// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/cert_verify_proc_win.h" #include #include #include "base/memory/scoped_ptr.h" #include "base/sha1.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "crypto/capi_util.h" #include "crypto/scoped_capi_types.h" #include "crypto/sha2.h" #include "net/base/net_errors.h" #include "net/cert/asn1_util.h" #include "net/cert/cert_status_flags.h" #include "net/cert/cert_verifier.h" #include "net/cert/cert_verify_result.h" #include "net/cert/crl_set.h" #include "net/cert/ev_root_ca_metadata.h" #include "net/cert/test_root_certs.h" #include "net/cert/x509_certificate.h" #include "net/cert/x509_certificate_known_roots_win.h" #pragma comment(lib, "crypt32.lib") #if !defined(CERT_TRUST_HAS_WEAK_SIGNATURE) // This was introduced in Windows 8 / Windows Server 2012, but retroactively // ported as far back as Windows XP via system update. #define CERT_TRUST_HAS_WEAK_SIGNATURE 0x00100000 #endif namespace net { namespace { struct FreeChainEngineFunctor { void operator()(HCERTCHAINENGINE engine) const { if (engine) CertFreeCertificateChainEngine(engine); } }; struct FreeCertChainContextFunctor { void operator()(PCCERT_CHAIN_CONTEXT chain_context) const { if (chain_context) CertFreeCertificateChain(chain_context); } }; struct FreeCertContextFunctor { void operator()(PCCERT_CONTEXT context) const { if (context) CertFreeCertificateContext(context); } }; typedef crypto::ScopedCAPIHandle ScopedHCERTCHAINENGINE; typedef scoped_ptr ScopedPCCERT_CHAIN_CONTEXT; typedef scoped_ptr ScopedPCCERT_CONTEXT; //----------------------------------------------------------------------------- int MapSecurityError(SECURITY_STATUS err) { // There are numerous security error codes, but these are the ones we thus // far find interesting. switch (err) { case SEC_E_WRONG_PRINCIPAL: // Schannel case CERT_E_CN_NO_MATCH: // CryptoAPI return ERR_CERT_COMMON_NAME_INVALID; case SEC_E_UNTRUSTED_ROOT: // Schannel case CERT_E_UNTRUSTEDROOT: // CryptoAPI return ERR_CERT_AUTHORITY_INVALID; case SEC_E_CERT_EXPIRED: // Schannel case CERT_E_EXPIRED: // CryptoAPI return ERR_CERT_DATE_INVALID; case CRYPT_E_NO_REVOCATION_CHECK: return ERR_CERT_NO_REVOCATION_MECHANISM; case CRYPT_E_REVOCATION_OFFLINE: return ERR_CERT_UNABLE_TO_CHECK_REVOCATION; case CRYPT_E_REVOKED: // Schannel and CryptoAPI return ERR_CERT_REVOKED; case SEC_E_CERT_UNKNOWN: case CERT_E_ROLE: return ERR_CERT_INVALID; case CERT_E_WRONG_USAGE: // TODO(wtc): Should we add ERR_CERT_WRONG_USAGE? return ERR_CERT_INVALID; // We received an unexpected_message or illegal_parameter alert message // from the server. case SEC_E_ILLEGAL_MESSAGE: return ERR_SSL_PROTOCOL_ERROR; case SEC_E_ALGORITHM_MISMATCH: return ERR_SSL_VERSION_OR_CIPHER_MISMATCH; case SEC_E_INVALID_HANDLE: return ERR_UNEXPECTED; case SEC_E_OK: return OK; default: LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED"; return ERR_FAILED; } } // Map the errors in the chain_context->TrustStatus.dwErrorStatus returned by // CertGetCertificateChain to our certificate status flags. int MapCertChainErrorStatusToCertStatus(DWORD error_status) { CertStatus cert_status = 0; // We don't include CERT_TRUST_IS_NOT_TIME_NESTED because it's obsolete and // we wouldn't consider it an error anyway const DWORD kDateInvalidErrors = CERT_TRUST_IS_NOT_TIME_VALID | CERT_TRUST_CTL_IS_NOT_TIME_VALID; if (error_status & kDateInvalidErrors) cert_status |= CERT_STATUS_DATE_INVALID; const DWORD kAuthorityInvalidErrors = CERT_TRUST_IS_UNTRUSTED_ROOT | CERT_TRUST_IS_EXPLICIT_DISTRUST | CERT_TRUST_IS_PARTIAL_CHAIN; if (error_status & kAuthorityInvalidErrors) cert_status |= CERT_STATUS_AUTHORITY_INVALID; if ((error_status & CERT_TRUST_REVOCATION_STATUS_UNKNOWN) && !