// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/x509_certificate.h" #include #include #include #include #include #include #include #include #include "base/memory/singleton.h" #include "base/pickle.h" #include "base/sha1.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "crypto/openssl_util.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/base/x509_util_openssl.h" #if defined(OS_ANDROID) #include "base/logging.h" #include "net/android/network_library.h" #endif namespace net { namespace { void CreateOSCertHandlesFromPKCS7Bytes( const char* data, int length, X509Certificate::OSCertHandles* handles) { crypto::EnsureOpenSSLInit(); const unsigned char* der_data = reinterpret_cast(data); crypto::ScopedOpenSSL pkcs7_cert( d2i_PKCS7(NULL, &der_data, length)); if (!pkcs7_cert.get()) return; STACK_OF(X509)* certs = NULL; int nid = OBJ_obj2nid(pkcs7_cert.get()->type); if (nid == NID_pkcs7_signed) { certs = pkcs7_cert.get()->d.sign->cert; } else if (nid == NID_pkcs7_signedAndEnveloped) { certs = pkcs7_cert.get()->d.signed_and_enveloped->cert; } if (certs) { for (int i = 0; i < sk_X509_num(certs); ++i) { X509* x509_cert = X509Certificate::DupOSCertHandle(sk_X509_value(certs, i)); handles->push_back(x509_cert); } } } void ParsePrincipalValues(X509_NAME* name, int nid, std::vector* fields) { for (int index = -1; (index = X509_NAME_get_index_by_NID(name, nid, index)) != -1;) { std::string field; if (!x509_util::ParsePrincipalValueByIndex(name, index, &field)) break; fields->push_back(field); } } void ParsePrincipal(X509Certificate::OSCertHandle cert, X509_NAME* x509_name, CertPrincipal* principal) { if (!x509_name) return; ParsePrincipalValues(x509_name, NID_streetAddress, &principal->street_addresses); ParsePrincipalValues(x509_name, NID_organizationName, &principal->organization_names); ParsePrincipalValues(x509_name, NID_organizationalUnitName, &principal->organization_unit_names); ParsePrincipalValues(x509_name, NID_domainComponent, &principal->domain_components); x509_util::ParsePrincipalValueByNID(x509_name, NID_commonName, &principal->common_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_localityName, &principal->locality_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_stateOrProvinceName, &principal->state_or_province_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_countryName, &principal->country_name); } void ParseSubjectAltName(X509Certificate::OSCertHandle cert, std::vector* dns_names, std::vector* ip_addresses) { DCHECK(dns_names || ip_addresses); int index = X509_get_ext_by_NID(cert, NID_subject_alt_name, -1); X509_EXTENSION* alt_name_ext = X509_get_ext(cert, index); if (!alt_name_ext) return; crypto::ScopedOpenSSL alt_names( reinterpret_cast(X509V3_EXT_d2i(alt_name_ext))); if (!alt_names.get()) return; for (int i = 0; i < sk_GENERAL_NAME_num(alt_names.get()); ++i) { const GENERAL_NAME* name = sk_GENERAL_NAME_value(alt_names.get(), i); if (name->type == GEN_DNS && dns_names) { const unsigned char* dns_name = ASN1_STRING_data(name->d.dNSName); if (!dns_name) continue; int dns_name_len = ASN1_STRING_length(name->d.dNSName); dns_names->push_back( std::string(reinterpret_cast(dns_name), dns_name_len)); } else if (name->type == GEN_IPADD && ip_addresses) { const unsigned char* ip_addr = name->d.iPAddress->data; if (!ip_addr) continue; int ip_addr_len = name->d.iPAddress->length; if (ip_addr_len != static_cast(kIPv4AddressSize) && ip_addr_len != static_cast(kIPv6AddressSize)) { // http://www.ietf.org/rfc/rfc3280.txt requires subjectAltName iPAddress // to have 4 or 16 bytes, whereas in a name constraint it includes a // net mask hence 8 or 32 bytes. Logging to help diagnose any mixup. LOG(WARNING) << "Bad sized IP Address in cert: " << ip_addr_len; continue; } ip_addresses->push_back( std::string(reinterpret_cast(ip_addr), ip_addr_len)); } } } struct DERCache { unsigned char* data; int data_length; }; void DERCache_free(void* parent, void* ptr, CRYPTO_EX_DATA* ad, int idx, long argl, void* argp) { DERCache* der_cache = static_cast(ptr); if (!der_cache) return; if (der_cache->data) OPENSSL_free(der_cache->data); OPENSSL_free(der_cache); } class X509InitSingleton { public: static X509InitSingleton* GetInstance() { // We allow the X509 store to leak, because it is used from a non-joinable // worker that is not stopped on shutdown, hence may still be using // OpenSSL