// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/net_util.h" #include #include #include "base/files/file_path.h" #include "base/format_macros.h" #include "base/scoped_native_library.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/strings/utf_string_conversions.h" #include "base/sys_byteorder.h" #include "base/time/time.h" #include "net/base/ip_endpoint.h" #if !defined(OS_NACL) && !defined(OS_WIN) #include #include #if defined(OS_MACOSX) #include #if !defined(OS_IOS) #include #endif // !OS_IOS #endif // OS_MACOSX #endif // !OS_NACL && !OS_WIN #include "testing/gtest/include/gtest/gtest.h" #include "url/gurl.h" #if defined(OS_WIN) #include #include #include "base/win/windows_version.h" #endif // OS_WIN #if !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_WIN) #include "net/base/address_tracker_linux.h" #endif // !OS_MACOSX && !OS_NACL && !OS_WIN #if defined(OS_WIN) #include "net/base/net_util_win.h" #else // OS_WIN #include "net/base/net_util_posix.h" #if defined(OS_MACOSX) #include "net/base/net_util_mac.h" #else // OS_MACOSX #include "net/base/net_util_linux.h" #endif // OS_MACOSX #endif // OS_WIN using base::ASCIIToUTF16; using base::WideToUTF16; namespace net { namespace { struct HeaderCase { const char* const header_name; const char* const expected; }; #if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_CHROMEOS) const char kWiFiSSID[] = "TestWiFi"; const char kInterfaceWithDifferentSSID[] = "wlan999"; std::string TestGetInterfaceSSID(const std::string& ifname) { return (ifname == kInterfaceWithDifferentSSID) ? "AnotherSSID" : kWiFiSSID; } #endif // Fills in sockaddr for the given 32-bit address (IPv4.) // |bytes| should be an array of length 4. void MakeIPv4Address(const uint8* bytes, int port, SockaddrStorage* storage) { memset(&storage->addr_storage, 0, sizeof(storage->addr_storage)); storage->addr_len = sizeof(struct sockaddr_in); struct sockaddr_in* addr4 = reinterpret_cast(storage->addr); addr4->sin_port = base::HostToNet16(port); addr4->sin_family = AF_INET; memcpy(&addr4->sin_addr, bytes, 4); } // Fills in sockaddr for the given 128-bit address (IPv6.) // |bytes| should be an array of length 16. void MakeIPv6Address(const uint8* bytes, int port, SockaddrStorage* storage) { memset(&storage->addr_storage, 0, sizeof(storage->addr_storage)); storage->addr_len = sizeof(struct sockaddr_in6); struct sockaddr_in6* addr6 = reinterpret_cast(storage->addr); addr6->sin6_port = base::HostToNet16(port); addr6->sin6_family = AF_INET6; memcpy(&addr6->sin6_addr, bytes, 16); } // Helper to strignize an IP number (used to define expectations). std::string DumpIPNumber(const IPAddressNumber& v) { std::string out; for (size_t i = 0; i < v.size(); ++i) { if (i != 0) out.append(","); out.append(base::IntToString(static_cast(v[i]))); } return out; } #if defined(OS_MACOSX) class IPAttributesGetterTest : public internal::IPAttributesGetterMac { public: IPAttributesGetterTest() : native_attributes_(0) {} bool IsInitialized() const override { return true; } bool GetIPAttributes(const char* ifname, const sockaddr* sock_addr, int* native_attributes) override { *native_attributes = native_attributes_; return true; } void set_native_attributes(int native_attributes) { native_attributes_ = native_attributes; } private: int native_attributes_; }; // Helper function to create a single valid ifaddrs bool FillIfaddrs(ifaddrs* interfaces, const char* ifname, uint flags, const IPAddressNumber& ip_address, const IPAddressNumber& ip_netmask, sockaddr_storage sock_addrs[2]) { interfaces->ifa_next = NULL; interfaces->ifa_name = const_cast(ifname); interfaces->ifa_flags = flags; socklen_t sock_len = sizeof(sockaddr_storage); // Convert to sockaddr for next check. if (!IPEndPoint(ip_address, 0) .ToSockAddr(reinterpret_cast(&sock_addrs[0]), &sock_len)) { return false; } interfaces->ifa_addr = reinterpret_cast(&sock_addrs[0]); sock_len = sizeof(sockaddr_storage); if (!IPEndPoint(ip_netmask, 0) .ToSockAddr(reinterpret_cast(&sock_addrs[1]), &sock_len)) { return false; } interfaces->ifa_netmask = reinterpret_cast(&sock_addrs[1]); return true; } #endif // OS_MACOSX } // anonymous namespace TEST(NetUtilTest, GetIdentityFromURL) { struct { const char* const input_url; const char* const expected_username; const char* const expected_password; } tests[] = { { "http://username:password@google.com", "username", "password", }, { // Test for http://crbug.com/19200 "http://username:p@ssword@google.com", "username", "p@ssword", }, { // Special URL characters should be unescaped. "http://username:p%3fa%26s%2fs%23@google.com", "username", "p?a&s/s#", }, { // Username contains %20. "http://use rname:password@google.com", "use rname", "password", }, { // Keep %00 as is. "http://use%00rname:password@google.com", "use%00rname", "password", }, { // Use a '+' in the username. "http://use+rname:password@google.com", "use+rname", "password", }, { // Use a '&' in the password. "http://username:p&ssword@google.com", "username", "p&ssword", }, }; for (size_t i = 0; i < arraysize(tests); ++i) { SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s", i, tests[i].input_url)); GURL url(tests[i].input_url); base::string16 username, password; GetIdentityFromURL(url, &username, &password); EXPECT_EQ(ASCIIToUTF16(tests[i].expected_username), username); EXPECT_EQ(ASCIIToUTF16(tests[i].expected_password), password); } } // Try