(error_status & CERT_TRUST_IS_OFFLINE_REVOCATION)) cert_status |= CERT_STATUS_NO_REVOCATION_MECHANISM; if (error_status & CERT_TRUST_IS_OFFLINE_REVOCATION) cert_status |= CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; if (error_status & CERT_TRUST_IS_REVOKED) cert_status |= CERT_STATUS_REVOKED; const DWORD kWrongUsageErrors = CERT_TRUST_IS_NOT_VALID_FOR_USAGE | CERT_TRUST_CTL_IS_NOT_VALID_FOR_USAGE; if (error_status & kWrongUsageErrors) { // TODO(wtc): Should we add CERT_STATUS_WRONG_USAGE? cert_status |= CERT_STATUS_INVALID; } if (error_status & CERT_TRUST_IS_NOT_SIGNATURE_VALID) { // Check for a signature that does not meet the OS criteria for strong // signatures. // Note: These checks may be more restrictive than the current weak key // criteria implemented within CertVerifier, such as excluding SHA-1 or // excluding RSA keys < 2048 bits. However, if the user has configured // these more stringent checks, respect that configuration and err on the // more restrictive criteria. if (error_status & CERT_TRUST_HAS_WEAK_SIGNATURE) { cert_status |= CERT_STATUS_WEAK_KEY; } else { cert_status |= CERT_STATUS_INVALID; } } // The rest of the errors. const DWORD kCertInvalidErrors = CERT_TRUST_IS_CYCLIC | CERT_TRUST_INVALID_EXTENSION | CERT_TRUST_INVALID_POLICY_CONSTRAINTS | CERT_TRUST_INVALID_BASIC_CONSTRAINTS | CERT_TRUST_INVALID_NAME_CONSTRAINTS | CERT_TRUST_CTL_IS_NOT_SIGNATURE_VALID | CERT_TRUST_HAS_NOT_SUPPORTED_NAME_CONSTRAINT | CERT_TRUST_HAS_NOT_DEFINED_NAME_CONSTRAINT | CERT_TRUST_HAS_NOT_PERMITTED_NAME_CONSTRAINT | CERT_TRUST_HAS_EXCLUDED_NAME_CONSTRAINT | CERT_TRUST_NO_ISSUANCE_CHAIN_POLICY | CERT_TRUST_HAS_NOT_SUPPORTED_CRITICAL_EXT; if (error_status & kCertInvalidErrors) cert_status |= CERT_STATUS_INVALID; return cert_status; } // Returns true if any common name in the certificate's Subject field contains // a NULL character. bool CertSubjectCommonNameHasNull(PCCERT_CONTEXT cert) { CRYPT_DECODE_PARA decode_para; decode_para.cbSize = sizeof(decode_para); decode_para.pfnAlloc = crypto::CryptAlloc; decode_para.pfnFree = crypto::CryptFree; CERT_NAME_INFO* name_info = NULL; DWORD name_info_size = 0; BOOL rv; rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, WINCRYPT_X509_NAME, cert->pCertInfo->Subject.pbData, cert->pCertInfo->Subject.cbData, CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, &decode_para, &name_info, &name_info_size); if (rv) { scoped_ptr scoped_name_info(name_info); // The Subject field may have multiple common names. According to the // "PKI Layer Cake" paper, CryptoAPI uses every common name in the // Subject field, so we inspect every common name. // // From RFC 5280: // X520CommonName ::= CHOICE { // teletexString TeletexString (SIZE (1..ub-common-name)), // printableString PrintableString (SIZE (1..ub-common-name)), // universalString UniversalString (SIZE (1..ub-common-name)), // utf8String UTF8String (SIZE (1..ub-common-name)), // bmpString BMPString (SIZE (1..ub-common-name)) } // // We also check IA5String and VisibleString. for (DWORD i = 0; i < name_info->cRDN; ++i) { PCERT_RDN rdn = &name_info->rgRDN[i]; for (DWORD j = 0; j < rdn->cRDNAttr; ++j) { PCERT_RDN_ATTR rdn_attr = &rdn->rgRDNAttr[j]; if (strcmp(rdn_attr->pszObjId, szOID_COMMON_NAME) == 0) { switch (rdn_attr->dwValueType) { // After the CryptoAPI ASN.1 security vulnerabilities described in // http://www.microsoft.com/technet/security/Bulletin/MS09-056.mspx // were patched, we get CERT_RDN_ENCODED_BLOB for a common name // that contains a NULL character. case CERT_RDN_ENCODED_BLOB: break; // Array of 8-bit characters. case CERT_RDN_PRINTABLE_STRING: case CERT_RDN_TELETEX_STRING: case CERT_RDN_IA5_STRING: case CERT_RDN_VISIBLE_STRING: for (DWORD