library after the AtExit runner has completed. return Singleton >::get(); } int der_cache_ex_index() const { return der_cache_ex_index_; } X509_STORE* store() const { return store_.get(); } void ResetCertStore() { store_.reset(X509_STORE_new()); DCHECK(store_.get()); X509_STORE_set_default_paths(store_.get()); // TODO(joth): Enable CRL (see X509_STORE_set_flags(X509_V_FLAG_CRL_CHECK)). } private: friend struct DefaultSingletonTraits; X509InitSingleton() { crypto::EnsureOpenSSLInit(); der_cache_ex_index_ = X509_get_ex_new_index(0, 0, 0, 0, DERCache_free); DCHECK_NE(der_cache_ex_index_, -1); ResetCertStore(); } int der_cache_ex_index_; crypto::ScopedOpenSSL store_; DISALLOW_COPY_AND_ASSIGN(X509InitSingleton); }; // Takes ownership of |data| (which must have been allocated by OpenSSL). DERCache* SetDERCache(X509Certificate::OSCertHandle cert, int x509_der_cache_index, unsigned char* data, int data_length) { DERCache* internal_cache = static_cast( OPENSSL_malloc(sizeof(*internal_cache))); if (!internal_cache) { // We took ownership of |data|, so we must free if we can't add it to // |cert|. OPENSSL_free(data); return NULL; } internal_cache->data = data; internal_cache->data_length = data_length; X509_set_ex_data(cert, x509_der_cache_index, internal_cache); return internal_cache; } // Returns true if |der_cache| points to valid data, false otherwise. // (note: the DER-encoded data in |der_cache| is owned by |cert|, callers should // not free it). bool GetDERAndCacheIfNeeded(X509Certificate::OSCertHandle cert, DERCache* der_cache) { int x509_der_cache_index = X509InitSingleton::GetInstance()->der_cache_ex_index(); // Re-encoding the DER data via i2d_X509 is an expensive operation, but it's // necessary for comparing two certificates. We re-encode at most once per // certificate and cache the data within the X509 cert using X509_set_ex_data. DERCache* internal_cache = static_cast( X509_get_ex_data(cert, x509_der_cache_index)); if (!internal_cache) { unsigned char* data = NULL; int data_length = i2d_X509(cert, &data); if (data_length <= 0 || !data) return false; internal_cache = SetDERCache(cert, x509_der_cache_index, data, data_length); if (!internal_cache) return false; } *der_cache = *internal_cache; return true; } } // namespace // static X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle( OSCertHandle cert_handle) { DCHECK(cert_handle); // Using X509_dup causes the entire certificate to be reparsed. This // conversion, besides being non-trivial, drops any associated // application-specific data set by X509_set_ex_data. Using CRYPTO_add // just bumps up the ref-count for the cert, without causing any allocations // or deallocations. CRYPTO_add(&cert_handle->references, 1, CRYPTO_LOCK_X509); return cert_handle; } // static void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) { // Decrement the ref-count for the cert and, if all references are gone, // free the memory and any application-specific data associated with the // certificate. X509_free(cert_handle); } void X509Certificate::Initialize() { crypto::EnsureOpenSSLInit(); fingerprint_ = CalculateFingerprint(cert_handle_); ca_fingerprint_ = CalculateCAFingerprint(intermediate_ca_certs_); ASN1_INTEGER* serial_num = X509_get_serialNumber(cert_handle_); if (serial_num) { // ASN1_INTEGERS represent the decoded number, in a format internal to // OpenSSL. Most notably, this may have leading zeroes stripped off for // numbers whose first byte is >= 0x80. Thus, it is necessary to // re-encoded the integer back into DER, which is what the interface // of X509Certificate exposes, to ensure callers get the proper (DER) // value. int bytes_required = i2c_ASN1_INTEGER(serial_num, NULL); unsigned char* buffer = reinterpret_cast( WriteInto(&serial_number_, bytes_required + 1)); int bytes_written = i2c_ASN1_INTEGER(serial_num, &buffer); DCHECK_EQ(static_cast(bytes_written), serial_number_.size()); } ParsePrincipal(cert_handle_, X509_get_subject_name(cert_handle_), &subject_); ParsePrincipal(cert_handle_, X509_get_issuer_name(cert_handle_), &issuer_); x509_util::ParseDate(X509_get_notBefore(cert_handle_), &valid_start_); x509_util::ParseDate(X509_get_notAfter(cert_handle_), &valid_expiry_); } // static void X509Certificate::ResetCertStore() { X509InitSingleton::GetInstance()->ResetCertStore(); } // static SHA1Fingerprint X509Certificate::CalculateFingerprint(OSCertHandle