extracting a username which was encoded with UTF8. TEST(NetUtilTest, GetIdentityFromURL_UTF8) { GURL url(WideToUTF16(L"http://foo:\x4f60\x597d@blah.com")); EXPECT_EQ("foo", url.username()); EXPECT_EQ("%E4%BD%A0%E5%A5%BD", url.password()); // Extract the unescaped identity. base::string16 username, password; GetIdentityFromURL(url, &username, &password); // Verify that it was decoded as UTF8. EXPECT_EQ(ASCIIToUTF16("foo"), username); EXPECT_EQ(WideToUTF16(L"\x4f60\x597d"), password); } // Just a bunch of fake headers. const char google_headers[] = "HTTP/1.1 200 OK\n" "Content-TYPE: text/html; charset=utf-8\n" "Content-disposition: attachment; filename=\"download.pdf\"\n" "Content-Length: 378557\n" "X-Google-Google1: 314159265\n" "X-Google-Google2: aaaa2:7783,bbb21:9441\n" "X-Google-Google4: home\n" "Transfer-Encoding: chunked\n" "Set-Cookie: HEHE_AT=6666x66beef666x6-66xx6666x66; Path=/mail\n" "Set-Cookie: HEHE_HELP=owned:0;Path=/\n" "Set-Cookie: S=gmail=Xxx-beefbeefbeef_beefb:gmail_yj=beefbeef000beefbee" "fbee:gmproxy=bee-fbeefbe; Domain=.google.com; Path=/\n" "X-Google-Google2: /one/two/three/four/five/six/seven-height/nine:9411\n" "Server: GFE/1.3\n" "Transfer-Encoding: chunked\n" "Date: Mon, 13 Nov 2006 21:38:09 GMT\n" "Expires: Tue, 14 Nov 2006 19:23:58 GMT\n" "X-Malformed: bla; arg=test\"\n" "X-Malformed2: bla; arg=\n" "X-Test: bla; arg1=val1; arg2=val2"; TEST(NetUtilTest, GetSpecificHeader) { const HeaderCase tests[] = { {"content-type", "text/html; charset=utf-8"}, {"CONTENT-LENGTH", "378557"}, {"Date", "Mon, 13 Nov 2006 21:38:09 GMT"}, {"Bad-Header", ""}, {"", ""}, }; // Test first with google_headers. for (size_t i = 0; i < arraysize(tests); ++i) { std::string result = GetSpecificHeader(google_headers, tests[i].header_name); EXPECT_EQ(result, tests[i].expected); } // Test again with empty headers. for (size_t i = 0; i < arraysize(tests); ++i) { std::string result = GetSpecificHeader(std::string(), tests[i].header_name); EXPECT_EQ(result, std::string()); } } TEST(NetUtilTest, CompliantHost) { struct CompliantHostCase { const char* const host; bool expected_output; }; const CompliantHostCase compliant_host_cases[] = { {"", false}, {"a", true}, {"-", false}, {".", false}, {"9", true}, {"9a", true}, {"a.", true}, {"a.a", true}, {"9.a", true}, {"a.9", true}, {"_9a", false}, {"-9a", false}, {"a.a9", true}, {"a.-a9", false}, {"a+9a", false}, {"-a.a9", true}, {"1-.a-b", true}, {"1_.a-b", false}, {"1-2.a_b", true}, {"a.b.c.d.e", true}, {"1.2.3.4.5", true}, {"1.2.3.4.5.", true}, }; for (size_t i = 0; i < arraysize(compliant_host_cases); ++i) { EXPECT_EQ(compliant_host_cases[i].expected_output, IsCanonicalizedHostCompliant(compliant_host_cases[i].host)); } } TEST(NetUtilTest, ParseHostAndPort) { const struct { const char* const input; bool success; const char* const expected_host; int expected_port; } tests[] = { // Valid inputs: {"foo:10", true, "foo", 10}, {"foo", true, "foo", -1}, { "[1080:0:0:0:8:800:200C:4171]:11", true, "1080:0:0:0:8:800:200C:4171", 11 }, { "[1080:0:0:0:8:800:200C:4171]", true, "1080:0:0:0:8:800:200C:4171", -1 }, // Because no validation is done on the host, the following are accepted, // even though they are invalid names. {"]", true, "]", -1}, {"::1", true, ":", 1}, // Invalid inputs: {"foo:bar", false, "", -1}, {"foo:", false, "", -1}, {":", false, "", -1}, {":80", false, "", -1}, {"", false, "", -1}, {"porttoolong:300000", false, "", -1}, {"usrname@host", false, "", -1}, {"usrname:password@host", false, "", -1}, {":password@host", false, "", -1}, {":password@host:80", false, "", -1}, {":password@host", false, "", -1}, {"@host", false, "", -1}, {"[", false, "", -1}, {"[]", false, "", -1}, }; for (size_t i = 0; i < arraysize(tests); ++i) { std::string host; int port; bool ok = ParseHostAndPort(tests[i].input, &host, &port); EXPECT_EQ(tests[i].success, ok); if (tests[i].success) { EXPECT_EQ(tests[i].expected_host, host); EXPECT_EQ(tests[i].expected_port, port); } } } TEST(NetUtilTest, GetHostAndPort) { const struct { GURL url; const char* const expected_host_and_port; } tests[] = { { GURL("http://www.foo.com/x"), "www.foo.com:80"}, { GURL("http://www.foo.com:21/x"), "www.foo.com:21"}, // For IPv6 literals should always include the brackets. { GURL("http://[1::2]/x"), "[1::2]:80"}, { GURL("http://[::a]:33/x"), "[::a]:33"}, }; for (size_t i = 0; i < arraysize(tests); ++i) { std::string host_and_port = GetHostAndPort(tests[i].url); EXPECT_EQ(std::string(tests[i].expected_host_and_port), host_and_port); } } TEST(NetUtilTest, GetHostAndOptionalPort) { const struct { GURL url; const char* const expected_host_and_port; } tests[] = { { GURL("http://www.foo.com/x"), "www.foo.com"}, { GURL("http://www.foo.com:21/x"), "www.foo.com:21"}, // For IPv6 literals should always include the brackets. { GURL("http://[1::2]/x"), "[1::2]"}, { GURL("http://[::a]:33/x"), "[::a]:33"}, }; for (size_t i = 0; i < arraysize(tests); ++i) { std::string host_and_port = GetHostAndOptionalPort(tests[i].url); EXPECT_EQ(std::string(tests[i].expected_host_and_port), host_and_port); } } TEST(NetUtilTest, IPAddressToString) { uint8 addr1[4] = {0, 0, 0, 0}; EXPECT_EQ("0.0.0.0", IPAddressToString(addr1, sizeof(addr1))); uint8 addr2[4] = {192, 168, 0, 