k = 0; k < rdn_attr->Value.cbData; ++k) { if (rdn_attr->Value.pbData[k] == '\0') return true; } break; // Array of 16-bit characters. case CERT_RDN_BMP_STRING: case CERT_RDN_UTF8_STRING: { DWORD num_wchars = rdn_attr->Value.cbData / 2; wchar_t* common_name = reinterpret_cast(rdn_attr->Value.pbData); for (DWORD k = 0; k < num_wchars; ++k) { if (common_name[k] == L'\0') return true; } break; } // Array of ints (32-bit). case CERT_RDN_UNIVERSAL_STRING: { DWORD num_ints = rdn_attr->Value.cbData / 4; int* common_name = reinterpret_cast(rdn_attr->Value.pbData); for (DWORD k = 0; k < num_ints; ++k) { if (common_name[k] == 0) return true; } break; } default: NOTREACHED(); break; } } } } } return false; } // IsIssuedByKnownRoot returns true if the given chain is rooted at a root CA // which we recognise as a standard root. // static bool IsIssuedByKnownRoot(PCCERT_CHAIN_CONTEXT chain_context) { PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; int num_elements = first_chain->cElement; if (num_elements < 1) return false; PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; PCCERT_CONTEXT cert = element[num_elements - 1]->pCertContext; SHA1HashValue hash = X509Certificate::CalculateFingerprint(cert); return IsSHA1HashInSortedArray( hash, &kKnownRootCertSHA1Hashes[0][0], sizeof(kKnownRootCertSHA1Hashes)); } // Saves some information about the certificate chain |chain_context| in // |*verify_result|. The caller MUST initialize |*verify_result| before // calling this function. void GetCertChainInfo(PCCERT_CHAIN_CONTEXT chain_context, CertVerifyResult* verify_result) { if (chain_context->cChain == 0) return; PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; int num_elements = first_chain->cElement; PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; PCCERT_CONTEXT verified_cert = NULL; std::vector verified_chain; bool has_root_ca = num_elements > 1 && !(chain_context->TrustStatus.dwErrorStatus & CERT_TRUST_IS_PARTIAL_CHAIN); // Each chain starts with the end entity certificate (i = 0) and ends with // either the root CA certificate or the last available intermediate. If a // root CA certificate is present, do not inspect the signature algorithm of // the root CA certificate because the signature on the trust anchor is not // important. if (has_root_ca) { // If a full chain was constructed, regardless of whether it was trusted, // don't inspect the root's signature algorithm. num_elements -= 1; } for (int i = 0; i < num_elements; ++i) { PCCERT_CONTEXT cert = element[i]->pCertContext; if (i == 0) { verified_cert = cert; } else { verified_chain.push_back(cert); } const char* algorithm = cert->pCertInfo->SignatureAlgorithm.pszObjId; if (strcmp(algorithm, szOID_RSA_MD5RSA) == 0) { // md5WithRSAEncryption: 1.2.840.113549.1.1.4 verify_result->has_md5 = true; } else if (strcmp(algorithm, szOID_RSA_MD2RSA) == 0) { // md2WithRSAEncryption: 1.2.840.113549.1.1.2 verify_result->has_md2 = true; } else if (strcmp(algorithm, szOID_RSA_MD4RSA) == 0) { // md4WithRSAEncryption: 1.2.840.113549.1.1.3 verify_result->has_md4 = true; } else if (strcmp(algorithm, szOID_RSA_SHA1RSA) == 0 || strcmp(algorithm, szOID_X957_SHA1DSA) == 0 || strcmp(algorithm, szOID_ECDSA_SHA1) == 0) { // sha1WithRSAEncryption: 1.2.840.113549.1.1.5 // id-dsa-with-sha1: 1.2.840.10040.4.3 // ecdsa-with-SHA1: 1.2.840.10045.4.1 verify_result->has_sha1 = true; } } if (verified_cert) { // Add the root certificate, if present, as it was not added above. if (has_root_ca) verified_chain.push_back(element[num_elements]->pCertContext); verify_result->verified_cert = X509Certificate::CreateFromHandle(verified_cert, verified_chain); } } // Decodes the cert's certificatePolicies extension into a