// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/ip_endpoint.h" #include "build/build_config.h" #if defined(OS_WIN) #include #elif defined(OS_POSIX) #include #endif #include "base/logging.h" #include "base/strings/string_number_conversions.h" #include "base/sys_byteorder.h" #include "net/base/sockaddr_storage.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/platform_test.h" namespace net { namespace { // Retuns the port field of the |sockaddr|. const uint16_t* GetPortFieldFromSockaddr(const struct sockaddr* address, socklen_t address_len) { if (address->sa_family == AF_INET) { DCHECK_LE(sizeof(sockaddr_in), static_cast(address_len)); const struct sockaddr_in* sockaddr = reinterpret_cast(address); return &sockaddr->sin_port; } else if (address->sa_family == AF_INET6) { DCHECK_LE(sizeof(sockaddr_in6), static_cast(address_len)); const struct sockaddr_in6* sockaddr = reinterpret_cast(address); return &sockaddr->sin6_port; } else { NOTREACHED(); return NULL; } } // Returns the value of port in |sockaddr| (in host byte ordering). int GetPortFromSockaddr(const struct sockaddr* address, socklen_t address_len) { const uint16_t* port_field = GetPortFieldFromSockaddr(address, address_len); if (!port_field) return -1; return base::NetToHost16(*port_field); } struct TestData { std::string host; std::string host_normalized; bool ipv6; IPAddress ip_address; } tests[] = { { "127.0.00.1", "127.0.0.1", false}, { "192.168.1.1", "192.168.1.1", false }, { "::1", "[::1]", true }, { "2001:db8:0::42", "[2001:db8::42]", true }, }; uint16_t test_count = static_cast(arraysize(tests)); class IPEndPointTest : public PlatformTest { public: void SetUp() override { // This is where we populate the TestData. for (int index = 0; index < test_count; ++index) { EXPECT_TRUE( tests[index].ip_address.AssignFromIPLiteral(tests[index].host)); } } }; TEST_F(IPEndPointTest, Constructor) { IPEndPoint endpoint; EXPECT_EQ(0, endpoint.port()); for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint endpoint(tests[index].ip_address, 80); EXPECT_EQ(80, endpoint.port()); EXPECT_EQ(tests[index].ip_address, endpoint.address()); } } TEST_F(IPEndPointTest, Assignment) { for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint src(tests[index].ip_address, index); IPEndPoint dest = src; EXPECT_EQ(src.port(), dest.port()); EXPECT_EQ(src.address(), dest.address()); } } TEST_F(IPEndPointTest, Copy) { for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint src(tests[index].ip_address, index); IPEndPoint dest(src); EXPECT_EQ(src.port(), dest.port()); EXPECT_EQ(src.address(), dest.address()); } } TEST_F(IPEndPointTest, ToFromSockAddr) { for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint ip_endpoint(tests[index].ip_address, index); // Convert to a sockaddr. SockaddrStorage storage; EXPECT_TRUE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len)); // Basic verification. socklen_t expected_size = tests[index].ipv6 ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in); EXPECT_EQ(expected_size, storage.addr_len); EXPECT_EQ(ip_endpoint.port(), GetPortFromSockaddr(storage.addr, storage.addr_len)); // And convert back to an IPEndPoint. IPEndPoint ip_endpoint2; EXPECT_TRUE(ip_endpoint2.FromSockAddr(storage.addr, storage.addr_len)); EXPECT_EQ(ip_endpoint.port(), ip_endpoint2.port()); EXPECT_EQ(ip_endpoint.address(), ip_endpoint2.address()); } } TEST_F(IPEndPointTest, ToSockAddrBufTooSmall) { for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint ip_endpoint(tests[index].ip_address, index); SockaddrStorage storage; storage.addr_len = index; // size is too small! EXPECT_FALSE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len)); } } TEST_F(IPEndPointTest, FromSockAddrBufTooSmall) { struct sockaddr_in addr; memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; IPEndPoint ip_endpoint; struct sockaddr* sockaddr = reinterpret_cast(&addr); EXPECT_FALSE(ip_endpoint.FromSockAddr(sockaddr, sizeof(addr) - 1)); } TEST_F(IPEndPointTest, Equality) { for (uint16_t index = 0; index < test_count; ++index) { IPEndPoint src(tests[index].ip_address, index); IPEndPoint dest(src); EXPECT_TRUE(src == dest); } } TEST_F(IPEndPointTest, LessThan) { // Vary by port. IPEndPoint ip_endpoint1(tests[0].ip_address, 100); IPEndPoint ip_endpoint2(tests[0].ip_address, 1000); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv4 vs IPv6 ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[2].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv4 vs IPv4 ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[1].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv6 vs IPv6 ip_endpoint1 = IPEndPoint(tests[2].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[3].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // Compare equivalent endpoints. ip_endpoint1 = IPEndPoint(tests[0].ip_address, 80); ip_endpoint2 = IPEndPoint(tests[0].ip_address, 80); EXPECT_FALSE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); } TEST_F(IPEndPointTest, ToString) { IPEndPoint endpoint; EXPECT_EQ(0, endpoint.port()); for (uint16_t index = 0; index < test_count; ++index) { uint16_t port = 100 + index; IPEndPoint endpoint(tests[index].ip_address, port); const std::string result = endpoint.ToString(); EXPECT_EQ(tests[index].host_normalized + ":" + base::UintToString(port), result); } // ToString() shouldn't crash on invalid addresses. IPAddress invalid_address; IPEndPoint invalid_endpoint(invalid_address, 8080); EXPECT_EQ("", invalid_endpoint.ToString()); EXPECT_EQ("", invalid_endpoint.ToStringWithoutPort()); } } // namespace } // namespace net