1}; EXPECT_EQ("192.168.0.1", IPAddressToString(addr2, sizeof(addr2))); uint8 addr3[16] = {0xFE, 0xDC, 0xBA, 0x98}; EXPECT_EQ("fedc:ba98::", IPAddressToString(addr3, sizeof(addr3))); } TEST(NetUtilTest, IPAddressToStringWithPort) { uint8 addr1[4] = {0, 0, 0, 0}; EXPECT_EQ("0.0.0.0:3", IPAddressToStringWithPort(addr1, sizeof(addr1), 3)); uint8 addr2[4] = {192, 168, 0, 1}; EXPECT_EQ("192.168.0.1:99", IPAddressToStringWithPort(addr2, sizeof(addr2), 99)); uint8 addr3[16] = {0xFE, 0xDC, 0xBA, 0x98}; EXPECT_EQ("[fedc:ba98::]:8080", IPAddressToStringWithPort(addr3, sizeof(addr3), 8080)); } TEST(NetUtilTest, NetAddressToString_IPv4) { const struct { uint8 addr[4]; const char* const result; } tests[] = { {{0, 0, 0, 0}, "0.0.0.0"}, {{127, 0, 0, 1}, "127.0.0.1"}, {{192, 168, 0, 1}, "192.168.0.1"}, }; for (size_t i = 0; i < arraysize(tests); ++i) { SockaddrStorage storage; MakeIPv4Address(tests[i].addr, 80, &storage); std::string result = NetAddressToString(storage.addr, storage.addr_len); EXPECT_EQ(std::string(tests[i].result), result); } } TEST(NetUtilTest, NetAddressToString_IPv6) { const struct { uint8 addr[16]; const char* const result; } tests[] = { {{0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10}, "fedc:ba98:7654:3210:fedc:ba98:7654:3210"}, }; for (size_t i = 0; i < arraysize(tests); ++i) { SockaddrStorage storage; MakeIPv6Address(tests[i].addr, 80, &storage); EXPECT_EQ(std::string(tests[i].result), NetAddressToString(storage.addr, storage.addr_len)); } } TEST(NetUtilTest, NetAddressToStringWithPort_IPv4) { uint8 addr[] = {127, 0, 0, 1}; SockaddrStorage storage; MakeIPv4Address(addr, 166, &storage); std::string result = NetAddressToStringWithPort(storage.addr, storage.addr_len); EXPECT_EQ("127.0.0.1:166", result); } TEST(NetUtilTest, NetAddressToStringWithPort_IPv6) { uint8 addr[] = { 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10 }; SockaddrStorage storage; MakeIPv6Address(addr, 361, &storage); std::string result = NetAddressToStringWithPort(storage.addr, storage.addr_len); // May fail on systems that don't support IPv6. if (!result.empty()) EXPECT_EQ("[fedc:ba98:7654:3210:fedc:ba98:7654:3210]:361", result); } TEST(NetUtilTest, GetHostName) { // We can't check the result of GetHostName() directly, since the result // will differ across machines. Our goal here is to simply exercise the // code path, and check that things "look about right". std::string hostname = GetHostName(); EXPECT_FALSE(hostname.empty()); } TEST(NetUtilTest, SimplifyUrlForRequest) { struct { const char* const input_url; const char* const expected_simplified_url; } tests[] = { { // Reference section should be stripped. "http://www.google.com:78/foobar?query=1#hash", "http://www.google.com:78/foobar?query=1", }, { // Reference section can itself contain #. "http://192.168.0.1?query=1#hash#10#11#13#14", "http://192.168.0.1?query=1", }, { // Strip username/password. "http://user:pass@google.com", "http://google.com/", }, { // Strip both the reference and the username/password. "http://user:pass@google.com:80/sup?yo#X#X", "http://google.com/sup?yo", }, { // Try an HTTPS URL -- strip both the reference and the username/password. "https://user:pass@google.com:80/sup?yo#X#X", "https://google.com:80/sup?yo", }, { // Try an FTP URL -- strip both the reference and the username/password. "ftp://user:pass@google.com:80/sup?yo#X#X", "ftp://google.com:80/sup?yo", }, { // Try a nonstandard URL "foobar://user:pass@google.com:80/sup?yo#X#X", "foobar://user:pass@google.com:80/sup?yo", }, }; for (size_t i = 0; i < arraysize(tests); ++i) { SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s", i, tests[i].input_url)); GURL input_url(GURL(tests[i].input_url)); GURL expected_url(GURL(tests[i].expected_simplified_url)); EXPECT_EQ(expected_url, SimplifyUrlForRequest(input_url)); } } TEST(NetUtilTest, SetExplicitlyAllowedPortsTest) { std::string invalid[] = { "1,2,a", "'1','2'", "1, 2, 3", "1 0,11,12" }; std::string valid[] = { "", "1", "1,2", "1,2,3", "10,11,12,13" }; for (size_t i = 0; i < arraysize(invalid); ++i) { SetExplicitlyAllowedPorts(invalid[i]); EXPECT_EQ(0, static_cast(GetCountOfExplicitlyAllowedPorts())); } for (size_t i = 0; i < arraysize(valid); ++i) { SetExplicitlyAllowedPorts(valid[i]); EXPECT_EQ(i, GetCountOfExplicitlyAllowedPorts()); } } TEST(NetUtilTest, GetHostOrSpecFromURL) { EXPECT_EQ("example.com", GetHostOrSpecFromURL(GURL("http://example.com/test"))); EXPECT_EQ("example.com", GetHostOrSpecFromURL(GURL("http://example.com./test"))); EXPECT_EQ("file:///tmp/test.html", GetHostOrSpecFromURL(GURL("file:///tmp/test.html"))); } TEST(NetUtilTest, GetAddressFamily) { IPAddressNumber number; EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &number)); EXPECT_EQ(ADDRESS_FAMILY_IPV4, GetAddressFamily(number)); EXPECT_TRUE(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number)); EXPECT_EQ(ADDRESS_FAMILY_IPV6, GetAddressFamily(number)); } // Test that invalid IP literals fail to parse. TEST(NetUtilTest, ParseIPLiteralToNumber_FailParse) { IPAddressNumber number; EXPECT_FALSE(ParseIPLiteralToNumber("bad value", &number)); EXPECT_FALSE(ParseIPLiteralToNumber("bad:value", &number)); EXPECT_FALSE(ParseIPLiteralToNumber(std::string(), &number)); EXPECT_FALSE(ParseIPLiteralToNumber("192.168.0.1:30", &number)); EXPECT_FALSE(ParseIPLiteralToNumber(" 