CERT_POLICIES_INFO // structure and stores it in *output. void GetCertPoliciesInfo( PCCERT_CONTEXT cert, scoped_ptr* output) { PCERT_EXTENSION extension = CertFindExtension(szOID_CERT_POLICIES, cert->pCertInfo->cExtension, cert->pCertInfo->rgExtension); if (!extension) return; CRYPT_DECODE_PARA decode_para; decode_para.cbSize = sizeof(decode_para); decode_para.pfnAlloc = crypto::CryptAlloc; decode_para.pfnFree = crypto::CryptFree; CERT_POLICIES_INFO* policies_info = NULL; DWORD policies_info_size = 0; BOOL rv; rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, szOID_CERT_POLICIES, extension->Value.pbData, extension->Value.cbData, CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, &decode_para, &policies_info, &policies_info_size); if (rv) output->reset(policies_info); } enum CRLSetResult { kCRLSetOk, kCRLSetUnknown, kCRLSetRevoked, }; // CheckRevocationWithCRLSet attempts to check each element of |chain| // against |crl_set|. It returns: // kCRLSetRevoked: if any element of the chain is known to have been revoked. // kCRLSetUnknown: if there is no fresh information about the leaf // certificate in the chain or if the CRLSet has expired. // // Only the leaf certificate is considered for coverage because some // intermediates have CRLs with no revocations (after filtering) and // those CRLs are pruned from the CRLSet at generation time. This means // that some EV sites would otherwise take the hit of an OCSP lookup for // no reason. // kCRLSetOk: otherwise. CRLSetResult CheckRevocationWithCRLSet(PCCERT_CHAIN_CONTEXT chain, CRLSet* crl_set) { if (chain->cChain == 0) return kCRLSetOk; const PCERT_SIMPLE_CHAIN first_chain = chain->rgpChain[0]; const PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; const int num_elements = first_chain->cElement; if (num_elements == 0) return kCRLSetOk; // error is set to true if any errors are found. It causes such chains to be // considered as not covered. bool error = false; // last_covered is set to the coverage state of the previous certificate. The // certificates are iterated over backwards thus, after the iteration, // |last_covered| contains the coverage state of the leaf certificate. bool last_covered = false; // We iterate from the root certificate down to the leaf, keeping track of // the issuer's SPKI at each step. std::string issuer_spki_hash; for (int i = num_elements - 1; i >= 0; i--) { PCCERT_CONTEXT cert = element[i]->pCertContext; base::StringPiece der_bytes( reinterpret_cast(cert->pbCertEncoded), cert->cbCertEncoded); base::StringPiece spki; if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki)) { NOTREACHED(); error = true; continue; } const std::string spki_hash = crypto::SHA256HashString(spki); const CRYPT_INTEGER_BLOB* serial_blob = &cert->pCertInfo->SerialNumber; scoped_ptr serial_bytes(new uint8[serial_blob->cbData]); // The bytes of the serial number are stored little-endian. for (unsigned j = 0; j < serial_blob->cbData; j++) serial_bytes[j] = serial_blob->pbData[serial_blob->cbData - j - 1]; base::StringPiece serial(reinterpret_cast(serial_bytes.get()), serial_blob->cbData); CRLSet::Result result = crl_set->CheckSPKI(spki_hash); if (result != CRLSet::REVOKED && !issuer_spki_hash.empty()) result = crl_set->CheckSerial(serial, issuer_spki_hash); issuer_spki_hash = spki_hash; switch (result) { case CRLSet::REVOKED: return kCRLSetRevoked; case CRLSet::UNKNOWN: last_covered = false; continue; case CRLSet::GOOD: last_covered = true; continue; default: NOTREACHED(); error = true; continue; } } if (error || !last_covered || crl_set->IsExpired()) return kCRLSetUnknown; return kCRLSetOk; } void AppendPublicKeyHashes(PCCERT_CHAIN_CONTEXT chain, HashValueVector* hashes) { if (chain->cChain == 0) return; PCERT_SIMPLE_CHAIN first_chain = chain->rgpChain[0]; PCERT_CHAIN_ELEMENT* const element = first_chain->rgpElement; const DWORD num_elements = first_chain->cElement; for (DWORD i = 0; i < num_elements; i++) { PCCERT_CONTEXT cert = element[i]->pCertContext; base::StringPiece der_bytes( reinterpret_cast(cert->pbCertEncoded), cert->cbCertEncoded); base::StringPiece spki_bytes; if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes)) continue; HashValue sha1(HASH_VALUE_SHA1); base::SHA1HashBytes(reinterpret_cast(spki_bytes.data()), spki_bytes.size(), sha1.data()); hashes->push_back(sha1); HashValue sha256(HASH_VALUE_SHA256); crypto::SHA256HashString(spki_bytes, sha256.data(), crypto::kSHA256Length); hashes->push_back(sha256); } } // Returns true if the certificate is an extended-validation certificate. // // This function checks the certificatePolicies extensions of the // certificates in the certificate chain according to Section 7 (pp. 11-12) // of the EV Certificate Guidelines Version 1.0 at // http://cabforum.org/EV_Certificate_Guidelines.pdf. bool CheckEV(PCCERT_CHAIN_CONTEXT chain_context, bool rev_checking_enabled, const char* policy_oid) { DCHECK_NE(static_cast(0), chain_context->cChain); // If the cert doesn't match any of the policies, the // CERT_TRUST_IS_NOT_VALID_FOR_USAGE bit (0x10) in // chain_context->TrustStatus.dwErrorStatus is set. DWORD error_status = chain_context->TrustStatus.dwErrorStatus; if (!rev_checking_enabled) { // If online revocation checking is disabled then we will have still // requested that the revocation cache be checked. However, that will often // cause the following two error bits to be set. These error bits mean that // the local OCSP/CRL is stale or missing entries for these certificates. // Since they are expected, we mask them away. error_status &= ~(CERT_TRUST_IS_OFFLINE_REVOCATION | CERT_TRUST_REVOCATION_STATUS_UNKNOWN); } if (!chain_context->cChain || error_status != CERT_TRUST_NO_ERROR) return false; // Check the end certificate simple chain (chain_context->rgpChain[0]). // If the end certificate's certificatePolicies extension contains the // EV policy OID of the root CA, return true. PCERT_CHAIN_ELEMENT* element = chain_context->rgpChain[0]->rgpElement; int num_elements = chain_context->rgpChain[0]->cElement; if (num_elements < 2) return false; // Look up the EV policy OID of the root CA. PCCERT_CONTEXT root_cert = element[num_elements - 1]->pCertContext; SHA1HashValue fingerprint = X509Certificate::CalculateFingerprint(root_cert); EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); return metadata->HasEVPolicyOID(fingerprint, policy_oid); } } // namespace CertVerifyProcWin::CertVerifyProcWin() {} CertVerifyProcWin::~CertVerifyProcWin() {} bool CertVerifyProcWin::SupportsAdditionalTrustAnchors() const { return false; } int CertVerifyProcWin::VerifyInternal( X509Certificate* cert, const std::string& hostname, int flags, CRLSet* crl_set, const CertificateList& additional_trust_anchors, CertVerifyResult* verify_result) { PCCERT_CONTEXT cert_handle = cert->os_cert_handle(); if (!cert_handle) return ERR_UNEXPECTED; // Build and validate certificate chain. CERT_CHAIN_PARA chain_para; memset(&chain_para, 0, sizeof(chain_para)); chain_para.cbSize = sizeof(chain_para); // ExtendedKeyUsage. // We still need to request szOID_SERVER_GATED_CRYPTO and szOID_SGC_NETSCAPE // today because some certificate chains need them. IE also requests these // two usages. static const LPCSTR usage[] = { szOID_PKIX_KP_SERVER_AUTH, szOID_SERVER_GATED_CRYPTO, szOID_SGC_NETSCAPE }; chain_para.RequestedUsage.dwType = USAGE_MATCH_TYPE_OR; chain_para.RequestedUsage.Usage.cUsageIdentifier = arraysize(usage); chain_para.RequestedUsage.Usage.rgpszUsageIdentifier = const_cast(usage); // Get the certificatePolicies extension of the certificate. scoped_ptr policies_info; LPSTR ev_policy_oid = NULL; if (flags & CertVerifier::VERIFY_EV_CERT) { GetCertPoliciesInfo(cert_handle, &policies_info); if (policies_info.get()) { EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); for (DWORD i = 0; i < policies_info->cPolicyInfo; ++i) { LPSTR policy_oid = policies_info->rgPolicyInfo[i].pszPolicyIdentifier; if (metadata->IsEVPolicyOID(policy_oid)) { ev_policy_oid = policy_oid; chain_para.RequestedIssuancePolicy.dwType = USAGE_MATCH_TYPE_AND; chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 1; chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = &ev_policy_oid; break; } } } } // We can set CERT_CHAIN_RETURN_LOWER_QUALITY_CONTEXTS to get more chains. DWORD chain_flags = CERT_CHAIN_CACHE_END_CERT | CERT_CHAIN_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT; bool rev_checking_enabled = (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED); if (rev_checking_enabled) { verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; } else { chain_flags |= CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; } // For non-test scenarios, use the default HCERTCHAINENGINE, NULL, which // corresponds to HCCE_CURRENT_USER and is is initialized as needed by // crypt32. However, when testing, it is necessary to create a new // HCERTCHAINENGINE and use that instead. This is because each // HCERTCHAINENGINE maintains a cache of information about certificates // encountered, and each test run may modify the trust status of a // certificate. ScopedHCERTCHAINENGINE chain_engine(NULL); if (TestRootCerts::HasInstance()) chain_engine.reset(TestRootCerts::GetInstance()->GetChainEngine()); ScopedPCCERT_CONTEXT cert_list(cert->CreateOSCertChainForCert()); PCCERT_CHAIN_CONTEXT chain_context; // IE passes a non-NULL pTime argument that specifies the current system // time. IE passes CERT_CHAIN_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT as the // chain_flags argument. if (!CertGetCertificateChain( chain_engine, cert_list.get(), NULL, // current system time cert_list->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { verify_result->cert_status |= CERT_STATUS_INVALID; return MapSecurityError(GetLastError()); } CRLSetResult crl_set_result = kCRLSetUnknown; if (crl_set) crl_set_result = CheckRevocationWithCRLSet(chain_context, crl_set); if (crl_set_result == kCRLSetRevoked) { verify_result->cert_status |= CERT_STATUS_REVOKED; } else if (crl_set_result == kCRLSetUnknown && (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY) && !rev_checking_enabled && ev_policy_oid != NULL) { // We don't have fresh information about this chain from the CRLSet and // it's probably an EV certificate. Retry with online revocation checking. rev_checking_enabled = true; chain_flags &= ~CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; CertFreeCertificateChain(chain_context); if (!CertGetCertificateChain( chain_engine, cert_list.get(), NULL, // current system time cert_list->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { verify_result->cert_status |= CERT_STATUS_INVALID; return MapSecurityError(GetLastError()); } } if (chain_context->TrustStatus.dwErrorStatus & CERT_TRUST_IS_NOT_VALID_FOR_USAGE) { ev_policy_oid = NULL; chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 0; chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = NULL; CertFreeCertificateChain(chain_context); if (!CertGetCertificateChain( chain_engine, cert_list.get(), NULL, // current system time cert_list->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { verify_result->cert_status |= CERT_STATUS_INVALID; return