// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/host_resolver_impl.h" #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/memory/ref_counted.h" #include "base/memory/scoped_vector.h" #include "base/message_loop.h" #include "base/string_util.h" #include "base/synchronization/condition_variable.h" #include "base/synchronization/lock.h" #include "base/test/test_timeouts.h" #include "base/time.h" #include "net/base/address_list.h" #include "net/base/host_cache.h" #include "net/base/mock_host_resolver.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/dns/dns_client.h" #include "net/dns/dns_test_util.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace { const size_t kMaxJobs = 10u; const size_t kMaxRetryAttempts = 4u; PrioritizedDispatcher::Limits DefaultLimits() { PrioritizedDispatcher::Limits limits(NUM_PRIORITIES, kMaxJobs); return limits; } HostResolverImpl::ProcTaskParams DefaultParams( HostResolverProc* resolver_proc) { return HostResolverImpl::ProcTaskParams(resolver_proc, kMaxRetryAttempts); } // A HostResolverProc that pushes each host mapped into a list and allows // waiting for a specific number of requests. Unlike RuleBasedHostResolverProc // it never calls SystemHostResolverProc. By default resolves all hostnames to // "127.0.0.1". After AddRule(), it resolves only names explicitly specified. class MockHostResolverProc : public HostResolverProc { public: struct ResolveKey { ResolveKey(const std::string& hostname, AddressFamily address_family) : hostname(hostname), address_family(address_family) {} bool operator<(const ResolveKey& other) const { return address_family < other.address_family || (address_family == other.address_family && hostname < other.hostname); } std::string hostname; AddressFamily address_family; }; typedef std::vector CaptureList; MockHostResolverProc() : HostResolverProc(NULL), num_requests_waiting_(0), num_slots_available_(0), requests_waiting_(&lock_), slots_available_(&lock_) { } // Waits until |count| calls to |Resolve| are blocked. Returns false when // timed out. bool WaitFor(unsigned count) { base::AutoLock lock(lock_); base::Time start_time = base::Time::Now(); while (num_requests_waiting_ < count) { requests_waiting_.TimedWait(TestTimeouts::action_timeout()); if (base::Time::Now() > start_time + TestTimeouts::action_timeout()) return false; } return true; } // Signals |count| waiting calls to |Resolve|. First come first served. void SignalMultiple(unsigned count) { base::AutoLock lock(lock_); num_slots_available_ += count; slots_available_.Broadcast(); } // Signals all waiting calls to |Resolve|. Beware of races. void SignalAll() { base::AutoLock lock(lock_); num_slots_available_ = num_requests_waiting_; slots_available_.Broadcast(); } void AddRule(const std::string& hostname, AddressFamily family, const AddressList& result) { base::AutoLock lock(lock_); rules_[ResolveKey(hostname, family)] = result; } void AddRule(const std::string& hostname, AddressFamily family, const std::string& ip_list) { AddressList result; int rv = ParseAddressList(ip_list, "", &result); DCHECK_EQ(OK, rv); AddRule(hostname, family, result); } void AddRuleForAllFamilies(const std::string& hostname, const std::string& ip_list) { AddressList result; int rv = ParseAddressList(ip_list, "", &result); DCHECK_EQ(OK, rv); AddRule(hostname, ADDRESS_FAMILY_UNSPECIFIED, result); AddRule(hostname, ADDRESS_FAMILY_IPV4, result); AddRule(hostname, ADDRESS_FAMILY_IPV6, result); } virtual int Resolve(const std::string& hostname, AddressFamily address_family, HostResolverFlags host_resolver_flags, AddressList* addrlist, int* os_error) OVERRIDE { base::AutoLock lock(lock_); capture_list_.push_back(ResolveKey(hostname, address_family)); ++num_requests_waiting_; requests_waiting_.Broadcast(); while (!num_slots_available_) slots_available_.Wait(); DCHECK_GT(num_requests_waiting_, 0u); --num_slots_available_; --num_requests_waiting_; if (rules_.empty()) { int rv = ParseAddressList("127.0.0.1", "", addrlist); DCHECK_EQ(OK, rv); return OK; } ResolveKey key(hostname, address_family); if (rules_.count(key) == 0) return ERR_NAME_NOT_RESOLVED; *addrlist = rules_[key]; return OK; } CaptureList GetCaptureList() const { CaptureList copy; { base::AutoLock lock(lock_); copy = capture_list_; } return copy; } bool HasBlockedRequests() const { base::AutoLock lock(lock_); return num_requests_waiting_ > num_slots_available_; } protected: ~MockHostResolverProc() {} private: mutable base::Lock lock_; std::map rules_; CaptureList capture_list_; unsigned num_requests_waiting_; unsigned num_slots_available_; base::ConditionVariable requests_waiting_; base::ConditionVariable slots_available_; DISALLOW_COPY_AND_ASSIGN(MockHostResolverProc); }; // A wrapper for requests to a HostResolver. class Request { public: // Base class of handlers to be executed on completion of requests. struct Handler { virtual ~Handler() {} virtual void Handle(Request* request) = 0; }; Request(const HostResolver::RequestInfo& info, size_t index, HostResolver* resolver, Handler* handler) : info_(info), index_(index), resolver_(resolver), handler_(handler), quit_on_complete_(false), result_(ERR_UNEXPECTED), handle_(NULL) {} int Resolve() { DCHECK(resolver_); DCHECK(!handle_); list_ = AddressList(); result_ = resolver_->Resolve( info_, &list_, base::Bind(&Request::OnComplete, base::Unretained(this)), &handle_, BoundNetLog()); if (!list_.empty()) EXPECT_EQ(OK, result_); return result_; } int ResolveFromCache() { DCHECK(resolver_); DCHECK(!handle_); return resolver_->ResolveFromCache(info_, &list_, BoundNetLog()); } void Cancel() { DCHECK(resolver_); DCHECK(handle_); resolver_->CancelRequest(handle_); handle_ = NULL; } const HostResolver::RequestInfo& info() const { return info_; } size_t index() const { return index_; } const AddressList& list() const { return list_; } int result() const { return result_; } bool completed() const { return result_ != ERR_IO_PENDING; } bool pending() const { return handle_ != NULL; } bool HasAddress(const std::string& address, int port) const { IPAddressNumber ip; bool rv = ParseIPLiteralToNumber(address, &ip); DCHECK(rv); return std::find(list_.begin(), list_.end(), IPEndPoint(ip, port)) != list_.end(); } // Returns the number of addresses in |list_|. unsigned NumberOfAddresses() const { return list_.size(); } bool HasOneAddress(const std::string& address, int port) const { return HasAddress(address, port) && (NumberOfAddresses() == 1u); } // Returns ERR_UNEXPECTED if timed out. int WaitForResult() { if (completed()) return result_; base::CancelableClosure closure(MessageLoop::QuitClosure()); MessageLoop::current()->PostDelayedTask(FROM_HERE, closure.callback(), TestTimeouts::action_max_timeout()); quit_on_complete_ = true; MessageLoop::current()->Run(); bool did_quit = !quit_on_complete_; quit_on_complete_ = false; closure.Cancel(); if (did_quit) return result_; else return ERR_UNEXPECTED; } private: void OnComplete(int rv) { EXPECT_TRUE(pending()); EXPECT_EQ(ERR_IO_PENDING, result_); EXPECT_NE(ERR_IO_PENDING, rv); result_ = rv; handle_ = NULL; if (!list_.empty()) { EXPECT_EQ(OK, result_); EXPECT_EQ(info_.port(), list_.front().port()); } if (handler_) handler_->Handle(this); if (quit_on_complete_) { MessageLoop::current()->Quit(); quit_on_complete_ = false; } } HostResolver::RequestInfo info_; size_t index_; HostResolver* resolver_; Handler* handler_; bool quit_on_complete_; AddressList list_; int result_; HostResolver::RequestHandle handle_; DISALLOW_COPY_AND_ASSIGN(Request); }; // Using LookupAttemptHostResolverProc simulate very long lookups, and control // which attempt resolves the host. class LookupAttemptHostResolverProc : public HostResolverProc { public: LookupAttemptHostResolverProc(HostResolverProc* previous, int attempt_number_to_resolve, int total_attempts) : HostResolverProc(previous), attempt_number_to_resolve_(attempt_number_to_resolve), current_attempt_number_(0), total_attempts_(total_attempts), total_attempts_resolved_(0), resolved_attempt_number_(0), all_done_(&lock_) { } // Test harness will wait for all attempts to finish before checking the // results. void WaitForAllAttemptsToFinish(const base::TimeDelta& wait_time) { base::TimeTicks end_time = base::TimeTicks::Now() + wait_time; { base::AutoLock auto_lock(lock_); while (total_attempts_resolved_ != total_attempts_ && base::TimeTicks::Now() < end_time) { all_done_.TimedWait(end_time - base::TimeTicks::Now()); } } } // All attempts will wait for an attempt to resolve the host. void WaitForAnAttemptToComplete() { base::TimeDelta wait_time = base::TimeDelta::FromSeconds(60); base::TimeTicks end_time = base::TimeTicks::Now() + wait_time; { base::AutoLock auto_lock(lock_); while (resolved_attempt_number_ == 0 && base::TimeTicks::Now() < end_time) all_done_.TimedWait(end_time - base::TimeTicks::Now()); } all_done_.Broadcast(); // Tell all waiting attempts to proceed. } // Returns the number of attempts that have finished the Resolve() method. int total_attempts_resolved() { return total_attempts_resolved_; } // Returns the first attempt that that has resolved the host. int resolved_attempt_number() { return resolved_attempt_number_; } // HostResolverProc methods. virtual int Resolve(const std::string& host, AddressFamily address_family, HostResolverFlags host_resolver_flags, AddressList* addrlist, int* os_error) OVERRIDE { bool wait_for_right_attempt_to_complete = true; { base::AutoLock auto_lock(lock_); ++current_attempt_number_; if (current_attempt_number_ == attempt_number_to_resolve_) { resolved_attempt_number_ = current_attempt_number_; wait_for_right_attempt_to_complete = false; } } if (wait_for_right_attempt_to_complete) // Wait for the attempt_number_to_resolve_ attempt to resolve. WaitForAnAttemptToComplete(); int result = ResolveUsingPrevious(host, address_family, host_resolver_flags, addrlist, os_error); { base::AutoLock auto_lock(lock_); ++total_attempts_resolved_; } all_done_.Broadcast(); // Tell all attempts to proceed. // Since any negative number is considered a network error, with -1 having // special meaning (ERR_IO_PENDING). We could return the attempt that has // resolved the host as a negative number. For example, if attempt number 3 // resolves the host, then this method returns -4. if (result == OK) return -1 - resolved_attempt_number_; else return result; } protected: virtual ~LookupAttemptHostResolverProc() {} private: int attempt_number_to_resolve_; int current_attempt_number_; // Incremented whenever Resolve is called. int total_attempts_; int total_attempts_resolved_; int resolved_attempt_number_; // All