cert) { SHA1Fingerprint sha1; unsigned int sha1_size = static_cast(sizeof(sha1.data)); int ret = X509_digest(cert, EVP_sha1(), sha1.data, &sha1_size); CHECK(ret); CHECK_EQ(sha1_size, sizeof(sha1.data)); return sha1; } // static SHA1Fingerprint X509Certificate::CalculateCAFingerprint( const OSCertHandles& intermediates) { SHA1Fingerprint sha1; memset(sha1.data, 0, sizeof(sha1.data)); SHA_CTX sha1_ctx; SHA1_Init(&sha1_ctx); DERCache der_cache; for (size_t i = 0; i < intermediates.size(); ++i) { if (!GetDERAndCacheIfNeeded(intermediates[i], &der_cache)) return sha1; SHA1_Update(&sha1_ctx, der_cache.data, der_cache.data_length); } SHA1_Final(sha1.data, &sha1_ctx); return sha1; } // static X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes( const char* data, int length) { if (length < 0) return NULL; crypto::EnsureOpenSSLInit(); const unsigned char* d2i_data = reinterpret_cast(data); // Don't cache this data via SetDERCache as this wire format may be not be // identical from the i2d_X509 roundtrip. X509* cert = d2i_X509(NULL, &d2i_data, length); return cert; } // static X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes( const char* data, int length, Format format) { OSCertHandles results; if (length < 0) return results; switch (format) { case FORMAT_SINGLE_CERTIFICATE: { OSCertHandle handle = CreateOSCertHandleFromBytes(data, length); if (handle) results.push_back(handle); break; } case FORMAT_PKCS7: { CreateOSCertHandlesFromPKCS7Bytes(data, length, &results); break; } default: { NOTREACHED() << "Certificate format " << format << " unimplemented"; break; } } return results; } // static X509Certificate* X509Certificate::CreateSelfSigned( crypto::RSAPrivateKey* key, const std::string& subject, uint32 serial_number, base::TimeDelta valid_duration) { // TODO(port): Implement. See http://crbug.com/91512. NOTIMPLEMENTED(); return NULL; } void X509Certificate::GetSubjectAltName( std::vector* dns_names, std::vector* ip_addrs) const { if (dns_names) dns_names->clear(); if (ip_addrs) ip_addrs->clear(); ParseSubjectAltName(cert_handle_, dns_names, ip_addrs); } // static X509_STORE* X509Certificate::cert_store() { return X509InitSingleton::GetInstance()->store(); } // static bool X509Certificate::GetDEREncoded(X509Certificate::OSCertHandle cert_handle, std::string* encoded) { DERCache der_cache; if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache)) return false; encoded->assign(reinterpret_cast(der_cache.data), der_cache.data_length); return true; } // static bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a, X509Certificate::OSCertHandle b) { DCHECK(a && b); if (a == b) return true; // X509_cmp only checks the fingerprint, but we want to compare the whole // DER data. Encoding it from OSCertHandle is an expensive operation, so we // cache the DER (if not already cached via X509_set_ex_data). DERCache der_cache_a, der_cache_b; return GetDERAndCacheIfNeeded(a, &der_cache_a) && GetDERAndCacheIfNeeded(b, &der_cache_b) && der_cache_a.data_length == der_cache_b.data_length && memcmp(der_cache_a.data, der_cache_b.data, der_cache_a.data_length) == 0; } // static X509Certificate::OSCertHandle X509Certificate::ReadOSCertHandleFromPickle(PickleIterator* pickle_iter) { const char* data; int length; if (!pickle_iter->ReadData(&data, &length)) return NULL; return CreateOSCertHandleFromBytes(data, length); } // static bool X509Certificate::WriteOSCertHandleToPickle(OSCertHandle cert_handle, Pickle* pickle) { DERCache der_cache; if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache)) return false; return pickle->WriteData( reinterpret_cast(der_cache.data), der_cache.data_length); } // static void X509Certificate::GetPublicKeyInfo(OSCertHandle cert_handle, size_t* size_bits, PublicKeyType* type) { crypto::ScopedOpenSSL scoped_key( X509_get_pubkey(cert_handle)); CHECK(scoped_key.get()); EVP_PKEY* key = scoped_key.get(); switch (key->type) { case EVP_PKEY_RSA: *type = kPublicKeyTypeRSA; *size_bits = EVP_PKEY_size(key) * 8; break; case EVP_PKEY_DSA: *type = kPublicKeyTypeDSA; *size_bits = EVP_PKEY_size(key) * 8; break; case EVP_PKEY_EC: *type = kPublicKeyTypeECDSA; *size_bits = EVP_PKEY_size(key); break; case EVP_PKEY_DH: *type = kPublicKeyTypeDH; *size_bits = EVP_PKEY_size(key) * 8; break; default: *type = kPublicKeyTypeUnknown; *size_bits = 0; break; } } } // namespace net