request, // the queue may have reached its maximum size. In this case, a request is // evicted from the queue, and returned. Otherwise returns NULL. The caller // is responsible for freeing the evicted request. Request* InsertPendingRequest(Request* req) { req->request_net_log().BeginEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_POOL_QUEUE, NULL); PendingRequestsQueue& q = pending_requests_[req->info().priority()]; q.push_back(req); // If the queue is too big, kick out the lowest priority oldest request. if (GetNumPendingRequests() > max_pending_requests_) { // Iterate over the queues from lowest priority to highest priority. for (int i = static_cast(arraysize(pending_requests_)) - 1; i >= 0; --i) { PendingRequestsQueue& q = pending_requests_[i]; if (!q.empty()) { Request* req = q.front(); q.pop_front(); req->request_net_log().AddEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_POOL_QUEUE_EVICTED, NULL); req->request_net_log().EndEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_POOL_QUEUE, NULL); return req; } } } return NULL; } // Erases |req| from this container. Caller is responsible for freeing // |req| afterwards. void RemovePendingRequest(Request* req) { PendingRequestsQueue& q = pending_requests_[req->info().priority()]; PendingRequestsQueue::iterator it = std::find(q.begin(), q.end(), req); DCHECK(it != q.end()); q.erase(it); req->request_net_log().EndEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_POOL_QUEUE, NULL); } // Removes and returns the highest priority pending request. Request* RemoveTopPendingRequest() { DCHECK(HasPendingRequests()); for (size_t i = 0u; i < arraysize(pending_requests_); ++i) { PendingRequestsQueue& q = pending_requests_[i]; if (!q.empty()) { Request* req = q.front(); q.pop_front(); req->request_net_log().EndEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_POOL_QUEUE, NULL); return req; } } NOTREACHED(); return NULL; } // Keeps track of a job that was just added/removed, and belongs to this pool. void AdjustNumOutstandingJobs(int offset) { DCHECK(offset == 1 || (offset == -1 && num_outstanding_jobs_ > 0u)); num_outstanding_jobs_ += offset; } void ResetNumOutstandingJobs() { num_outstanding_jobs_ = 0; } // Returns true if a new job can be created for this pool. bool CanCreateJob() const { return num_outstanding_jobs_ + 1u <= max_outstanding_jobs_; } // Removes any pending requests from the queue which are for the // same (hostname / effective address-family) as |job|, and attaches them to // |job|. void MoveRequestsToJob(Job* job) { for (size_t i = 0u; i < arraysize(pending_requests_); ++i) { PendingRequestsQueue& q = pending_requests_[i]; PendingRequestsQueue::iterator req_it = q.begin(); while (req_it != q.end()) { Request* req = *req_it; if (job->CanServiceRequest(req->info())) { // Job takes ownership of |req|. job->AddRequest(req); req_it = q.erase(req_it); } else { ++req_it; } } } } private: typedef std::deque PendingRequestsQueue; // Maximum number of concurrent jobs allowed to be started for requests // belonging to this pool. size_t max_outstanding_jobs_; // The current number of running jobs that were started for requests // belonging to this pool. size_t num_outstanding_jobs_; // The maximum number of requests we allow to be waiting on a job, // for this pool. size_t max_pending_requests_; // The requests which are waiting to be started for this pool. PendingRequestsQueue pending_requests_[NUM_PRIORITIES]; }; //----------------------------------------------------------------------------- HostResolverImpl::HostResolverImpl( HostResolverProc* resolver_proc, HostCache* cache, size_t max_jobs, size_t max_retry_attempts, NetLog* net_log) : cache_(cache), max_jobs_(max_jobs), max_retry_attempts_(max_retry_attempts), unresponsive_delay_(base::TimeDelta::FromMilliseconds(6000)), retry_factor_(2), next_job_id_(0), resolver_proc_(resolver_proc), default_address_family_(ADDRESS_FAMILY_UNSPECIFIED), ipv6_probe_monitoring_(false), additional_resolver_flags_(0), net_log_(net_log) { DCHECK_GT(max_jobs, 