// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/base/net_util.h"

#include <iphlpapi.h>
#include <wlanapi.h>

#include <algorithm>

#include "base/files/file_path.h"
#include "base/lazy_instance.h"
#include "base/memory/scoped_ptr.h"
#include "base/string_piece.h"
#include "base/string_util.h"
#include "base/sys_string_conversions.h"
#include "base/threading/thread_restrictions.h"
#include "base/utf_string_conversions.h"
#include "base/win/scoped_handle.h"
#include "googleurl/src/gurl.h"
#include "net/base/escape.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"

namespace net {

bool FileURLToFilePath(const GURL& url, base::FilePath* file_path) {
  *file_path = base::FilePath();
  std::wstring& file_path_str = const_cast<std::wstring&>(file_path->value());
  file_path_str.clear();

  if (!url.is_valid())
    return false;

  std::string path;
  std::string host = url.host();
  if (host.empty()) {
    // URL contains no host, the path is the filename. In this case, the path
    // will probably be preceeded with a slash, as in "/C:/foo.txt", so we
    // trim out that here.
    path = url.path();
    size_t first_non_slash = path.find_first_not_of("/\\");
    if (first_non_slash != std::string::npos && first_non_slash > 0)
      path.erase(0, first_non_slash);
  } else {
    // URL contains a host: this means it's UNC. We keep the preceeding slash
    // on the path.
    path = "\\\\";
    path.append(host);
    path.append(url.path());
  }

  if (path.empty())
    return false;
  std::replace(path.begin(), path.end(), '/', '\\');

  // GURL stores strings as percent-encoded UTF-8, this will undo if possible.
  path = UnescapeURLComponent(path,
      UnescapeRule::SPACES | UnescapeRule::URL_SPECIAL_CHARS);

  if (!IsStringUTF8(path)) {
    // Not UTF-8, assume encoding is native codepage and we're done. We know we
    // are giving the conversion function a nonempty string, and it may fail if
    // the given string is not in the current encoding and give us an empty
    // string back. We detect this and report failure.
    file_path_str = base::SysNativeMBToWide(path);
    return !file_path_str.empty();
  }
  file_path_str.assign(UTF8ToWide(path));

  // We used to try too hard and see if |path| made up entirely of
  // the 1st 256 characters in the Unicode was a zero-extended UTF-16.
  // If so, we converted it to 'Latin-1' and checked if the result was UTF-8.
  // If the check passed, we converted the result to UTF-8.
  // Otherwise, we treated the result as the native OS encoding.
  // However, that led to http://crbug.com/4619 and http://crbug.com/14153
  return true;
}

bool GetNetworkList(NetworkInterfaceList* networks) {
  // GetAdaptersAddresses() may require IO operations.
  base::ThreadRestrictions::AssertIOAllowed();

  IP_ADAPTER_ADDRESSES info_temp;
  ULONG len = 0;

  // First get number of networks.
  ULONG result = GetAdaptersAddresses(AF_UNSPEC, 0, NULL, &info_temp, &len);
  if (result != ERROR_BUFFER_OVERFLOW) {
    // There are 0 networks.
    return true;
  }

  scoped_array<char> buf(new char[len]);
  IP_ADAPTER_ADDRESSES *adapters =
      reinterpret_cast<IP_ADAPTER_ADDRESSES *>(buf.get());
  result = GetAdaptersAddresses(AF_UNSPEC, 0, NULL, adapters, &len);
  if (result != NO_ERROR) {
    LOG(ERROR) << "GetAdaptersAddresses failed: " << result;
    return false;
  }

  for (IP_ADAPTER_ADDRESSES *adapter = adapters; adapter != NULL;
       adapter = adapter->Next) {
    // Ignore the loopback device.
    if (adapter->IfType == IF_TYPE_SOFTWARE_LOOPBACK) {
      continue;
    }

    if (adapter->OperStatus != IfOperStatusUp) {
      continue;
    }

    IP_ADAPTER_UNICAST_ADDRESS* address;
    for (address = adapter->FirstUnicastAddress; address != NULL;
         address = address->Next) {
      int family = address->Address.lpSockaddr->sa_family;
      if (family == AF_INET || family == AF_INET6) {
        IPEndPoint endpoint;
        if (endpoint.FromSockAddr(address->Address.lpSockaddr,
                                  address->Address.iSockaddrLength)) {
          std::string name = adapter->AdapterName;
          networks->push_back(NetworkInterface(name, endpoint.address()));
        }
      }
    }
  }

  return true;
}

WifiPHYLayerProtocol GetWifiPHYLayerProtocol() {
  struct WlanApi {
    typedef DWORD (WINAPI *WlanOpenHandleFunc)(
        DWORD, VOID*, DWORD*, HANDLE*);
    typedef DWORD (WINAPI *WlanEnumInterfacesFunc)(
        HANDLE, VOID*, WLAN_INTERFACE_INFO_LIST **);
    typedef DWORD (WINAPI *WlanQueryInterfaceFunc)(
        HANDLE, const GUID *, WLAN_INTF_OPCODE, VOID*, DWORD*, VOID**,
        WLAN_OPCODE_VALUE_TYPE*);
    typedef VOID (WINAPI *WlanFreeMemoryFunc)(VOID*);
    typedef DWORD (WINAPI *WlanCloseHandleFunc)(HANDLE, VOID*);