attempts wait for right attempt to be resolve. base::Lock lock_; base::ConditionVariable all_done_; }; } // namespace class HostResolverImplTest : public testing::Test { public: static const int kDefaultPort = 80; HostResolverImplTest() : proc_(new MockHostResolverProc()) {} protected: // A Request::Handler which is a proxy to the HostResolverImplTest fixture. struct Handler : public Request::Handler { virtual ~Handler() {} // Proxy functions so that classes derived from Handler can access them. Request* CreateRequest(const HostResolver::RequestInfo& info) { return test->CreateRequest(info); } Request* CreateRequest(const std::string& hostname, int port) { return test->CreateRequest(hostname, port); } Request* CreateRequest(const std::string& hostname) { return test->CreateRequest(hostname); } ScopedVector& requests() { return test->requests_; } void DeleteResolver() { test->resolver_.reset(); } HostResolverImplTest* test; }; void CreateResolver() { resolver_.reset(new HostResolverImpl( HostCache::CreateDefaultCache(), DefaultLimits(), DefaultParams(proc_), scoped_ptr(NULL), scoped_ptr(NULL), NULL)); } // This HostResolverImpl will only allow 1 outstanding resolve at a time and // perform no retries. void CreateSerialResolver() { HostResolverImpl::ProcTaskParams params = DefaultParams(proc_); params.max_retry_attempts = 0u; PrioritizedDispatcher::Limits limits(NUM_PRIORITIES, 1); resolver_.reset(new HostResolverImpl( HostCache::CreateDefaultCache(), limits, params, scoped_ptr(NULL), scoped_ptr(NULL), NULL)); } // The Request will not be made until a call to |Resolve()|, and the Job will // not start until released by |proc_->SignalXXX|. Request* CreateRequest(const HostResolver::RequestInfo& info) { Request* req = new Request(info, requests_.size(), resolver_.get(), handler_.get()); requests_.push_back(req); return req; } Request* CreateRequest(const std::string& hostname, int port, RequestPriority priority, AddressFamily family) { HostResolver::RequestInfo info(HostPortPair(hostname, port)); info.set_priority(priority); info.set_address_family(family); return CreateRequest(info); } Request* CreateRequest(const std::string& hostname, int port, RequestPriority priority) { return CreateRequest(hostname, port, priority, ADDRESS_FAMILY_UNSPECIFIED); } Request* CreateRequest(const std::string& hostname, int port) { return CreateRequest(hostname, port, MEDIUM); } Request* CreateRequest(const std::string& hostname) { return CreateRequest(hostname, kDefaultPort); } virtual void SetUp() OVERRIDE { CreateResolver(); } virtual void TearDown() OVERRIDE { if (resolver_.get()) EXPECT_EQ(0u, resolver_->num_running_jobs_for_tests()); EXPECT_FALSE(proc_->HasBlockedRequests()); } void set_handler(Handler* handler) { handler_.reset(handler); handler_->test = this; } // Friendship is not inherited, so use proxies to access those. size_t num_running_jobs() const { DCHECK(resolver_.get()); return resolver_->num_running_jobs_for_tests(); } scoped_refptr proc_; scoped_ptr resolver_; ScopedVector requests_; scoped_ptr handler_; }; TEST_F(HostResolverImplTest, AsynchronousLookup) { proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42"); proc_->SignalMultiple(1u); Request* req = CreateRequest("just.testing", 80); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); EXPECT_EQ(OK, req->WaitForResult()); EXPECT_TRUE(req->HasOneAddress("192.168.1.42", 80)); EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname); } TEST_F(HostResolverImplTest, FailedAsynchronousLookup) { proc_->AddRuleForAllFamilies("", "0.0.0.0"); // Default to failures. proc_->SignalMultiple(1u); Request* req = CreateRequest("just.testing", 80); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->WaitForResult()); EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname); // Also test that the error is not cached. EXPECT_EQ(ERR_DNS_CACHE_MISS, req->ResolveFromCache()); } TEST_F(HostResolverImplTest, AbortedAsynchronousLookup) { Request* req0 = CreateRequest("just.testing", 80); EXPECT_EQ(ERR_IO_PENDING, req0->Resolve()); EXPECT_TRUE(proc_->WaitFor(1u)); // Resolver is destroyed while job is running on WorkerPool. resolver_.reset(); proc_->SignalAll(); // To ensure there was no spurious callback, complete with a new resolver. CreateResolver(); Request* req1 = CreateRequest("just.testing", 80); EXPECT_EQ(ERR_IO_PENDING, req1->Resolve()); proc_->SignalMultiple(2u); EXPECT_EQ(OK, req1->WaitForResult()); // This request was canceled. EXPECT_FALSE(req0->completed()); } TEST_F(HostResolverImplTest, NumericIPv4Address) { // Stevens says dotted quads with AI_UNSPEC resolve to a single sockaddr_in. Request* req = CreateRequest("127.1.2.3", 5555); EXPECT_EQ(OK, req->Resolve()); EXPECT_TRUE(req->HasOneAddress("127.1.2.3", 5555)); } TEST_F(HostResolverImplTest, NumericIPv6Address) { // Resolve a plain IPv6 address. Don't worry about [brackets], because // the caller should have removed them. Request* req = CreateRequest("2001:db8::1", 5555); EXPECT_EQ(OK, req->Resolve()); EXPECT_TRUE(req->HasOneAddress("2001:db8::1", 5555)); } TEST_F(HostResolverImplTest, EmptyHost) { Request* req = CreateRequest("", 5555); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->Resolve()); } TEST_F(HostResolverImplTest, LongHost) { Request* req = CreateRequest(std::string(4097, 'a'), 5555); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->Resolve()); } TEST_F(HostResolverImplTest, DeDupeRequests) { // Start 5 requests, duplicating hosts "a" and "b". Since the resolver_proc is // blocked, these should all pile up until we signal it. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 81)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 82)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); proc_->SignalMultiple(2u); // One for "a", one for "b". for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } } TEST_F(HostResolverImplTest, CancelMultipleRequests) { EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 81)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 82)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); // Cancel everything except request for ("a", 82). requests_[0]->Cancel(); requests_[1]->Cancel(); requests_[2]->Cancel(); requests_[4]->Cancel(); proc_->SignalMultiple(2u); // One for "a", one for "b". EXPECT_EQ(OK, requests_[3]->WaitForResult()); } TEST_F(HostResolverImplTest, CanceledRequestsReleaseJobSlots) { // Fill up the dispatcher and queue. for (unsigned i = 0; i < kMaxJobs + 1; ++i) { std::string hostname = "a_"; hostname[1] = 'a' + i; EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 81)->Resolve()); } EXPECT_TRUE(proc_->WaitFor(kMaxJobs)); // Cancel all but last two. for (unsigned i = 0; i < requests_.size() - 2; ++i) { requests_[i]->Cancel(); } EXPECT_TRUE(proc_->WaitFor(kMaxJobs + 1)); proc_->SignalAll(); size_t num_requests = requests_.size(); EXPECT_EQ(OK, requests_[num_requests - 1]->WaitForResult()); EXPECT_EQ(OK, requests_[num_requests - 2]->result()); } TEST_F(HostResolverImplTest, CancelWithinCallback) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { // Port 80 is the first request that the callback will be invoked for. // While we are executing within that callback, cancel the other requests // in the job and start another request. if (req->index() == 0) { // Once "a:80" completes, it will cancel "a:81" and "a:82". requests()[1]->Cancel(); requests()[2]->Cancel(); } } }; set_handler(new MyHandler()); for (size_t i = 0; i < 4; ++i) { EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; } proc_->SignalMultiple(2u); // One for "a". One for "finalrequest". EXPECT_EQ(OK, requests_[0]->WaitForResult()); Request* final_request = CreateRequest("finalrequest", 70); EXPECT_EQ(ERR_IO_PENDING, final_request->Resolve()); EXPECT_EQ(OK, final_request->WaitForResult()); EXPECT_TRUE(requests_[3]->completed()); } TEST_F(HostResolverImplTest, DeleteWithinCallback) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { EXPECT_EQ("a", req->info().hostname()); EXPECT_EQ(80, req->info().port()); DeleteResolver(); // Quit after returning from OnCompleted (to give it a chance at // incorrectly running the cancelled tasks). MessageLoop::current()->PostTask(FROM_HERE, MessageLoop::QuitClosure()); } }; set_handler(new MyHandler()); for (size_t i = 0; i < 4; ++i) { EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; } proc_->SignalMultiple(1u); // One for "a". // |MyHandler| will send quit message once all the requests have finished. MessageLoop::current()->Run(); } TEST_F(HostResolverImplTest, DeleteWithinAbortedCallback) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { EXPECT_EQ("a", req->info().hostname()); EXPECT_EQ(80, req->info().port()); DeleteResolver(); // Quit after returning from OnCompleted (to give it a chance at // incorrectly running the cancelled tasks). MessageLoop::current()->PostTask(FROM_HERE, MessageLoop::QuitClosure()); } }; set_handler(new MyHandler()); // This test assumes that the Jobs will be Aborted in order ["a", "b"] EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); // HostResolverImpl will be deleted before later Requests can complete. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 81)->Resolve()); // Job for 'b' will be aborted before it can complete. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 82)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); EXPECT_TRUE(proc_->WaitFor(1u)); // Triggering an IP address change. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); // |MyHandler| will send quit message once all the requests have finished. MessageLoop::current()->Run(); EXPECT_EQ(ERR_ABORTED, requests_[0]->result()); EXPECT_EQ(ERR_IO_PENDING, requests_[1]->result()); EXPECT_EQ(ERR_IO_PENDING, requests_[2]->result()); EXPECT_EQ(ERR_IO_PENDING, requests_[3]->result()); // Clean up. proc_->SignalMultiple(requests_.size()); } TEST_F(HostResolverImplTest, StartWithinCallback) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { if (req->index() == 0) { // On completing the first request, start another request for "a". // Since caching is disabled, this will result in another async request. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 70)->Resolve()); } } }; set_handler(new MyHandler()); // Turn off caching for this host resolver. resolver_.reset(new HostResolverImpl( NULL, DefaultLimits(), DefaultParams(proc_), scoped_ptr(NULL), scoped_ptr(NULL), NULL)); for (size_t i = 0; i < 4; ++i) { EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; } proc_->SignalMultiple(2u); // One for "a". One for the second "a". EXPECT_EQ(OK, requests_[0]->WaitForResult()); ASSERT_EQ(5u, requests_.size()); EXPECT_EQ(OK, requests_.back()->WaitForResult()); EXPECT_EQ(2u, proc_->GetCaptureList().size()); } TEST_F(HostResolverImplTest, BypassCache) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { if (req->index() == 0) { // On completing the first request, start another request for "a". // Since caching is enabled, this should complete synchronously. std::string hostname = req->info().hostname(); EXPECT_EQ(OK, CreateRequest(hostname, 70)->Resolve()); EXPECT_EQ(OK, CreateRequest(hostname, 75)->ResolveFromCache()); // Ok good. Now make sure that if we ask to bypass the cache, it can no // longer service the request synchronously. HostResolver::RequestInfo info(HostPortPair(hostname, 71)); info.set_allow_cached_response(false); EXPECT_EQ(ERR_IO_PENDING, CreateRequest(info)->Resolve()); } else if (71 == req->info().port()) { // Test is done. MessageLoop::current()->Quit(); } else { FAIL() << "Unexpected request"; } } }; set_handler(new MyHandler()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); proc_->SignalMultiple(3u); // Only need two, but be generous. // |verifier| will send quit message once all the requests have finished. MessageLoop::current()->Run(); EXPECT_EQ(2u, proc_->GetCaptureList().size()); } // Test that IP address changes flush the cache. TEST_F(HostResolverImplTest, FlushCacheOnIPAddressChange) { proc_->SignalMultiple(2u); // One before the flush, one after. Request* req = CreateRequest("host1", 70); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); EXPECT_EQ(OK, req->WaitForResult()); req = CreateRequest("host1", 75); EXPECT_EQ(OK, req->Resolve()); // Should complete synchronously. // Flush cache by triggering an IP address change. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); MessageLoop::current()->RunAllPending(); // Notification happens async. // Resolve "host1" again -- this time it won't be served from cache, so it // will complete asynchronously. req = CreateRequest("host1", 80); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); EXPECT_EQ(OK, req->WaitForResult()); } // Test that IP address changes send ERR_ABORTED to pending requests. TEST_F(HostResolverImplTest, AbortOnIPAddressChanged) { Request* req = CreateRequest("host1", 70); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); EXPECT_TRUE(proc_->WaitFor(1u)); // Triggering an IP address change. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); MessageLoop::current()->RunAllPending(); // Notification happens async. proc_->SignalAll(); EXPECT_EQ(ERR_ABORTED, req->WaitForResult()); EXPECT_EQ(0u, resolver_->GetHostCache()->size()); } // Obey pool constraints after IP address has changed. TEST_F(HostResolverImplTest, ObeyPoolConstraintsAfterIPAddressChange) { // Runs at most one job at a time. CreateSerialResolver(); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a")->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b")->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("c")->Resolve()); EXPECT_TRUE(proc_->WaitFor(1u)); // Triggering an IP address change. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); MessageLoop::current()->RunAllPending(); // Notification happens async. proc_->SignalMultiple(3u); // Let the false-start go so that we can catch it. EXPECT_EQ(ERR_ABORTED, requests_[0]->WaitForResult()); EXPECT_EQ(1u, num_running_jobs()); EXPECT_FALSE(requests_[1]->completed()); EXPECT_FALSE(requests_[2]->completed()); EXPECT_EQ(OK, requests_[2]->WaitForResult()); EXPECT_EQ(OK, requests_[1]->result()); } // Tests that a new Request made from the callback of a previously aborted one // will not be aborted. TEST_F(HostResolverImplTest, AbortOnlyExistingRequestsOnIPAddressChange) { struct MyHandler : public Handler { virtual void Handle(Request* req) OVERRIDE { // Start new request for a different hostname to ensure that the order // of jobs in HostResolverImpl is not stable. std::string hostname; if (req->index() == 0) hostname = "zzz"; else if (req->index() == 1) hostname = "aaa"; else if (req->index() == 2) hostname = "eee"; else return; // A request started from within MyHandler. EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname)->Resolve()) << hostname; } }; set_handler(new MyHandler()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("bbb")->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("eee")->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ccc")->Resolve()); // Wait until all are blocked; EXPECT_TRUE(proc_->WaitFor(3u)); // Trigger an IP address change. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); // This should abort all running jobs. MessageLoop::current()->RunAllPending(); EXPECT_EQ(ERR_ABORTED, requests_[0]->result()); EXPECT_EQ(ERR_ABORTED, requests_[1]->result()); EXPECT_EQ(ERR_ABORTED, requests_[2]->result()); ASSERT_EQ(6u, requests_.size()); // Unblock all calls to proc. proc_->SignalMultiple(requests_.size()); // Run until the re-started requests finish. EXPECT_EQ(OK, requests_[3]->WaitForResult()); EXPECT_EQ(OK, requests_[4]->WaitForResult()); EXPECT_EQ(OK, requests_[5]->WaitForResult()); // Verify that results of aborted Jobs were not cached. EXPECT_EQ(6u, proc_->GetCaptureList().size()); EXPECT_EQ(3u, resolver_->GetHostCache()->size()); } // Tests that when the maximum threads is set to 1, requests are dequeued // in order of priority. TEST_F(HostResolverImplTest, HigherPriorityRequestsStartedFirst) { CreateSerialResolver(); // Note that at this point the MockHostResolverProc is blocked, so any // requests we make will not complete. CreateRequest("req0", 80, LOW); CreateRequest("req1", 80, MEDIUM); CreateRequest("req2", 80, MEDIUM); CreateRequest("req3", 80, LOW); CreateRequest("req4", 80, HIGHEST); CreateRequest("req5", 80, LOW); CreateRequest("req6", 80, LOW); CreateRequest("req5", 80, HIGHEST); for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; } // Unblock the resolver thread so the requests can run. proc_->SignalMultiple(requests_.size()); // More than needed. // Wait for all the requests to complete succesfully. for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } // Since we have restricted to a single concurrent thread in the jobpool, // the requests should complete in order of priority (with the exception // of the first request, which gets started right away, since there is // nothing outstanding). MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); ASSERT_EQ(7u, capture_list.size()); EXPECT_EQ("req0", capture_list[0].hostname); EXPECT_EQ("req4", capture_list[1].hostname); EXPECT_EQ("req5", capture_list[2].hostname); EXPECT_EQ("req1", capture_list[3].hostname); EXPECT_EQ("req2", capture_list[4].hostname); EXPECT_EQ("req3", capture_list[5].hostname); EXPECT_EQ("req6", capture_list[6].hostname); } // Try cancelling a job which has not started yet. TEST_F(HostResolverImplTest, CancelPendingRequest) { CreateSerialResolver(); CreateRequest("req0", 80, LOWEST); CreateRequest("req1", 80, HIGHEST); // Will cancel. CreateRequest("req2", 80, MEDIUM); CreateRequest("req3", 80, LOW); CreateRequest("req4", 80, HIGHEST); // Will cancel. CreateRequest("req5", 80, LOWEST); // Will cancel. CreateRequest("req6", 80, MEDIUM); // Start all of the requests. for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; } // Cancel some requests requests_[1]->Cancel(); requests_[4]->Cancel(); requests_[5]->Cancel(); // Unblock the resolver thread so the requests can run. proc_->SignalMultiple(requests_.size()); // More than needed. // Wait for all the requests to complete succesfully. for (size_t i = 0; i < requests_.size(); ++i) { if (!requests_[i]->pending()) continue; // Don't wait for the requests we cancelled. EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } // Verify that they called out the the resolver proc (which runs on the // resolver thread) in the expected order. MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); ASSERT_EQ(4u, capture_list.size()); EXPECT_EQ("req0", capture_list[0].hostname); EXPECT_EQ("req2", capture_list[1].hostname); EXPECT_EQ("req6", capture_list[2].hostname); EXPECT_EQ("req3", capture_list[3].hostname); } // Test that when too many requests are enqueued, old ones start to be aborted. TEST_F(HostResolverImplTest, QueueOverflow) { CreateSerialResolver(); // Allow only 3 queued jobs. const size_t kMaxPendingJobs = 3u; resolver_->SetMaxQueuedJobs(kMaxPendingJobs); // Note that at this point the MockHostResolverProc is blocked, so any // requests we make will not complete. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req0", 80, LOWEST)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req1", 80, HIGHEST)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req2", 80, MEDIUM)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req3", 80, MEDIUM)->Resolve()); // At this point, there are 3 enqueued jobs. // Insertion of subsequent requests will cause evictions // based on priority. EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, CreateRequest("req4", 80, LOW)->Resolve()); // Evicts itself! EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req5", 80, MEDIUM)->Resolve()); EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[2]->result()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req6", 80, HIGHEST)->Resolve()); EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[3]->result()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req7", 80, MEDIUM)->Resolve()); EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[5]->result()); // Unblock the resolver thread so the requests can run. proc_->SignalMultiple(4u); // The rest should succeed. EXPECT_EQ(OK, requests_[7]->WaitForResult()); EXPECT_EQ(OK, requests_[0]->result()); EXPECT_EQ(OK, requests_[1]->result()); EXPECT_EQ(OK, requests_[6]->result()); // Verify that they called out the the resolver proc (which runs on the // resolver thread) in the expected order. MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); ASSERT_EQ(4u, capture_list.size()); EXPECT_EQ("req0", capture_list[0].hostname); EXPECT_EQ("req1", capture_list[1].hostname); EXPECT_EQ("req6", capture_list[2].hostname); EXPECT_EQ("req7", capture_list[3].hostname); // Verify that the evicted (incomplete) requests were not cached. EXPECT_EQ(4u, resolver_->GetHostCache()->size()); for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_TRUE(requests_[i]->completed()) << i; } } // Tests that after changing the default AddressFamily to IPV4, requests // with UNSPECIFIED address family map to IPV4. TEST_F(HostResolverImplTest, SetDefaultAddressFamily_IPv4) { CreateSerialResolver(); // To guarantee