192.168.0.1 ", &number)); EXPECT_FALSE(ParseIPLiteralToNumber("[::1]", &number)); } // Test parsing an IPv4 literal. TEST(NetUtilTest, ParseIPLiteralToNumber_IPv4) { IPAddressNumber number; EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &number)); EXPECT_EQ("192,168,0,1", DumpIPNumber(number)); EXPECT_EQ("192.168.0.1", IPAddressToString(number)); } // Test parsing an IPv6 literal. TEST(NetUtilTest, ParseIPLiteralToNumber_IPv6) { IPAddressNumber number; EXPECT_TRUE(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number)); EXPECT_EQ("0,1,171,205,0,0,0,0,0,0,0,3,0,4,0,255", DumpIPNumber(number)); EXPECT_EQ("1:abcd::3:4:ff", IPAddressToString(number)); } // Test mapping an IPv4 address to an IPv6 address. TEST(NetUtilTest, ConvertIPv4NumberToIPv6Number) { IPAddressNumber ipv4_number; EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &ipv4_number)); IPAddressNumber ipv6_number = ConvertIPv4NumberToIPv6Number(ipv4_number); // ::ffff:192.168.0.1 EXPECT_EQ("0,0,0,0,0,0,0,0,0,0,255,255,192,168,0,1", DumpIPNumber(ipv6_number)); EXPECT_EQ("::ffff:c0a8:1", IPAddressToString(ipv6_number)); } TEST(NetUtilTest, ParseURLHostnameToNumber_FailParse) { IPAddressNumber number; EXPECT_FALSE(ParseURLHostnameToNumber("bad value", &number)); EXPECT_FALSE(ParseURLHostnameToNumber("bad:value", &number)); EXPECT_FALSE(ParseURLHostnameToNumber(std::string(), &number)); EXPECT_FALSE(ParseURLHostnameToNumber("192.168.0.1:30", &number)); EXPECT_FALSE(ParseURLHostnameToNumber(" 192.168.0.1 ", &number)); EXPECT_FALSE(ParseURLHostnameToNumber("::1", &number)); } TEST(NetUtilTest, ParseURLHostnameToNumber_IPv4) { IPAddressNumber number; EXPECT_TRUE(ParseURLHostnameToNumber("192.168.0.1", &number)); EXPECT_EQ("192,168,0,1", DumpIPNumber(number)); EXPECT_EQ("192.168.0.1", IPAddressToString(number)); } TEST(NetUtilTest, ParseURLHostnameToNumber_IPv6) { IPAddressNumber number; EXPECT_TRUE(ParseURLHostnameToNumber("[1:abcd::3:4:ff]", &number)); EXPECT_EQ("0,1,171,205,0,0,0,0,0,0,0,3,0,4,0,255", DumpIPNumber(number)); EXPECT_EQ("1:abcd::3:4:ff", IPAddressToString(number)); } TEST(NetUtilTest, IsIPv4Mapped) { IPAddressNumber ipv4_number; EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &ipv4_number)); EXPECT_FALSE(IsIPv4Mapped(ipv4_number)); IPAddressNumber ipv6_number; EXPECT_TRUE(ParseIPLiteralToNumber("::1", &ipv4_number)); EXPECT_FALSE(IsIPv4Mapped(ipv6_number)); IPAddressNumber ipv4mapped_number; EXPECT_TRUE(ParseIPLiteralToNumber("::ffff:0101:1", &ipv4mapped_number)); EXPECT_TRUE(IsIPv4Mapped(ipv4mapped_number)); } TEST(NetUtilTest, ConvertIPv4MappedToIPv4) { IPAddressNumber ipv4mapped_number; EXPECT_TRUE(ParseIPLiteralToNumber("::ffff:0101:1", &ipv4mapped_number)); IPAddressNumber expected; EXPECT_TRUE(ParseIPLiteralToNumber("1.1.0.1", &expected)); IPAddressNumber result = ConvertIPv4MappedToIPv4(ipv4mapped_number); EXPECT_EQ(expected, result); } // Test parsing invalid CIDR notation literals. TEST(NetUtilTest, ParseCIDRBlock_Invalid) { const char* const bad_literals[] = { "foobar", "", "192.168.0.1", "::1", "/", "/1", "1", "192.168.1.1/-1", "192.168.1.1/33", "::1/-3", "a::3/129", "::1/x", "192.168.0.1//11" }; for (size_t i = 0; i < arraysize(bad_literals); ++i) { IPAddressNumber ip_number; size_t prefix_length_in_bits; EXPECT_FALSE(ParseCIDRBlock(bad_literals[i], &ip_number, &prefix_length_in_bits)); } } // Test parsing a valid CIDR notation literal. TEST(NetUtilTest, ParseCIDRBlock_Valid) { IPAddressNumber ip_number; size_t prefix_length_in_bits; EXPECT_TRUE(ParseCIDRBlock("192.168.0.1/11", &ip_number, &prefix_length_in_bits)); EXPECT_EQ("192,168,0,1", DumpIPNumber(ip_number)); EXPECT_EQ(11u, prefix_length_in_bits); } TEST(NetUtilTest, IPNumberMatchesPrefix) { struct { const char* const cidr_literal; const char* const ip_literal; bool expected_to_match; } tests[] = { // IPv4 prefix with IPv4 inputs. { "10.10.1.32/27", "10.10.1.44", true }, { "10.10.1.32/27", "10.10.1.90", false }, { "10.10.1.32/27", "10.10.1.90", false }, // IPv6 prefix with IPv6 inputs. { "2001:db8::/32", "2001:DB8:3:4::5", true }, { "2001:db8::/32", "2001:c8::", false }, // IPv6 prefix with IPv4 inputs. { "2001:db8::/33", "192.168.0.1", false }, { "::ffff:192.168.0.1/112", "192.168.33.77", true }, // IPv4 prefix with IPv6 inputs. { "10.11.33.44/16", "::ffff:0a0b:89", true }, { "10.11.33.44/16", "::ffff:10.12.33.44", false }, }; for (size_t i = 0; i < arraysize(tests); ++i) { SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s, %s", i, tests[i].cidr_literal, tests[i].ip_literal)); IPAddressNumber ip_number; EXPECT_TRUE(ParseIPLiteralToNumber(tests[i].ip_literal, &ip_number)); IPAddressNumber ip_prefix; size_t