0u); // Maximum of 4 retry attempts for host resolution. static const size_t kDefaultMaxRetryAttempts = 4u; if (max_retry_attempts_ == HostResolver::kDefaultRetryAttempts) max_retry_attempts_ = kDefaultMaxRetryAttempts; // It is cumbersome to expose all of the constraints in the constructor, // so we choose some defaults, which users can override later. job_pools_[POOL_NORMAL] = new JobPool(max_jobs, 100u * max_jobs); #if defined(OS_WIN) EnsureWinsockInit(); #endif #if defined(OS_POSIX) && !defined(OS_MACOSX) if (HaveOnlyLoopbackAddresses()) additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY; #endif NetworkChangeNotifier::AddIPAddressObserver(this); #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) #if !defined(OS_ANDROID) EnsureDnsReloaderInit(); #endif NetworkChangeNotifier::AddDNSObserver(this); #endif } HostResolverImpl::~HostResolverImpl() { // Cancel the outstanding jobs. Those jobs may contain several attached // requests, which will also be cancelled. DiscardIPv6ProbeJob(); CancelAllJobs(); // In case we are being deleted during the processing of a callback. if (cur_completing_job_) cur_completing_job_->Cancel(); NetworkChangeNotifier::RemoveIPAddressObserver(this); #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) NetworkChangeNotifier::RemoveDNSObserver(this); #endif // Delete the job pools. for (size_t i = 0u; i < arraysize(job_pools_); ++i) delete job_pools_[i]; } void HostResolverImpl::SetPoolConstraints(JobPoolIndex pool_index, size_t max_outstanding_jobs, size_t max_pending_requests) { DCHECK(CalledOnValidThread()); CHECK_GE(pool_index, 0); CHECK_LT(pool_index, POOL_COUNT); CHECK(jobs_.empty()) << "Can only set constraints during setup"; JobPool* pool = job_pools_[pool_index]; pool->SetConstraints(max_outstanding_jobs, max_pending_requests); } int HostResolverImpl::Resolve(const RequestInfo& info, AddressList* addresses, const CompletionCallback& callback, RequestHandle* out_req, const BoundNetLog& source_net_log) { DCHECK(addresses); DCHECK(CalledOnValidThread()); DCHECK_EQ(false, callback.is_null()); // Make a log item for the request. BoundNetLog request_net_log = BoundNetLog::Make(net_log_, NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST); // Update the net log and notify registered observers. OnStartRequest(source_net_log, request_net_log, info); // Build a key that identifies the request in the cache and in the // outstanding jobs map. Key key = GetEffectiveKeyForRequest(info); int rv = ResolveHelper(key, info, addresses, request_net_log); if (rv != ERR_DNS_CACHE_MISS) { OnFinishRequest(source_net_log, request_net_log, info, rv, 0 /* os_error (unknown since from cache) */); return rv; } // Create a handle for this request, and pass it back to the user if they // asked for it (out_req != NULL). Request* req = new Request(source_net_log, request_net_log, info, callback, addresses); if (out_req) *out_req = reinterpret_cast(req); // Next we need to attach our request to a "job". This job is responsible for // calling "getaddrinfo(hostname)" on a worker thread. scoped_refptr job; // If there is already an outstanding job to resolve |key|, use // it. This prevents starting concurrent resolves for the same hostname. job = FindOutstandingJob(key); if (job) { job->AddRequest(req); } else { JobPool* pool = GetPoolForRequest(req); if (CanCreateJobForPool(*pool)) { CreateAndStartJob(req); } else { return EnqueueRequest(pool, req); } } // Completion happens during OnJobComplete(Job*). return ERR_IO_PENDING; } int HostResolverImpl::ResolveHelper(const Key& key, const RequestInfo& info, AddressList* addresses, const BoundNetLog& request_net_log) { // The result of |getaddrinfo| for empty hosts is inconsistent across systems. // On Windows it gives the default interface's address, whereas on Linux it // gives an error. We will make it fail on all platforms for consistency. if (info.hostname().empty() || info.hostname().size() > kMaxHostLength) return ERR_NAME_NOT_RESOLVED; int net_error = ERR_UNEXPECTED; if (ResolveAsIP(key, info, &net_error, addresses)) return