order of resolutions. proc_->AddRule("h1", ADDRESS_FAMILY_IPV4, "1.0.0.1"); proc_->AddRule("h1", ADDRESS_FAMILY_IPV6, "::2"); resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV4); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV4); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV6); // Start all of the requests. for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; } proc_->SignalMultiple(requests_.size()); // Wait for all the requests to complete. for (size_t i = 0u; i < requests_.size(); ++i) { EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } // Since the requests all had the same priority and we limited the thread // count to 1, they should have completed in the same order as they were // requested. Moreover, request0 and request1 will have been serviced by // the same job. MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); ASSERT_EQ(2u, capture_list.size()); EXPECT_EQ("h1", capture_list[0].hostname); EXPECT_EQ(ADDRESS_FAMILY_IPV4, capture_list[0].address_family); EXPECT_EQ("h1", capture_list[1].hostname); EXPECT_EQ(ADDRESS_FAMILY_IPV6, capture_list[1].address_family); // Now check that the correct resolved IP addresses were returned. EXPECT_TRUE(requests_[0]->HasOneAddress("1.0.0.1", 80)); EXPECT_TRUE(requests_[1]->HasOneAddress("1.0.0.1", 80)); EXPECT_TRUE(requests_[2]->HasOneAddress("::2", 80)); } // This is the exact same test as SetDefaultAddressFamily_IPv4, except the // default family is set to IPv6 and the family of requests is flipped where // specified. TEST_F(HostResolverImplTest, SetDefaultAddressFamily_IPv6) { CreateSerialResolver(); // To guarantee order of resolutions. // Don't use IPv6 replacements here since some systems don't support it. proc_->AddRule("h1", ADDRESS_FAMILY_IPV4, "1.0.0.1"); proc_->AddRule("h1", ADDRESS_FAMILY_IPV6, "::2"); resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV6); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV6); CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV4); // Start all of the requests. for (size_t i = 0; i < requests_.size(); ++i) { EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; } proc_->SignalMultiple(requests_.size()); // Wait for all the requests to complete. for (size_t i = 0u; i < requests_.size(); ++i) { EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } // Since the requests all had the same priority and we limited the thread // count to 1, they should have completed in the same order as they were // requested. Moreover, request0 and request1 will have been serviced by // the same job. MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); ASSERT_EQ(2u, capture_list.size()); EXPECT_EQ("h1", capture_list[0].hostname); EXPECT_EQ(ADDRESS_FAMILY_IPV6, capture_list[0].address_family); EXPECT_EQ("h1", capture_list[1].hostname); EXPECT_EQ(ADDRESS_FAMILY_IPV4, capture_list[1].address_family); // Now check that the correct resolved IP addresses were returned. EXPECT_TRUE(requests_[0]->HasOneAddress("::2", 80)); EXPECT_TRUE(requests_[1]->HasOneAddress("::2", 80)); EXPECT_TRUE(requests_[2]->HasOneAddress("1.0.0.1", 80)); } TEST_F(HostResolverImplTest, ResolveFromCache) { proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42"); proc_->SignalMultiple(1u); // Need only one. HostResolver::RequestInfo info(HostPortPair("just.testing", 80)); // First hit will miss the cache. EXPECT_EQ(ERR_DNS_CACHE_MISS, CreateRequest(info)->ResolveFromCache()); // This time, we fetch normally. EXPECT_EQ(ERR_IO_PENDING, CreateRequest(info)->Resolve()); EXPECT_EQ(OK, requests_[1]->WaitForResult()); // Now we should be able to fetch from the cache. EXPECT_EQ(OK, CreateRequest(info)->ResolveFromCache()); EXPECT_TRUE(requests_[2]->HasOneAddress("192.168.1.42", 80)); } // Test the retry attempts simulating host resolver proc that takes too long. TEST_F(HostResolverImplTest, MultipleAttempts) { // Total number of attempts would be 3 and we want the 3rd attempt to resolve // the host. First and second attempt will be forced to sleep until they get // word that a resolution has completed. The 3rd resolution attempt will try // to get done ASAP, and won't sleep.. int kAttemptNumberToResolve = 3; int kTotalAttempts = 3; scoped_refptr resolver_proc( new LookupAttemptHostResolverProc( NULL, kAttemptNumberToResolve, kTotalAttempts)); HostResolverImpl::ProcTaskParams params = DefaultParams(resolver_proc.get()); // Specify smaller interval for unresponsive_delay_ for HostResolverImpl so // that unit test runs faster. For example, this test finishes in 1.5 secs // (500ms * 3). params.unresponsive_delay = base::TimeDelta::FromMilliseconds(500); resolver_.reset( new HostResolverImpl(HostCache::CreateDefaultCache(), DefaultLimits(), params, scoped_ptr(NULL), scoped_ptr(NULL), NULL)); // Resolve "host1". HostResolver::RequestInfo info(HostPortPair("host1", 70)); Request* req = CreateRequest(info); EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); // Resolve returns -4 to indicate that 3rd attempt has resolved the host. EXPECT_EQ(-4, req->WaitForResult()); resolver_proc->WaitForAllAttemptsToFinish( base::TimeDelta::FromMilliseconds(60000)); MessageLoop::current()->RunAllPending(); EXPECT_EQ(resolver_proc->total_attempts_resolved(), kTotalAttempts); EXPECT_EQ(resolver_proc->resolved_attempt_number(), kAttemptNumberToResolve); } DnsConfig