prefix_length_in_bits; EXPECT_TRUE(ParseCIDRBlock(tests[i].cidr_literal, &ip_prefix, &prefix_length_in_bits)); EXPECT_EQ(tests[i].expected_to_match, IPNumberMatchesPrefix(ip_number, ip_prefix, prefix_length_in_bits)); } } TEST(NetUtilTest, IsLocalhost) { EXPECT_TRUE(net::IsLocalhost("localhost")); EXPECT_TRUE(net::IsLocalhost("localhost.localdomain")); EXPECT_TRUE(net::IsLocalhost("localhost6")); EXPECT_TRUE(net::IsLocalhost("localhost6.localdomain6")); EXPECT_TRUE(net::IsLocalhost("127.0.0.1")); EXPECT_TRUE(net::IsLocalhost("127.0.1.0")); EXPECT_TRUE(net::IsLocalhost("127.1.0.0")); EXPECT_TRUE(net::IsLocalhost("127.0.0.255")); EXPECT_TRUE(net::IsLocalhost("127.0.255.0")); EXPECT_TRUE(net::IsLocalhost("127.255.0.0")); EXPECT_TRUE(net::IsLocalhost("::1")); EXPECT_TRUE(net::IsLocalhost("0:0:0:0:0:0:0:1")); EXPECT_FALSE(net::IsLocalhost("localhostx")); EXPECT_FALSE(net::IsLocalhost("foo.localdomain")); EXPECT_FALSE(net::IsLocalhost("localhost6x")); EXPECT_FALSE(net::IsLocalhost("localhost.localdomain6")); EXPECT_FALSE(net::IsLocalhost("localhost6.localdomain")); EXPECT_FALSE(net::IsLocalhost("127.0.0.1.1")); EXPECT_FALSE(net::IsLocalhost(".127.0.0.255")); EXPECT_FALSE(net::IsLocalhost("::2")); EXPECT_FALSE(net::IsLocalhost("::1:1")); EXPECT_FALSE(net::IsLocalhost("0:0:0:0:1:0:0:1")); EXPECT_FALSE(net::IsLocalhost("::1:1")); EXPECT_FALSE(net::IsLocalhost("0:0:0:0:0:0:0:0:1")); } // Verify GetNetworkList(). TEST(NetUtilTest, GetNetworkList) { NetworkInterfaceList list; ASSERT_TRUE(GetNetworkList(&list, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES)); for (NetworkInterfaceList::iterator it = list.begin(); it != list.end(); ++it) { // Verify that the names are not empty. EXPECT_FALSE(it->name.empty()); EXPECT_FALSE(it->friendly_name.empty()); // Verify that the address is correct. EXPECT_TRUE(it->address.size() == kIPv4AddressSize || it->address.size() == kIPv6AddressSize) << "Invalid address of size " << it->address.size(); bool all_zeroes = true; for (size_t i = 0; i < it->address.size(); ++i) { if (it->address[i] != 0) { all_zeroes = false; break; } } EXPECT_FALSE(all_zeroes); EXPECT_GT(it->prefix_length, 1u); EXPECT_LE(it->prefix_length, it->address.size() * 8); #if defined(OS_WIN) // On Windows |name| is NET_LUID. base::ScopedNativeLibrary phlpapi_lib( base::FilePath(FILE_PATH_LITERAL("iphlpapi.dll"))); ASSERT_TRUE(phlpapi_lib.is_valid()); typedef NETIO_STATUS (WINAPI* ConvertInterfaceIndexToLuid)(NET_IFINDEX, PNET_LUID); ConvertInterfaceIndexToLuid interface_to_luid = reinterpret_cast( phlpapi_lib.GetFunctionPointer("ConvertInterfaceIndexToLuid")); typedef NETIO_STATUS (WINAPI* ConvertInterfaceLuidToGuid)(NET_LUID*, GUID*); ConvertInterfaceLuidToGuid luid_to_guid = reinterpret_cast( phlpapi_lib.GetFunctionPointer("ConvertInterfaceLuidToGuid")); if (interface_to_luid && luid_to_guid) { NET_LUID luid; EXPECT_EQ(interface_to_luid(it->interface_index, &luid), NO_ERROR); GUID guid; EXPECT_EQ(luid_to_guid(&luid, &guid), NO_ERROR); LPOLESTR name; StringFromCLSID(guid, &name); EXPECT_STREQ(base::UTF8ToWide(it->name).c_str(), name); CoTaskMemFree(name); continue; } else { EXPECT_LT(base::win::GetVersion(), base::win::VERSION_VISTA); EXPECT_LT(it->interface_index, 1u << 24u); // Must fit 0.x.x.x. EXPECT_NE(it->interface_index, 0u); // 0 means to use default. } if (it->type == NetworkChangeNotifier::CONNECTION_WIFI) { EXPECT_NE(WIFI_PHY_LAYER_PROTOCOL_NONE, GetWifiPHYLayerProtocol()); } #elif !defined(OS_ANDROID) char name[IF_NAMESIZE]; EXPECT_TRUE(if_indextoname(it->interface_index, name)); EXPECT_STREQ(it->name.c_str(), name); #endif } } static const char ifname_em1[] = "em1"; #if defined(OS_WIN) static const char ifname_vm[] = "VMnet"; #else static const char ifname_vm[] = "vmnet"; #endif // OS_WIN static const unsigned char kIPv6LocalAddr[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; // The following 3 addresses need to be changed together. IPv6Addr is the IPv6 // address. IPv6Netmask is the mask address with as many leading bits set to 1 // as the prefix length. IPv6AddrPrefix needs to match IPv6Addr with the same // number of bits as the prefix length. static const unsigned char kIPv6Addr[] = {0x24, 0x01, 0xfa, 0x00, 0x00, 0x04, 0x10, 0x00, 0xbe, 0x30, 0x5b, 0xff, 0xfe, 0xe5, 0x00, 0xc3}; #if defined(OS_WIN) static const unsigned char kIPv6AddrPrefix[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; #endif // OS_WIN #if defined(OS_MACOSX) static const unsigned char kIPv6Netmask[] = {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; #endif // OS_MACOSX #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_NACL) char* CopyInterfaceName(const char* ifname, int ifname_size, char* output) { EXPECT_LT(ifname_size, IF_NAMESIZE); memcpy(output, ifname, ifname_size); return output; } char* GetInterfaceName(int interface_index, char* ifname) { return CopyInterfaceName(ifname_em1, arraysize(ifname_em1), ifname); } char* GetInterfaceNameVM(int interface_index, char* ifname) { return CopyInterfaceName(ifname_vm, arraysize(ifname_vm), ifname); } TEST(NetUtilTest, GetNetworkListTrimming) { IPAddressNumber ipv6_local_address( kIPv6LocalAddr, kIPv6LocalAddr + arraysize(kIPv6LocalAddr)); IPAddressNumber ipv6_address(kIPv6Addr, kIPv6Addr + arraysize(kIPv6Addr)); NetworkInterfaceList results; ::base::hash_set online_links; net::internal::AddressTrackerLinux::AddressMap address_map; // Interface 1 is offline. struct ifaddrmsg msg = { AF_INET6, 1, /* prefix length */ IFA_F_TEMPORARY, /* address flags */ 0, /* link scope */ 1 /* link index */ }; // Address of offline links should be ignored. ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceName)); EXPECT_EQ(results.size(), 0ul); // Mark interface 1 online. online_links.insert(1); // Local address should be trimmed out. address_map.clear(); ASSERT_TRUE( address_map.insert(std::make_pair(ipv6_local_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceName)); EXPECT_EQ(results.size(), 0ul); // vmware address should return by default. address_map.clear(); ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceNameVM)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_vm); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); results.clear(); // vmware address should be trimmed out if policy specified so. address_map.clear(); ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, EXCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceNameVM)); EXPECT_EQ(results.size(), 0ul); results.clear(); // Addresses with banned attributes should be ignored. address_map.clear(); msg.ifa_flags = IFA_F_TENTATIVE; ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceName)); EXPECT_EQ(results.size(), 0ul); results.clear(); // Addresses with allowed attribute IFA_F_TEMPORARY should be returned and // attributes should be translated correctly. address_map.clear(); msg.ifa_flags = IFA_F_TEMPORARY; ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceName)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_TEMPORARY); results.clear(); // Addresses with allowed attribute IFA_F_DEPRECATED should be returned and // attributes should be translated correctly. address_map.clear(); msg.ifa_flags = IFA_F_DEPRECATED; ASSERT_TRUE(address_map.insert(std::make_pair(ipv6_address, msg)).second); EXPECT_TRUE( net::internal::GetNetworkListImpl(&results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, online_links, address_map, GetInterfaceName)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_DEPRECATED); results.clear(); } #elif defined(OS_MACOSX) TEST(NetUtilTest, GetNetworkListTrimming) { IPAddressNumber ipv6_local_address( kIPv6LocalAddr, kIPv6LocalAddr + arraysize(kIPv6LocalAddr)); IPAddressNumber ipv6_address(kIPv6Addr, kIPv6Addr + arraysize(kIPv6Addr)); IPAddressNumber ipv6_netmask(kIPv6Netmask, kIPv6Netmask + arraysize(kIPv6Netmask)); NetworkInterfaceList results; IPAttributesGetterTest ip_attributes_getter; sockaddr_storage addresses[2]; ifaddrs interface; // Address of offline links should be ignored. ASSERT_TRUE(FillIfaddrs(&interface, ifname_em1, IFF_UP, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 0ul); // Local address should be trimmed out. ASSERT_TRUE(FillIfaddrs(&interface, ifname_em1, IFF_RUNNING, ipv6_local_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 0ul); // vmware address should return by default. ASSERT_TRUE(FillIfaddrs(&interface, ifname_vm, IFF_RUNNING, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_vm); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); results.clear(); // vmware address should be trimmed out if policy specified so. ASSERT_TRUE(FillIfaddrs(&interface, ifname_vm, IFF_RUNNING, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, EXCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 0ul); results.clear(); #if !defined(OS_IOS) // Addresses with banned attributes should be ignored. ip_attributes_getter.set_native_attributes(IN6_IFF_ANYCAST); ASSERT_TRUE(FillIfaddrs(&interface, ifname_em1, IFF_RUNNING, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 0ul); results.clear(); // Addresses with allowed attribute IFA_F_TEMPORARY should be returned and // attributes should be translated correctly. ip_attributes_getter.set_native_attributes(IN6_IFF_TEMPORARY); ASSERT_TRUE(FillIfaddrs(&interface, ifname_em1, IFF_RUNNING, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_TEMPORARY); results.clear(); // Addresses with allowed attribute IFA_F_DEPRECATED should be returned and // attributes should be translated correctly. ip_attributes_getter.set_native_attributes(IN6_IFF_DEPRECATED); ASSERT_TRUE(FillIfaddrs(&interface, ifname_em1, IFF_RUNNING, ipv6_address, ipv6_netmask, addresses)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, &interface, &ip_attributes_getter)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_DEPRECATED); results.clear(); #endif // !OS_IOS } #elif defined(OS_WIN) // !OS_MACOSX && !OS_WIN && !OS_NACL // Helper function to create a valid IP_ADAPTER_ADDRESSES with reasonable // default value. The output is the |adapter_address|. All the rests are input // to fill the |adapter_address|. |sock_addrs| are temporary storage used by // |adapter_address| once the function is returned. bool FillAdapterAddress(IP_ADAPTER_ADDRESSES* adapter_address, const char* ifname, const IPAddressNumber& ip_address, const IPAddressNumber& ip_netmask, sockaddr_storage sock_addrs[2]) { adapter_address->AdapterName = const_cast(ifname); adapter_address->FriendlyName = const_cast(L"interface"); adapter_address->IfType = IF_TYPE_ETHERNET_CSMACD; adapter_address->OperStatus = IfOperStatusUp; adapter_address->FirstUnicastAddress->DadState = IpDadStatePreferred; adapter_address->FirstUnicastAddress->PrefixOrigin = IpPrefixOriginOther; adapter_address->FirstUnicastAddress->SuffixOrigin = IpSuffixOriginOther; adapter_address->FirstUnicastAddress->PreferredLifetime = 100; adapter_address->FirstUnicastAddress->ValidLifetime = 1000; socklen_t sock_len = sizeof(sockaddr_storage); // Convert to sockaddr for next check. if (!IPEndPoint(ip_address, 0) .ToSockAddr(reinterpret_cast(&sock_addrs[0]), &sock_len)) { return false; } adapter_address->FirstUnicastAddress->Address.lpSockaddr = reinterpret_cast(&sock_addrs[0]); adapter_address->FirstUnicastAddress->Address.iSockaddrLength = sock_len; adapter_address->FirstUnicastAddress->OnLinkPrefixLength = 1; sock_len = sizeof(sockaddr_storage); if (!IPEndPoint(ip_netmask, 0) .ToSockAddr(reinterpret_cast(&sock_addrs[1]), &sock_len)) { return false; } adapter_address->FirstPrefix->Address.lpSockaddr = reinterpret_cast(&sock_addrs[1]); adapter_address->FirstPrefix->Address.iSockaddrLength = sock_len; adapter_address->FirstPrefix->PrefixLength = 1; DCHECK_EQ(sock_addrs[0].ss_family, sock_addrs[1].ss_family); if (sock_addrs[0].ss_family == AF_INET6) { adapter_address->Ipv6IfIndex = 0; } else { DCHECK_EQ(sock_addrs[0].ss_family, AF_INET); adapter_address->IfIndex = 0; } return true; } TEST(NetUtilTest, GetNetworkListTrimming) { IPAddressNumber ipv6_local_address( kIPv6LocalAddr, kIPv6LocalAddr + arraysize(kIPv6LocalAddr)); IPAddressNumber ipv6_address(kIPv6Addr, kIPv6Addr + arraysize(kIPv6Addr)); IPAddressNumber ipv6_prefix(kIPv6AddrPrefix, kIPv6AddrPrefix + arraysize(kIPv6AddrPrefix)); NetworkInterfaceList results; sockaddr_storage addresses[2]; IP_ADAPTER_ADDRESSES adapter_address = {0}; IP_ADAPTER_UNICAST_ADDRESS address = {0}; IP_ADAPTER_PREFIX adapter_prefix = {0}; adapter_address.FirstUnicastAddress = &address; adapter_address.FirstPrefix = &adapter_prefix; // Address of offline links should be ignored. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_em1 /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); adapter_address.OperStatus = IfOperStatusDown; EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 0ul); // Address on loopback interface should be trimmed out. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_em1 /* ifname */, ipv6_local_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); adapter_address.IfType = IF_TYPE_SOFTWARE_LOOPBACK; EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 0ul); // vmware address should return by default. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_vm /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_vm); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_NONE); results.clear(); // vmware address should be trimmed out if policy specified so. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_vm /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, EXCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 0ul); results.clear(); // Addresses with incompleted DAD should be ignored. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_em1 /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); adapter_address.FirstUnicastAddress->DadState = IpDadStateTentative; EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 0ul); results.clear(); // Addresses with allowed attribute IpSuffixOriginRandom should be returned // and attributes should be translated correctly to // IP_ADDRESS_ATTRIBUTE_TEMPORARY. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_em1 /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); adapter_address.FirstUnicastAddress->PrefixOrigin = IpPrefixOriginRouterAdvertisement; adapter_address.FirstUnicastAddress->SuffixOrigin = IpSuffixOriginRandom; EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_TEMPORARY); results.clear(); // Addresses with preferred lifetime 0 should be returned and // attributes should be translated correctly to // IP_ADDRESS_ATTRIBUTE_DEPRECATED. ASSERT_TRUE(FillAdapterAddress( &adapter_address /* adapter_address */, ifname_em1 /* ifname */, ipv6_address /* ip_address */, ipv6_prefix /* ip_netmask */, addresses /* sock_addrs */)); adapter_address.FirstUnicastAddress->PreferredLifetime = 0; adapter_address.FriendlyName = const_cast(L"FriendlyInterfaceName"); EXPECT_TRUE(net::internal::GetNetworkListImpl( &results, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES, true, &adapter_address)); EXPECT_EQ(results.size(), 1ul); EXPECT_EQ(results[0].friendly_name, "FriendlyInterfaceName"); EXPECT_EQ(results[0].name, ifname_em1); EXPECT_EQ(results[0].prefix_length, 1ul); EXPECT_EQ(results[0].address, ipv6_address); EXPECT_EQ(results[0].ip_address_attributes, IP_ADDRESS_ATTRIBUTE_DEPRECATED); results.clear(); } #endif // !OS_MACOSX && !OS_WIN && !OS_NACL TEST(NetUtilTest, GetWifiSSID) { // We can't check the result of GetWifiSSID() directly, since the result // will differ across machines. Simply exercise the code path and hope that it // doesn't crash. EXPECT_NE((const char*)NULL, GetWifiSSID().c_str()); } #if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_CHROMEOS) TEST(NetUtilTest, GetWifiSSIDFromInterfaceList) { NetworkInterfaceList list; EXPECT_EQ(std::string(), net::internal::GetWifiSSIDFromInterfaceListInternal( list, TestGetInterfaceSSID)); NetworkInterface interface1; interface1.name = "wlan0"; interface1.type = NetworkChangeNotifier::CONNECTION_WIFI; list.push_back(interface1); ASSERT_EQ(1u, list.size()); EXPECT_EQ(std::string(kWiFiSSID), net::internal::GetWifiSSIDFromInterfaceListInternal( list, TestGetInterfaceSSID)); NetworkInterface interface2; interface2.name = "wlan1"; interface2.type = NetworkChangeNotifier::CONNECTION_WIFI; list.push_back(interface2); ASSERT_EQ(2u, list.size()); EXPECT_EQ(std::string(kWiFiSSID), net::internal::GetWifiSSIDFromInterfaceListInternal( list, TestGetInterfaceSSID)); NetworkInterface interface3; interface3.name = kInterfaceWithDifferentSSID; interface3.type = NetworkChangeNotifier::CONNECTION_WIFI; list.push_back(interface3); ASSERT_EQ(3u, list.size()); EXPECT_EQ(std::string(), net::internal::GetWifiSSIDFromInterfaceListInternal( list, TestGetInterfaceSSID)); list.pop_back(); NetworkInterface interface4; interface4.name = "eth0"; interface4.type = NetworkChangeNotifier::CONNECTION_ETHERNET; list.push_back(interface4); ASSERT_EQ(3u, list.size()); EXPECT_EQ(std::string(), net::internal::GetWifiSSIDFromInterfaceListInternal( list, TestGetInterfaceSSID)); } #endif // OS_LINUX namespace { #if defined(OS_WIN) bool read_int_or_bool(DWORD data_size, PVOID data) { switch (data_size) { case 1: return !!