    WlanApi() : initialized(false) {
      // Use an absolute path to load the DLL to avoid DLL preloading attacks.
      static const wchar_t* const kDLL = L"%WINDIR%\\system32\\wlanapi.dll";
      wchar_t path[MAX_PATH] = {0};
      ExpandEnvironmentStrings(kDLL, path, arraysize(path));
      module = ::LoadLibraryEx(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
      if (!module)
        return;

      open_handle_func = reinterpret_cast<WlanOpenHandleFunc>(
          ::GetProcAddress(module, "WlanOpenHandle"));
      enum_interfaces_func = reinterpret_cast<WlanEnumInterfacesFunc>(
          ::GetProcAddress(module, "WlanEnumInterfaces"));
      query_interface_func = reinterpret_cast<WlanQueryInterfaceFunc>(
          ::GetProcAddress(module, "WlanQueryInterface"));
      free_memory_func = reinterpret_cast<WlanFreeMemoryFunc>(
          ::GetProcAddress(module, "WlanFreeMemory"));
      close_handle_func = reinterpret_cast<WlanCloseHandleFunc>(
          ::GetProcAddress(module, "WlanCloseHandle"));
      initialized = open_handle_func && enum_interfaces_func &&
                    query_interface_func && free_memory_func &&
                    close_handle_func;
    }

    HMODULE module;
    WlanOpenHandleFunc open_handle_func;
    WlanEnumInterfacesFunc enum_interfaces_func;
    WlanQueryInterfaceFunc query_interface_func;
    WlanFreeMemoryFunc free_memory_func;
    WlanCloseHandleFunc close_handle_func;
    bool initialized;
  };

  static base::LazyInstance<WlanApi>::Leaky lazy_wlanapi =
      LAZY_INSTANCE_INITIALIZER;

  struct WlanApiHandleTraits {
    typedef HANDLE Handle;

    static bool CloseHandle(HANDLE handle) {
      return lazy_wlanapi.Get().close_handle_func(handle, NULL) ==
          ERROR_SUCCESS;
    }
    static bool IsHandleValid(HANDLE handle) {
      return base::win::HandleTraits::IsHandleValid(handle);
    }
    static HANDLE NullHandle() {
      return base::win::HandleTraits::NullHandle();
    }
  };

  typedef base::win::GenericScopedHandle<WlanApiHandleTraits,
                                         base::win::VerifierTraits> WlanHandle;

  struct WlanApiDeleter {
    inline void operator()(void* ptr) const {
      lazy_wlanapi.Get().free_memory_func(ptr);
    }
  };

  const WlanApi& wlanapi = lazy_wlanapi.Get();
  if (!wlanapi.initialized)
    return WIFI_PHY_LAYER_PROTOCOL_NONE;

  WlanHandle client;
  DWORD cur_version = 0;
  const DWORD kMaxClientVersion = 2;
  DWORD result = wlanapi.open_handle_func(kMaxClientVersion, NULL, &cur_version,
                                          client.Receive());
  if (result != ERROR_SUCCESS)
    return WIFI_PHY_LAYER_PROTOCOL_NONE;

  WLAN_INTERFACE_INFO_LIST* interface_list_ptr = NULL;
  result = wlanapi.enum_interfaces_func(client, NULL, &interface_list_ptr);
  if (result != ERROR_SUCCESS)
    return WIFI_PHY_LAYER_PROTOCOL_NONE;
  scoped_ptr<WLAN_INTERFACE_INFO_LIST, WlanApiDeleter> interface_list(
      interface_list_ptr);

  // Assume at most one connected wifi interface.
  WLAN_INTERFACE_INFO* info = NULL;
  for (unsigned i = 0; i < interface_list->dwNumberOfItems; ++i) {
    if (interface_list->InterfaceInfo[i].isState ==
        wlan_interface_state_connected) {
      info = &interface_list->InterfaceInfo[i];
      break;
    }
  }

  if (info == NULL)
    return WIFI_PHY_LAYER_PROTOCOL_NONE;

  WLAN_CONNECTION_ATTRIBUTES* conn_info_ptr;
  DWORD conn_info_size = 0;
  WLAN_OPCODE_VALUE_TYPE op_code;
  result = wlanapi.query_interface_func(
      client, &info->InterfaceGuid, wlan_intf_opcode_current_connection, NULL,
      &conn_info_size, reinterpret_cast<VOID**>(&conn_info_ptr), &op_code);
  if (result != ERROR_SUCCESS)
    return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN;
  scoped_ptr<WLAN_CONNECTION_ATTRIBUTES, WlanApiDeleter> conn_info(
      conn_info_ptr);

  switch (conn_info->wlanAssociationAttributes.dot11PhyType) {
    case dot11_phy_type_fhss:
      return WIFI_PHY_LAYER_PROTOCOL_ANCIENT;
    case dot11_phy_type_dsss:
      return WIFI_PHY_LAYER_PROTOCOL_B;
    case dot11_phy_type_irbaseband:
      return WIFI_PHY_LAYER_PROTOCOL_ANCIENT;
    case dot11_phy_type_ofdm:
      return WIFI_PHY_LAYER_PROTOCOL_A;
    case dot11_phy_type_hrdsss:
      return WIFI_PHY_LAYER_PROTOCOL_B;
    case dot11_phy_type_erp:
      return WIFI_PHY_LAYER_PROTOCOL_G;
    case dot11_phy_type_ht:
      return WIFI_PHY_LAYER_PROTOCOL_N;
    default:
      return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN;
  }
}

}  // namespace net