CreateValidDnsConfig() { IPAddressNumber dns_ip; bool rv = ParseIPLiteralToNumber("192.168.1.0", &dns_ip); EXPECT_TRUE(rv); DnsConfig config; config.nameservers.push_back(IPEndPoint(dns_ip, dns_protocol::kDefaultPort)); EXPECT_TRUE(config.IsValid()); return config; } // Specialized fixture for tests of DnsTask. class HostResolverImplDnsTest : public HostResolverImplTest { protected: virtual void SetUp() OVERRIDE { config_service_ = new MockDnsConfigService(); resolver_.reset(new HostResolverImpl( HostCache::CreateDefaultCache(), DefaultLimits(), DefaultParams(proc_), scoped_ptr(config_service_), CreateMockDnsClient(DnsConfig()), NULL)); } void ChangeDnsConfig(const DnsConfig& config) { config_service_->ChangeConfig(config); config_service_->ChangeHosts(config.hosts); } // Owned by |resolver_|. MockDnsConfigService* config_service_; }; // TODO(szym): Test AbortAllInProgressJobs due to DnsConfig change. // TODO(cbentzel): Test a mix of requests with different HostResolverFlags. // Test successful and fallback resolutions in HostResolverImpl::DnsTask. TEST_F(HostResolverImplDnsTest, DnsTask) { resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV4); proc_->AddRuleForAllFamilies("er_succeed", "192.168.1.101"); proc_->AddRuleForAllFamilies("nx_succeed", "192.168.1.102"); // All other hostnames will fail in proc_. // Initially there is no config, so client should not be invoked. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok_fail", 80)->Resolve()); proc_->SignalMultiple(requests_.size()); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[0]->WaitForResult()); ChangeDnsConfig(CreateValidDnsConfig()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok_fail", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("er_fail", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("nx_fail", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("er_succeed", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("nx_succeed", 80)->Resolve()); proc_->SignalMultiple(requests_.size()); for (size_t i = 1; i < requests_.size(); ++i) EXPECT_NE(ERR_UNEXPECTED, requests_[i]->WaitForResult()) << i; EXPECT_EQ(OK, requests_[1]->result()); // Resolved by MockDnsClient. EXPECT_TRUE(requests_[1]->HasOneAddress("127.0.0.1", 80)); // Fallback to ProcTask. EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[2]->result()); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[3]->result()); EXPECT_EQ(OK, requests_[4]->result()); EXPECT_TRUE(requests_[4]->HasOneAddress("192.168.1.101", 80)); EXPECT_EQ(OK, requests_[5]->result()); EXPECT_TRUE(requests_[5]->HasOneAddress("192.168.1.102", 80)); } TEST_F(HostResolverImplDnsTest, ServeFromHosts) { // Initially, use empty HOSTS file. ChangeDnsConfig(CreateValidDnsConfig()); proc_->AddRuleForAllFamilies("", "0.0.0.0"); // Default to failures. proc_->SignalMultiple(1u); // For the first request which misses. Request* req0 = CreateRequest("er_ipv4", 80); EXPECT_EQ(ERR_IO_PENDING, req0->Resolve()); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req0->WaitForResult()); IPAddressNumber local_ipv4, local_ipv6; ASSERT_TRUE(ParseIPLiteralToNumber("127.0.0.1", &local_ipv4)); ASSERT_TRUE(ParseIPLiteralToNumber("::1", &local_ipv6)); DnsHosts hosts; hosts[DnsHostsKey("er_ipv4", ADDRESS_FAMILY_IPV4)] = local_ipv4; hosts[DnsHostsKey("er_ipv6", ADDRESS_FAMILY_IPV6)] = local_ipv6; hosts[DnsHostsKey("er_both", ADDRESS_FAMILY_IPV4)] = local_ipv4; hosts[DnsHostsKey("er_both", ADDRESS_FAMILY_IPV6)] = local_ipv6; // Update HOSTS file. config_service_->ChangeHosts(hosts); Request* req1 = CreateRequest("er_ipv4", 80); EXPECT_EQ(OK, req1->Resolve()); EXPECT_TRUE(req1->HasOneAddress("127.0.0.1", 80)); Request* req2 = CreateRequest("er_ipv6", 80); EXPECT_EQ(OK, req2->Resolve()); EXPECT_TRUE(req2->HasOneAddress("::1", 80)); Request* req3 = CreateRequest("er_both", 80); EXPECT_EQ(OK, req3->Resolve()); EXPECT_TRUE(req3->HasOneAddress("127.0.0.1", 80) || req3->HasOneAddress("::1", 80)); // Requests with specified AddressFamily. Request* req4 = CreateRequest("er_ipv4", 80, MEDIUM, ADDRESS_FAMILY_IPV4); EXPECT_EQ(OK, req4->Resolve()); EXPECT_TRUE(req4->HasOneAddress("127.0.0.1", 80)); Request* req5 = CreateRequest("er_ipv6", 80, MEDIUM, ADDRESS_FAMILY_IPV6); EXPECT_EQ(OK, req5->Resolve()); EXPECT_TRUE(req5->HasOneAddress("::1", 80)); // Request with upper case. Request* req6 = CreateRequest("er_IPV4", 80); EXPECT_EQ(OK, req6->Resolve()); EXPECT_TRUE(req6->HasOneAddress("127.0.0.1", 80)); } TEST_F(HostResolverImplDnsTest, BypassDnsTask) { ChangeDnsConfig(CreateValidDnsConfig()); proc_->AddRuleForAllFamilies("", "0.0.0.0"); // Default to failures. EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok.local", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok.local.", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("oklocal", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("oklocal.", 80)->Resolve()); EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok", 80)->Resolve()); proc_->SignalMultiple(requests_.size()); for (size_t i = 0; i < 2; ++i) EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[i]->WaitForResult()) << i; for (size_t i = 2; i < requests_.size(); ++i) EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; } } // namespace net