// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/net_util.h" #include #include #include #include "base/files/file_path.h" #include "base/lazy_instance.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "base/strings/sys_string_conversions.h" #include "base/strings/utf_string_conversions.h" #include "base/threading/thread_restrictions.h" #include "base/win/scoped_handle.h" #include "base/win/windows_version.h" #include "net/base/escape.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "url/gurl.h" namespace { struct WlanApi { typedef DWORD (WINAPI *WlanOpenHandleFunc)( DWORD, VOID*, DWORD*, HANDLE*); typedef DWORD (WINAPI *WlanEnumInterfacesFunc)( HANDLE, VOID*, WLAN_INTERFACE_INFO_LIST**); typedef DWORD (WINAPI *WlanQueryInterfaceFunc)( HANDLE, const GUID*, WLAN_INTF_OPCODE, VOID*, DWORD*, VOID**, WLAN_OPCODE_VALUE_TYPE*); typedef VOID (WINAPI *WlanFreeMemoryFunc)(VOID*); typedef DWORD (WINAPI *WlanCloseHandleFunc)(HANDLE, VOID*); WlanApi() : initialized(false) { // Use an absolute path to load the DLL to avoid DLL preloading attacks. static const wchar_t* const kDLL = L"%WINDIR%\\system32\\wlanapi.dll"; wchar_t path[MAX_PATH] = {0}; ExpandEnvironmentStrings(kDLL, path, arraysize(path)); module = ::LoadLibraryEx(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH); if (!module) return; open_handle_func = reinterpret_cast( ::GetProcAddress(module, "WlanOpenHandle")); enum_interfaces_func = reinterpret_cast( ::GetProcAddress(module, "WlanEnumInterfaces")); query_interface_func = reinterpret_cast( ::GetProcAddress(module, "WlanQueryInterface")); free_memory_func = reinterpret_cast( ::GetProcAddress(module, "WlanFreeMemory")); close_handle_func = reinterpret_cast( ::GetProcAddress(module, "WlanCloseHandle")); initialized = open_handle_func && enum_interfaces_func && query_interface_func && free_memory_func && close_handle_func; } template DWORD OpenHandle(DWORD client_version, DWORD* cur_version, T* handle) const { HANDLE temp_handle; DWORD result = open_handle_func(client_version, NULL, cur_version, &temp_handle); if (result != ERROR_SUCCESS) return result; handle->Set(temp_handle); return ERROR_SUCCESS; } HMODULE module; WlanOpenHandleFunc open_handle_func; WlanEnumInterfacesFunc enum_interfaces_func; WlanQueryInterfaceFunc query_interface_func; WlanFreeMemoryFunc free_memory_func; WlanCloseHandleFunc close_handle_func; bool initialized; }; } // namespace namespace net { bool FileURLToFilePath(const GURL& url, base::FilePath* file_path) { *file_path = base::FilePath(); std::wstring& file_path_str = const_cast(file_path->value()); file_path_str.clear(); if (!url.is_valid()) return false; std::string path; std::string host = url.host(); if (host.empty()) { // URL contains no host, the path is the filename. In this case, the path // will probably be preceeded with a slash, as in "/C:/foo.txt", so we // trim out that here. path = url.path(); size_t first_non_slash = path.find_first_not_of("/\\"); if (first_non_slash != std::string::npos && first_non_slash > 0) path.erase(0, first_non_slash); } else { // URL contains a host: this means it's UNC. We keep the preceeding slash // on the path. path = "\\\\"; path.append(host); path.append(url.path()); } if (path.empty()) return false; std::replace(path.begin(), path.end(), '/', '\\'); // GURL stores strings as percent-encoded UTF-8, this will undo if possible. path = UnescapeURLComponent(path, UnescapeRule::SPACES | UnescapeRule::URL_SPECIAL_CHARS); if (!IsStringUTF8(path)) { // Not UTF-8, assume encoding is native codepage and we're done. We know we // are giving the conversion function a nonempty string, and it may fail if // the given string is not in the current encoding and give us an empty // string back. We detect this and report failure. file_path_str = base::SysNativeMBToWide(path); return !file_path_str.empty(); } file_path_str.assign(base::UTF8ToWide(path)); // We used to try too hard and see if |path| made up entirely of // the 1st 256 characters in the Unicode was a zero-extended UTF-16. // If so, we converted it to 'Latin-1' and checked if the result was UTF-8. // If the check passed, we converted the result to UTF-8. // Otherwise, we treated the result as the native OS encoding. // However, that led to http://crbug.com/4619 and http://crbug.com/14153 return true; } bool GetNetworkList(NetworkInterfaceList* networks, HostScopeVirtualInterfacePolicy policy) { // GetAdaptersAddresses() may require IO operations. base::ThreadRestrictions::AssertIOAllowed(); bool is_xp = base::win::GetVersion() < base::win::VERSION_VISTA; ULONG len = 0; ULONG flags = is_xp ? GAA_FLAG_INCLUDE_PREFIX : 0; // First get number of networks. ULONG result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, NULL, &len); if (result != ERROR_BUFFER_OVERFLOW) { // There