*reinterpret_cast(data); case 4: return !!*reinterpret_cast(data); default: LOG(FATAL) << "That is not a type I know!"; return false; } } int GetWifiOptions() { const internal::WlanApi& wlanapi = internal::WlanApi::GetInstance(); if (!wlanapi.initialized) return -1; internal::WlanHandle client; DWORD cur_version = 0; const DWORD kMaxClientVersion = 2; DWORD result = wlanapi.OpenHandle( kMaxClientVersion, &cur_version, &client); if (result != ERROR_SUCCESS) return -1; WLAN_INTERFACE_INFO_LIST* interface_list_ptr = NULL; result = wlanapi.enum_interfaces_func(client.Get(), NULL, &interface_list_ptr); if (result != ERROR_SUCCESS) return -1; scoped_ptr interface_list( interface_list_ptr); for (unsigned i = 0; i < interface_list->dwNumberOfItems; ++i) { WLAN_INTERFACE_INFO* info = &interface_list->InterfaceInfo[i]; DWORD data_size; PVOID data; int options = 0; result = wlanapi.query_interface_func( client.Get(), &info->InterfaceGuid, wlan_intf_opcode_background_scan_enabled, NULL, &data_size, &data, NULL); if (result != ERROR_SUCCESS) continue; if (!read_int_or_bool(data_size, data)) { options |= WIFI_OPTIONS_DISABLE_SCAN; } internal::WlanApi::GetInstance().free_memory_func(data); result = wlanapi.query_interface_func( client.Get(), &info->InterfaceGuid, wlan_intf_opcode_media_streaming_mode, NULL, &data_size, &data, NULL); if (result != ERROR_SUCCESS) continue; if (read_int_or_bool(data_size, data)) { options |= WIFI_OPTIONS_MEDIA_STREAMING_MODE; } internal::WlanApi::GetInstance().free_memory_func(data); // Just the the options from the first succesful // interface. return options; } // No wifi interface found. return -1; } #else // OS_WIN int GetWifiOptions() { // Not supported. return -1; } #endif // OS_WIN void TryChangeWifiOptions(int options) { int previous_options = GetWifiOptions(); scoped_ptr scoped_options = SetWifiOptions(options); EXPECT_EQ(previous_options | options, GetWifiOptions()); scoped_options.reset(); EXPECT_EQ(previous_options, GetWifiOptions()); } }; // namespace // Test SetWifiOptions(). TEST(NetUtilTest, SetWifiOptionsTest) { TryChangeWifiOptions(0); TryChangeWifiOptions(WIFI_OPTIONS_DISABLE_SCAN); TryChangeWifiOptions(WIFI_OPTIONS_MEDIA_STREAMING_MODE); TryChangeWifiOptions(WIFI_OPTIONS_DISABLE_SCAN | WIFI_OPTIONS_MEDIA_STREAMING_MODE); } struct NonUniqueNameTestData { bool is_unique; const char* const hostname; }; // Google Test pretty-printer. void PrintTo(const NonUniqueNameTestData& data, std::ostream* os) { ASSERT_TRUE(data.hostname); *os << " hostname: " << testing::PrintToString(data.hostname) << "; is_unique: " << testing::PrintToString(data.is_unique); } const NonUniqueNameTestData kNonUniqueNameTestData[] = { // Domains under ICANN-assigned domains. { true, "google.com" }, { true, "google.co.uk" }, // Domains under private registries. { true, "appspot.com" }, { true, "test.appspot.com" }, // Unreserved IPv4 addresses (in various forms). { true, "8.8.8.8" }, { true, "99.64.0.0" }, { true, "212.15.0.0" }, { true, "212.15" }, { true, "212.15.0" }, { true, "3557752832" }, // Reserved IPv4 addresses (in various forms). { false, "192.168.0.0" }, { false, "192.168.0.6" }, { false, "10.0.0.5" }, { false, "10.0" }, { false, "10.0.0" }, { false, "3232235526" }, // Unreserved IPv6 addresses. { true, "FFC0:ba98:7654:3210:FEDC:BA98:7654:3210" }, { true, "2000:ba98:7654:2301:EFCD:BA98:7654:3210" }, // Reserved IPv6 addresses. { false, "::192.9.5.5" }, { false, "FEED::BEEF" }, { false, "FEC0:ba98:7654:3210:FEDC:BA98:7654:3210" }, // 'internal'/non-IANA assigned domains. { false, "intranet" }, { false, "intranet." }, { false, "intranet.example" }, { false, "host.intranet.example" }, // gTLDs under discussion, but not yet assigned. { false, "intranet.corp" }, { false, "example.tech" }, { false, "intranet.internal" }, // Invalid host names are treated as unique - but expected to be // filtered out before then. { true, "junk)(£)$*!@~#" }, { true, "w$w.example.com" }, { true, "nocolonsallowed:example" }, { true, "[::4.5.6.9]" }, }; class NetUtilNonUniqueNameTest : public testing::TestWithParam { public: virtual ~NetUtilNonUniqueNameTest() {} protected: bool IsUnique(const std::string& hostname) { return !IsHostnameNonUnique(hostname); } }; // Test that internal/non-unique names are properly identified as such, but // that IP addresses and hosts beneath registry-controlled domains are flagged // as unique names. TEST_P(NetUtilNonUniqueNameTest, IsHostnameNonUnique) { const NonUniqueNameTestData& test_data = GetParam(); EXPECT_EQ(test_data.is_unique, IsUnique(test_data.hostname)); } INSTANTIATE_TEST_CASE_P(, NetUtilNonUniqueNameTest, testing::ValuesIn(kNonUniqueNameTestData)); } // namespace net