net_error; net_error = ERR_DNS_CACHE_MISS; ServeFromCache(key, info, request_net_log, &net_error, addresses); return net_error; } int HostResolverImpl::ResolveFromCache(const RequestInfo& info, AddressList* addresses, const BoundNetLog& source_net_log) { DCHECK(CalledOnValidThread()); DCHECK(addresses); // Make a log item for the request. BoundNetLog request_net_log = BoundNetLog::Make(net_log_, NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST); // Update the net log and notify registered observers. OnStartRequest(source_net_log, request_net_log, info); // Build a key that identifies the request in the cache and in the // outstanding jobs map. Key key = GetEffectiveKeyForRequest(info); int rv = ResolveHelper(key, info, addresses, request_net_log); OnFinishRequest(source_net_log, request_net_log, info, rv, 0 /* os_error (unknown since from cache) */); return rv; } // See OnJobComplete(Job*) for why it is important not to clean out // cancelled requests from Job::requests_. void HostResolverImpl::CancelRequest(RequestHandle req_handle) { DCHECK(CalledOnValidThread()); Request* req = reinterpret_cast(req_handle); DCHECK(req); scoped_ptr request_deleter; // Frees at end of function. if (!req->job()) { // If the request was not attached to a job yet, it must have been // enqueued into a pool. Remove it from that pool's queue. // Otherwise if it was attached to a job, the job is responsible for // deleting it. JobPool* pool = GetPoolForRequest(req); pool->RemovePendingRequest(req); request_deleter.reset(req); } else { req->request_net_log().EndEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH, NULL); } // NULL out the fields of req, to mark it as cancelled. req->MarkAsCancelled(); OnCancelRequest(req->source_net_log(), req->request_net_log(), req->info()); } void HostResolverImpl::SetDefaultAddressFamily(AddressFamily address_family) { DCHECK(CalledOnValidThread()); ipv6_probe_monitoring_ = false; DiscardIPv6ProbeJob(); default_address_family_ = address_family; } AddressFamily HostResolverImpl::GetDefaultAddressFamily() const { return default_address_family_; } void HostResolverImpl::ProbeIPv6Support() { DCHECK(CalledOnValidThread()); DCHECK(!ipv6_probe_monitoring_); ipv6_probe_monitoring_ = true; OnIPAddressChanged(); // Give initial setup call. } HostCache* HostResolverImpl::GetHostCache() { return cache_.get(); } bool HostResolverImpl::ResolveAsIP(const Key& key, const RequestInfo& info, int* net_error, AddressList* addresses) { DCHECK(addresses); DCHECK(net_error); IPAddressNumber ip_number; if (!ParseIPLiteralToNumber(key.hostname, &ip_number)) return false; DCHECK_EQ(key.host_resolver_flags & ~(HOST_RESOLVER_CANONNAME | HOST_RESOLVER_LOOPBACK_ONLY | HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6), 0) << " Unhandled flag"; bool ipv6_disabled = default_address_family_ == ADDRESS_FAMILY_IPV4 && !ipv6_probe_monitoring_; *net_error = OK; if (ip_number.size() == 16 && ipv6_disabled) { *net_error = ERR_NAME_NOT_RESOLVED; } else { *addresses = AddressList::CreateFromIPAddressWithCname( ip_number, info.port(), (key.host_resolver_flags & HOST_RESOLVER_CANONNAME)); } return true; } bool HostResolverImpl::ServeFromCache(const Key& key, const RequestInfo& info, const BoundNetLog& request_net_log, int* net_error, AddressList* addresses) { DCHECK(addresses); DCHECK(net_error); if (!info.allow_cached_response() || !cache_.get()) return false; const HostCache::Entry* cache_entry = cache_->Lookup( key, base::TimeTicks::Now()); if (!cache_entry) return false; request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CACHE_HIT, NULL); *net_error = cache_entry->error; if (*net_error == OK) *addresses = CreateAddressListUsingPort(cache_entry->addrlist, info.port()); return true; } void HostResolverImpl::AddOutstandingJob(Job* job) { scoped_refptr& found_job = jobs_[job->key()]; DCHECK(!found_job); found_job = job; JobPool* pool = GetPoolForRequest(job->initial_request()); pool->AdjustNumOutstandingJobs(1); } HostResolverImpl::Job* HostResolverImpl::FindOutstandingJob(const