// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/ct_serialization.h" #include #include "base/files/file_path.h" #include "base/files/file_util.h" #include "net/base/net_log.h" #include "net/base/test_completion_callback.h" #include "net/base/test_data_directory.h" #include "net/cert/x509_certificate.h" #include "net/test/cert_test_util.h" #include "net/test/ct_test_util.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { class CtSerializationTest : public ::testing::Test { public: void SetUp() override { test_digitally_signed_ = ct::GetTestDigitallySigned(); } protected: std::string test_digitally_signed_; }; TEST_F(CtSerializationTest, DecodesDigitallySigned) { base::StringPiece digitally_signed(test_digitally_signed_); ct::DigitallySigned parsed; ASSERT_TRUE(ct::DecodeDigitallySigned(&digitally_signed, &parsed)); EXPECT_EQ( ct::DigitallySigned::HASH_ALGO_SHA256, parsed.hash_algorithm); EXPECT_EQ( ct::DigitallySigned::SIG_ALGO_ECDSA, parsed.signature_algorithm); // The encoded data contains the signature itself from the 4th byte. // The first bytes are: // 1 byte of hash algorithm // 1 byte of signature algorithm // 2 bytes - prefix containing length of the signature data. EXPECT_EQ( test_digitally_signed_.substr(4), parsed.signature_data); } TEST_F(CtSerializationTest, FailsToDecodePartialDigitallySigned) { base::StringPiece digitally_signed(test_digitally_signed_); base::StringPiece partial_digitally_signed( digitally_signed.substr(0, test_digitally_signed_.size() - 5)); ct::DigitallySigned parsed; ASSERT_FALSE(ct::DecodeDigitallySigned(&partial_digitally_signed, &parsed)); } TEST_F(CtSerializationTest, EncodesDigitallySigned) { ct::DigitallySigned digitally_signed; digitally_signed.hash_algorithm = ct::DigitallySigned::HASH_ALGO_SHA256; digitally_signed.signature_algorithm = ct::DigitallySigned::SIG_ALGO_ECDSA; digitally_signed.signature_data = test_digitally_signed_.substr(4); std::string encoded; ASSERT_TRUE(ct::EncodeDigitallySigned(digitally_signed, &encoded)); EXPECT_EQ(test_digitally_signed_, encoded); } TEST_F(CtSerializationTest, EncodesLogEntryForX509Cert) { ct::LogEntry entry; GetX509CertLogEntry(&entry); std::string encoded; ASSERT_TRUE(ct::EncodeLogEntry(entry, &encoded)); EXPECT_EQ((718U + 5U), encoded.size()); // First two bytes are log entry type. Next, length: // Length is 718 which is 512 + 206, which is 0x2ce std::string expected_prefix("\0\0\0\x2\xCE", 5); // Note we use std::string comparison rather than ASSERT_STREQ due // to null characters in the buffer. EXPECT_EQ(expected_prefix, encoded.substr(0, 5)); } TEST_F(CtSerializationTest, EncodesV1SCTSignedData) { base::Time timestamp = base::Time::UnixEpoch() + base::TimeDelta::FromMilliseconds(1348589665525); std::string dummy_entry("abc"); std::string empty_extensions; // For now, no known failure cases. std::string encoded; ASSERT_TRUE(ct::EncodeV1SCTSignedData( timestamp, dummy_entry, empty_extensions, &encoded)); EXPECT_EQ((size_t) 15, encoded.size()); // Byte 0 is version, byte 1 is signature type // Bytes 2-10 are timestamp // Bytes 11-14 are the log signature // Byte 15 is the empty extension //EXPECT_EQ(0, timestamp.ToTimeT()); std::string expected_buffer( "\x0\x0\x0\x0\x1\x39\xFE\x35\x3C\xF5\x61\x62\x63\x0\x0", 15); EXPECT_EQ(expected_buffer, encoded); } TEST_F(CtSerializationTest, DecodesSCTList) { // Two items in the list: "abc", "def" base::StringPiece encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x3\x64\x65\x66", 12); std::vector decoded; ASSERT_TRUE(ct::DecodeSCTList(&encoded, &decoded)); ASSERT_STREQ("abc", decoded[0].data()); ASSERT_STREQ("def", decoded[1].data()); } TEST_F(CtSerializationTest, FailsDecodingInvalidSCTList) { // A list with one item that's too short base::StringPiece encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x5\x64\x65\x66", 12); std::vector decoded; ASSERT_FALSE(ct::DecodeSCTList(&encoded, &decoded)); } TEST_F(CtSerializationTest, DecodesSignedCertificateTimestamp) { std::string encoded_test_sct(ct::GetTestSignedCertificateTimestamp()); base::StringPiece encoded_sct(encoded_test_sct); scoped_refptr sct; ASSERT_TRUE(ct::DecodeSignedCertificateTimestamp(&encoded_sct, &sct)); EXPECT_EQ(0, sct->version); EXPECT_EQ(ct::GetTestPublicKeyId(), sct->log_id); base::Time expected_time = base::Time::UnixEpoch() + base::TimeDelta::FromMilliseconds(1365181456089); EXPECT_EQ(expected_time, sct->timestamp); // Subtracting 4 bytes for signature data (hash & sig algs), // actual signature data should be 71 bytes. EXPECT_EQ((size_t) 71, sct->signature.signature_data.size()); EXPECT_TRUE(sct->extensions.empty()); } TEST_F(CtSerializationTest, FailsDecodingInvalidSignedCertificateTimestamp) { // Invalid version base::StringPiece invalid_version_sct("\x2\x0", 2); scoped_refptr sct; ASSERT_FALSE( ct::DecodeSignedCertificateTimestamp(&invalid_version_sct, &sct)); // Valid version, invalid length (missing data) base::StringPiece invalid_length_sct("\x0\xa\xb\xc", 4); ASSERT_FALSE( ct::DecodeSignedCertificateTimestamp(&invalid_length_sct, &sct)); } TEST_F(CtSerializationTest, EncodesValidSignedTreeHead) { ct::SignedTreeHead signed_tree_head; GetSignedTreeHead(&signed_tree_head); std::string encoded; ct::EncodeTreeHeadSignature(signed_tree_head, &encoded); // Expected size is 50 bytes: // Byte 0 is version, byte 1 is signature type // Bytes 2-9 are timestamp // Bytes 10-17 are tree size // Bytes 18-49 are sha256 root hash ASSERT_EQ(50u, encoded.length()); std::string expected_buffer( "\x0\x1\x0\x0\x1\x45\x3c\x5f\xb8\x35\x0\x0\x0\x0\x0\x0\x0\x15", 18); expected_buffer.append(ct::GetSampleSTHSHA256RootHash()); ASSERT_EQ(expected_buffer, encoded); } } // namespace net