are 0 networks. return true; } scoped_ptr buf(new char[len]); IP_ADAPTER_ADDRESSES *adapters = reinterpret_cast(buf.get()); result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, adapters, &len); if (result != NO_ERROR) { LOG(ERROR) << "GetAdaptersAddresses failed: " << result; return false; } for (IP_ADAPTER_ADDRESSES *adapter = adapters; adapter != NULL; adapter = adapter->Next) { // Ignore the loopback device. if (adapter->IfType == IF_TYPE_SOFTWARE_LOOPBACK) { continue; } if (adapter->OperStatus != IfOperStatusUp) { continue; } // Ignore any HOST side vmware adapters with a description like: // VMware Virtual Ethernet Adapter for VMnet1 // but don't ignore any GUEST side adapters with a description like: // VMware Accelerated AMD PCNet Adapter #2 if (policy == EXCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES && strstr(adapter->AdapterName, "VMnet") != NULL) { continue; } for (IP_ADAPTER_UNICAST_ADDRESS* address = adapter->FirstUnicastAddress; address; address = address->Next) { int family = address->Address.lpSockaddr->sa_family; if (family == AF_INET || family == AF_INET6) { IPEndPoint endpoint; if (endpoint.FromSockAddr(address->Address.lpSockaddr, address->Address.iSockaddrLength)) { // XP has no OnLinkPrefixLength field. size_t net_prefix = is_xp ? 0 : address->OnLinkPrefixLength; if (is_xp) { // Prior to Windows Vista the FirstPrefix pointed to the list with // single prefix for each IP address assigned to the adapter. // Order of FirstPrefix does not match order of FirstUnicastAddress, // so we need to find corresponding prefix. for (IP_ADAPTER_PREFIX* prefix = adapter->FirstPrefix; prefix; prefix = prefix->Next) { int prefix_family = prefix->Address.lpSockaddr->sa_family; IPEndPoint network_endpoint; if (prefix_family == family && network_endpoint.FromSockAddr(prefix->Address.lpSockaddr, prefix->Address.iSockaddrLength) && IPNumberMatchesPrefix(endpoint.address(), network_endpoint.address(), prefix->PrefixLength)) { net_prefix = std::max(net_prefix, prefix->PrefixLength); } } } uint32 index = (family == AF_INET) ? adapter->IfIndex : adapter->Ipv6IfIndex; networks->push_back( NetworkInterface(adapter->AdapterName, index, endpoint.address(), net_prefix)); } } } } return true; } WifiPHYLayerProtocol GetWifiPHYLayerProtocol() { static base::LazyInstance::Leaky lazy_wlanapi = LAZY_INSTANCE_INITIALIZER; struct WlanApiHandleTraits { typedef HANDLE Handle; static bool CloseHandle(HANDLE handle) { return lazy_wlanapi.Get().close_handle_func(handle, NULL) == ERROR_SUCCESS; } static bool IsHandleValid(HANDLE handle) { return base::win::HandleTraits::IsHandleValid(handle); } static HANDLE NullHandle() { return base::win::HandleTraits::NullHandle(); } }; typedef base::win::GenericScopedHandle< WlanApiHandleTraits, base::win::DummyVerifierTraits> WlanHandle; struct WlanApiDeleter { inline void operator()(void* ptr) const { lazy_wlanapi.Get().free_memory_func(ptr); } }; const WlanApi& wlanapi = lazy_wlanapi.Get(); if (!wlanapi.initialized) return WIFI_PHY_LAYER_PROTOCOL_NONE; WlanHandle client; DWORD cur_version = 0; const DWORD kMaxClientVersion = 2; DWORD result = wlanapi.OpenHandle(kMaxClientVersion, &cur_version, &client); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_NONE; WLAN_INTERFACE_INFO_LIST* interface_list_ptr = NULL; result = wlanapi.enum_interfaces_func(client, NULL, &interface_list_ptr); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_NONE; scoped_ptr interface_list( interface_list_ptr); // Assume at most one connected wifi interface. WLAN_INTERFACE_INFO* info = NULL; for (unsigned i = 0; i < interface_list->dwNumberOfItems; ++i) { if (interface_list->InterfaceInfo[i].isState == wlan_interface_state_connected) { info = &interface_list->InterfaceInfo[i]; break; } } if (info == NULL) return WIFI_PHY_LAYER_PROTOCOL_NONE; WLAN_CONNECTION_ATTRIBUTES* conn_info_ptr; DWORD conn_info_size = 0; WLAN_OPCODE_VALUE_TYPE op_code; result = wlanapi.query_interface_func( client, &info->InterfaceGuid, wlan_intf_opcode_current_connection, NULL, &conn_info_size, reinterpret_cast(&conn_info_ptr), &op_code); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN; scoped_ptr conn_info( conn_info_ptr); switch (conn_info->wlanAssociationAttributes.dot11PhyType) { case dot11_phy_type_fhss: return WIFI_PHY_LAYER_PROTOCOL_ANCIENT; case dot11_phy_type_dsss: return WIFI_PHY_LAYER_PROTOCOL_B; case dot11_phy_type_irbaseband: return WIFI_PHY_LAYER_PROTOCOL_ANCIENT; case dot11_phy_type_ofdm: return WIFI_PHY_LAYER_PROTOCOL_A; case dot11_phy_type_hrdsss: return WIFI_PHY_LAYER_PROTOCOL_B; case dot11_phy_type_erp: return WIFI_PHY_LAYER_PROTOCOL_G; case dot11_phy_type_ht: return WIFI_PHY_LAYER_PROTOCOL_N; default: return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN; } } } // namespace net