MapSecurityError(GetLastError()); } } CertVerifyResult temp_verify_result = *verify_result; GetCertChainInfo(chain_context, verify_result); if (!verify_result->is_issued_by_known_root && (flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS)) { *verify_result = temp_verify_result; rev_checking_enabled = true; verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; chain_flags &= ~CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; CertFreeCertificateChain(chain_context); if (!CertGetCertificateChain( chain_engine, cert_list.get(), NULL, // current system time cert_list->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { verify_result->cert_status |= CERT_STATUS_INVALID; return MapSecurityError(GetLastError()); } GetCertChainInfo(chain_context, verify_result); if (chain_context->TrustStatus.dwErrorStatus & CERT_TRUST_IS_OFFLINE_REVOCATION) { verify_result->cert_status |= CERT_STATUS_REVOKED; } } ScopedPCCERT_CHAIN_CONTEXT scoped_chain_context(chain_context); verify_result->cert_status |= MapCertChainErrorStatusToCertStatus( chain_context->TrustStatus.dwErrorStatus); // Flag certificates that have a Subject common name with a NULL character. if (CertSubjectCommonNameHasNull(cert_handle)) verify_result->cert_status |= CERT_STATUS_INVALID; base::string16 hostname16 = base::ASCIIToUTF16(hostname); SSL_EXTRA_CERT_CHAIN_POLICY_PARA extra_policy_para; memset(&extra_policy_para, 0, sizeof(extra_policy_para)); extra_policy_para.cbSize = sizeof(extra_policy_para); extra_policy_para.dwAuthType = AUTHTYPE_SERVER; // Certificate name validation happens separately, later, using an internal // routine that has better support for RFC 6125 name matching. extra_policy_para.fdwChecks = 0x00001000; // SECURITY_FLAG_IGNORE_CERT_CN_INVALID extra_policy_para.pwszServerName = const_cast(hostname16.c_str()); CERT_CHAIN_POLICY_PARA policy_para; memset(&policy_para, 0, sizeof(policy_para)); policy_para.cbSize = sizeof(policy_para); policy_para.dwFlags = 0; policy_para.pvExtraPolicyPara = &extra_policy_para; CERT_CHAIN_POLICY_STATUS policy_status; memset(&policy_status, 0, sizeof(policy_status)); policy_status.cbSize = sizeof(policy_status); if (!CertVerifyCertificateChainPolicy( CERT_CHAIN_POLICY_SSL, chain_context, &policy_para, &policy_status)) { return MapSecurityError(GetLastError()); } if (policy_status.dwError) { verify_result->cert_status |= MapNetErrorToCertStatus( MapSecurityError(policy_status.dwError)); } // TODO(wtc): Suppress CERT_STATUS_NO_REVOCATION_MECHANISM for now to be // compatible with WinHTTP, which doesn't report this error (bug 3004). verify_result->cert_status &= ~CERT_STATUS_NO_REVOCATION_MECHANISM; // Perform hostname verification independent of // CertVerifyCertificateChainPolicy. if (!cert->VerifyNameMatch(hostname, &verify_result->common_name_fallback_used)) { verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID; } if (!rev_checking_enabled) { // If we didn't do online revocation checking then Windows will report // CERT_UNABLE_TO_CHECK_REVOCATION unless it had cached OCSP or CRL // information for every certificate. We only want to put up revoked // statuses from the offline checks so we squash this error. verify_result->cert_status &= ~CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; } AppendPublicKeyHashes(chain_context, &verify_result->public_key_hashes); verify_result->is_issued_by_known_root = IsIssuedByKnownRoot(chain_context); if (IsCertStatusError(verify_result->cert_status)) return MapCertStatusToNetError(verify_result->cert_status); if (ev_policy_oid && CheckEV(chain_context, rev_checking_enabled, ev_policy_oid)) { verify_result->cert_status |= CERT_STATUS_IS_EV; } return OK; } } // namespace net