Key& key) { JobMap::iterator it = jobs_.find(key); if (it != jobs_.end()) return it->second; return NULL; } void HostResolverImpl::RemoveOutstandingJob(Job* job) { JobMap::iterator it = jobs_.find(job->key()); DCHECK(it != jobs_.end()); DCHECK_EQ(it->second.get(), job); jobs_.erase(it); JobPool* pool = GetPoolForRequest(job->initial_request()); pool->AdjustNumOutstandingJobs(-1); } void HostResolverImpl::OnJobComplete(Job* job, int net_error, int os_error, const AddressList& addrlist) { RemoveOutstandingJob(job); // Write result to the cache. if (cache_.get()) cache_->Set(job->key(), net_error, addrlist, base::TimeTicks::Now()); OnJobCompleteInternal(job, net_error, os_error, addrlist); } void HostResolverImpl::AbortJob(Job* job) { OnJobCompleteInternal(job, ERR_ABORTED, 0 /* no os_error */, AddressList()); } void HostResolverImpl::OnJobCompleteInternal( Job* job, int net_error, int os_error, const AddressList& addrlist) { // Make a note that we are executing within OnJobComplete() in case the // HostResolver is deleted by a callback invocation. DCHECK(!cur_completing_job_); cur_completing_job_ = job; // Try to start any queued requests now that a job-slot has freed up. ProcessQueuedRequests(); // Complete all of the requests that were attached to the job. for (RequestsList::const_iterator it = job->requests().begin(); it != job->requests().end(); ++it) { Request* req = *it; if (!req->was_cancelled()) { DCHECK_EQ(job, req->job()); req->request_net_log().EndEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH, NULL); // Update the net log and notify registered observers. OnFinishRequest(req->source_net_log(), req->request_net_log(), req->info(), net_error, os_error); req->OnComplete(net_error, addrlist); // Check if the job was cancelled as a result of running the callback. // (Meaning that |this| was deleted). if (job->was_cancelled()) return; } } cur_completing_job_ = NULL; } void HostResolverImpl::OnStartRequest(const BoundNetLog& source_net_log, const BoundNetLog& request_net_log, const RequestInfo& info) { source_net_log.BeginEvent( NetLog::TYPE_HOST_RESOLVER_IMPL, make_scoped_refptr(new NetLogSourceParameter( "source_dependency", request_net_log.source()))); request_net_log.BeginEvent( NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, make_scoped_refptr(new RequestInfoParameters( info, source_net_log.source()))); } void HostResolverImpl::OnFinishRequest(const BoundNetLog& source_net_log, const BoundNetLog& request_net_log, const RequestInfo& info, int net_error, int os_error) { bool was_resolved = net_error == OK; // Log some extra parameters on failure for synchronous requests. scoped_refptr params; if (!was_resolved) { params = new HostResolveFailedParams(0, net_error, os_error); } request_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, params); source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL, NULL); } void HostResolverImpl::OnCancelRequest(const BoundNetLog& source_net_log, const BoundNetLog& request_net_log, const RequestInfo& info) { request_net_log.AddEvent(NetLog::TYPE_CANCELLED, NULL); request_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, NULL); source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL, NULL); } void HostResolverImpl::DiscardIPv6ProbeJob() { if (ipv6_probe_job_.get()) { ipv6_probe_job_->Cancel(); ipv6_probe_job_ = NULL; } } void HostResolverImpl::IPv6ProbeSetDefaultAddressFamily( AddressFamily address_family) { DCHECK(address_family == ADDRESS_FAMILY_UNSPECIFIED || address_family == ADDRESS_FAMILY_IPV4); if (default_address_family_ != address_family) { VLOG(1) << "IPv6Probe forced AddressFamily setting to " << ((address_family == ADDRESS_FAMILY_UNSPECIFIED) ? "ADDRESS_FAMILY_UNSPECIFIED" : "ADDRESS_FAMILY_IPV4"); } default_address_family_ = address_family; // Drop reference since the job has called us back. DiscardIPv6ProbeJob(); } bool HostResolverImpl::CanCreateJobForPool(const JobPool& pool) const { DCHECK_LE(jobs_.size(), max_jobs_); // We can't create another job if it would exceed the global total. if (jobs_.size() + 1 > max_jobs_) return false; // Check whether the pool's constraints are met. return pool.CanCreateJob(); } // static HostResolverImpl::JobPoolIndex HostResolverImpl::GetJobPoolIndexForRequest( const Request* req) { return POOL_NORMAL; } void HostResolverImpl::ProcessQueuedRequests() { // Find the highest priority request that can be scheduled. Request* top_req = NULL; for (size_t i = 0; i < arraysize(job_pools_); ++i) { JobPool* pool = job_pools_[i]; if (pool->HasPendingRequests() && CanCreateJobForPool(*pool)) { top_req = pool->RemoveTopPendingRequest(); break; } } if (!top_req) return; scoped_refptr job(CreateAndStartJob(top_req)); // Search for any other pending request which can piggy-back off this job. for (size_t pool_i = 0; pool_i < POOL_COUNT; ++pool_i) { JobPool* pool = job_pools_[pool_i]; pool->MoveRequestsToJob(job); } } HostResolverImpl::Key HostResolverImpl::GetEffectiveKeyForRequest( const RequestInfo& info) const { HostResolverFlags effective_flags = info.host_resolver_flags() | additional_resolver_flags_; AddressFamily effective_address_family = info.address_family(); if (effective_address_family == ADDRESS_FAMILY_UNSPECIFIED && default_address_family_ != ADDRESS_FAMILY_UNSPECIFIED) { effective_address_family = default_address_family_; if (ipv6_probe_monitoring_) effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6; } return Key(info.hostname(), effective_address_family, effective_flags); } HostResolverImpl::Job* HostResolverImpl::CreateAndStartJob(Request* req) { DCHECK(CanCreateJobForPool(*GetPoolForRequest(req))); Key key = GetEffectiveKeyForRequest(req->info()); req->request_net_log().AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CREATE_JOB, NULL); scoped_refptr job(new Job(next_job_id_++, this, key, req->request_net_log(), net_log_)); job->AddRequest(req); AddOutstandingJob(job); job->Start(); return job.get(); } int HostResolverImpl::EnqueueRequest(JobPool* pool, Request* req) { scoped_ptr req_evicted_from_queue( pool->InsertPendingRequest(req)); // If the queue has become too large, we need to kick something out. if (req_evicted_from_queue.get()) { Request* r = req_evicted_from_queue.get(); int error = ERR_HOST_RESOLVER_QUEUE_TOO_LARGE; OnFinishRequest(r->source_net_log(), r->request_net_log(), r->info(), error, 0 /* os_error (not applicable) */); if (r == req) return error; r->OnComplete(error, AddressList()); } return ERR_IO_PENDING; } void HostResolverImpl::CancelAllJobs() { JobMap jobs; jobs.swap(jobs_); for (JobMap::iterator it = jobs.begin(); it != jobs.end(); ++it) it->second->Cancel(); } void HostResolverImpl::AbortAllInProgressJobs() { for (size_t i = 0; i < arraysize(job_pools_); ++i) job_pools_[i]->ResetNumOutstandingJobs(); JobMap jobs; jobs.swap(jobs_); for (JobMap::iterator it = jobs.begin(); it != jobs.end(); ++it) { AbortJob(it->second); it->second->Cancel(); } } void HostResolverImpl::OnIPAddressChanged() { if (cache_.get()) cache_->clear(); if (ipv6_probe_monitoring_) { DiscardIPv6ProbeJob(); ipv6_probe_job_ = new IPv6ProbeJob(this); ipv6_probe_job_->Start(); } #if defined(OS_POSIX) && !defined(OS_MACOSX) if (HaveOnlyLoopbackAddresses()) { additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY; } else { additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY; } #endif AbortAllInProgressJobs(); // |this| may be deleted inside AbortAllInProgressJobs(). } void HostResolverImpl::OnDNSChanged() { // If the DNS server has changed, existing cached info could be wrong so we // have to drop our internal cache :( Note that OS level DNS caches, such // as NSCD's cache should be dropped automatically by the OS when // resolv.conf changes so we don't need to do anything to clear that cache. if (cache_.get()) cache_->clear(); // Existing jobs will have been sent to the original server so they need to // be aborted. TODO(Craig): Should these jobs be restarted? AbortAllInProgressJobs(); // |this| may be deleted inside AbortAllInProgressJobs(). } } // namespace net