// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/internal/name_constraints.h" #include "base/strings/string_util.h" #include "net/cert/internal/verify_name_match.h" #include "net/der/input.h" #include "net/der/parser.h" #include "net/der/tag.h" namespace net { namespace { // The name types of GeneralName that are fully supported in name constraints. // // (The other types will have the minimal checking described by RFC 5280 // section 4.2.1.10: If a name constraints extension that is marked as critical // imposes constraints on a particular name form, and an instance of // that name form appears in the subject field or subjectAltName // extension of a subsequent certificate, then the application MUST // either process the constraint or reject the certificate.) const int kSupportedNameTypes = GENERAL_NAME_DNS_NAME | GENERAL_NAME_DIRECTORY_NAME | GENERAL_NAME_IP_ADDRESS; // Controls wildcard handling of DNSNameMatches. // If WildcardMatchType is WILDCARD_PARTIAL_MATCH "*.bar.com" is considered to // match the constraint "foo.bar.com". If it is WILDCARD_FULL_MATCH, "*.bar.com" // will match "bar.com" but not "foo.bar.com". enum WildcardMatchType { WILDCARD_PARTIAL_MATCH, WILDCARD_FULL_MATCH }; // Returns true if |name| falls in the subtree defined by |dns_constraint|. // RFC 5280 section 4.2.1.10: // DNS name restrictions are expressed as host.example.com. Any DNS // name that can be constructed by simply adding zero or more labels // to the left-hand side of the name satisfies the name constraint. For // example, www.host.example.com would satisfy the constraint but // host1.example.com would not. // // |wildcard_matching| controls handling of wildcard names (|name| starts with // "*."). Wildcard handling is not specified by RFC 5280, but certificate // verification allows it, name constraints must check it similarly. bool DNSNameMatches(base::StringPiece name, base::StringPiece dns_constraint, WildcardMatchType wildcard_matching) { // Everything matches the empty DNS name constraint. if (dns_constraint.empty()) return true; // Normalize absolute DNS names by removing the trailing dot, if any. if (!name.empty() && *name.rbegin() == '.') name.remove_suffix(1); if (!dns_constraint.empty() && *dns_constraint.rbegin() == '.') dns_constraint.remove_suffix(1); // Wildcard partial-match handling ("*.bar.com" matching name constraint // "foo.bar.com"). This only handles the case where the the dnsname and the // constraint match after removing the leftmost label, otherwise it is handled // by falling through to the check of whether the dnsname is fully within or // fully outside of the constraint. if (wildcard_matching == WILDCARD_PARTIAL_MATCH && name.size() > 2 && name[0] == '*' && name[1] == '.') { size_t dns_constraint_dot_pos = dns_constraint.find('.'); if (dns_constraint_dot_pos != std::string::npos) { base::StringPiece dns_constraint_domain( dns_constraint.begin() + dns_constraint_dot_pos + 1, dns_constraint.size() - dns_constraint_dot_pos - 1); base::StringPiece wildcard_domain(name.begin() + 2, name.size() - 2); if (base::EqualsCaseInsensitiveASCII(wildcard_domain, dns_constraint_domain)) { return true; } } } if (!base::EndsWith(name, dns_constraint, base::CompareCase::INSENSITIVE_ASCII)) { return false; } // Exact match. if (name.size() == dns_constraint.size()) return true; // Subtree match. if (name.size() > dns_constraint.size() && name[name.size() - dns_constraint.size() - 1] == '.') { return true; } // Trailing text matches, but not in a subtree (e.g., "foobar.com" is not a // match for "bar.com"). return false; } // Return true if the bitmask |mask| contains only zeros after the first // |prefix_length| bits. bool IsSuffixZero(const std::vector<uint8_t>& mask, unsigned prefix_length) { size_t zero_bits = mask.size() * CHAR_BIT - prefix_length; size_t zero_bytes = zero_bits / CHAR_BIT; std::vector<uint8_t> zeros(zero_bytes, 0); if (memcmp(zeros.data(), mask.data() + mask.size() - zero_bytes, zero_bytes)) return false; size_t leftover_bits = zero_bits % CHAR_BIT; if (leftover_bits) { uint8_t b = mask[mask.size() - zero_bytes - 1]; for (size_t i = 0; i < leftover_bits; ++i) { if (b & (1 << i)) return false; } } return true; } // Controls handling of unsupported name types in ParseGeneralName. (Unsupported // types are those not in kSupportedNameTypes.) // RECORD_UNSUPPORTED causes unsupported types to be recorded in // |present_name_types|. // IGNORE_UNSUPPORTED causes unsupported types to not be recorded. enum ParseGeneralNameUnsupportedTypeBehavior { RECORD_UNSUPPORTED, IGNORE_UNSUPPORTED, }; // Controls parsing of iPAddress names in ParseGeneralName. // IP_ADDRESS_ONLY parses the iPAddress names as a 4 or 16 byte IP address. // IP_ADDRESS_AND_NETMASK parses the iPAddress names as 8 or 32 bytes containing // an IP address followed by a netmask. enum ParseGeneralNameIPAddressType { IP_ADDRESS_ONLY, IP_ADDRESS_AND_NETMASK, }; // Parses a GeneralName value and adds it to |subtrees|. WARN_UNUSED_RESULT bool ParseGeneralName( const der::Input& input, ParseGeneralNameUnsupportedTypeBehavior unsupported_type_behavior, ParseGeneralNameIPAddressType ip_address_type, NameConstraints::GeneralNames* subtrees) { der::Parser parser(input); der::Tag tag; der::Input value; if (!parser.ReadTagAndValue(&tag, &value)) return false; if (!der::IsContextSpecific(tag)) return false; GeneralNameTypes name_type = GENERAL_NAME_NONE; // GeneralName ::= CHOICE { switch (der::GetTagNumber(tag)) { // otherName [0] OtherName, case 0: if (!der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_OTHER_NAME; break; // rfc822Name [1] IA5String, case 1: if (der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_RFC822_NAME; break; // dNSName [2] IA5String, case 2: { if (der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_DNS_NAME; const std::string s = value.AsString(); if (!base::IsStringASCII(s)) return false; subtrees->dns_names.push_back(s); break; } // x400Address [3] ORAddress, case 3: if (!der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_X400_ADDRESS; break; // directoryName [4] Name, case 4: if (!der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_DIRECTORY_NAME; subtrees->directory_names.push_back(std::vector<uint8_t>( value.UnsafeData(), value.UnsafeData() + value.Length())); break; // ediPartyName [5] EDIPartyName, case 5: if (!der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_EDI_PARTY_NAME; break; // uniformResourceIdentifier [6] IA5String, case 6: if (der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER; break; // iPAddress [7] OCTET STRING, case 7: if (der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_IP_ADDRESS; if (ip_address_type == IP_ADDRESS_ONLY) { // RFC 5280 section 4.2.1.6: // When the subjectAltName extension contains an iPAddress, the address // MUST be stored in the octet string in "network byte order", as // specified in [RFC791]. The least significant bit (LSB) of each octet // is the LSB of the corresponding byte in the network address. For IP // version 4, as specified in [RFC791], the octet string MUST contain // exactly four octets. For IP version 6, as specified in [RFC2460], // the octet string MUST contain exactly sixteen octets. if ((value.Length() != kIPv4AddressSize && value.Length() != kIPv6AddressSize)) { return false; } subtrees->ip_addresses.push_back(std::vector<uint8_t>( value.UnsafeData(), value.UnsafeData() + value.Length())); } else { DCHECK_EQ(ip_address_type, IP_ADDRESS_AND_NETMASK); // RFC 5280 section 4.2.1.10: // The syntax of iPAddress MUST be as described in Section 4.2.1.6 with // the following additions specifically for name constraints. For IPv4 // addresses, the iPAddress field of GeneralName MUST contain eight (8) // octets, encoded in the style of RFC 4632 (CIDR) to represent an // address range [RFC4632]. For IPv6 addresses, the iPAddress field // MUST contain 32 octets similarly encoded. For example, a name // constraint for "class C" subnet 192.0.2.0 is represented as the // octets C0 00 02 00 FF FF FF 00, representing the CIDR notation // 192.0.2.0/24 (mask 255.255.255.0). if (value.Length() != kIPv4AddressSize * 2 && value.Length() != kIPv6AddressSize * 2) { return false; } const std::vector<uint8_t> mask(value.UnsafeData() + value.Length() / 2, value.UnsafeData() + value.Length()); const unsigned mask_prefix_length = MaskPrefixLength(mask); if (!IsSuffixZero(mask, mask_prefix_length)) return false; subtrees->ip_address_ranges.push_back(std::make_pair( std::vector<uint8_t>(value.UnsafeData(), value.UnsafeData() + value.Length() / 2), mask_prefix_length)); } break; // registeredID [8] OBJECT IDENTIFIER } case 8: if (der::IsConstructed(tag)) return false; name_type = GENERAL_NAME_REGISTERED_ID; break; default: return false; } DCHECK_NE(GENERAL_NAME_NONE, name_type); if ((name_type & kSupportedNameTypes) || unsupported_type_behavior == RECORD_UNSUPPORTED) { subtrees->present_name_types |= name_type; } return true; } // Parses a GeneralSubtrees |value| and store the contents in |subtrees|. // The individual values stored into |subtrees| are not validated by this // function. // NOTE: |subtrees| will be modified regardless of the return. WARN_UNUSED_RESULT bool ParseGeneralSubtrees( const der::Input& value, bool is_critical, NameConstraints::GeneralNames* subtrees) { // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree // // GeneralSubtree ::= SEQUENCE { // base GeneralName, // minimum [0] BaseDistance DEFAULT 0, // maximum [1] BaseDistance OPTIONAL } // // BaseDistance ::= INTEGER (0..MAX) der::Parser sequence_parser(value); // The GeneralSubtrees sequence should have at least 1 element. if (!sequence_parser.HasMore()) return false; while (sequence_parser.HasMore()) { der::Parser subtree_sequence; if (!sequence_parser.ReadSequence(&subtree_sequence)) return false; der::Input raw_general_name; if (!subtree_sequence.ReadRawTLV(&raw_general_name)) return false; if (!ParseGeneralName(raw_general_name, is_critical ? RECORD_UNSUPPORTED : IGNORE_UNSUPPORTED, IP_ADDRESS_AND_NETMASK, subtrees)) { return false; } // RFC 5280 section 4.2.1.10: // Within this profile, the minimum and maximum fields are not used with any // name forms, thus, the minimum MUST be zero, and maximum MUST be absent. // However, if an application encounters a critical name constraints // extension that specifies other values for minimum or maximum for a name // form that appears in a subsequent certificate, the application MUST // either process these fields or reject the certificate. // Note that technically failing here isn't required: rather only need to // fail if a name of this type actually appears in a subsequent cert and // this extension was marked critical. However the minimum and maximum // fields appear uncommon enough that implementing that isn't useful. if (subtree_sequence.HasMore()) return false; } return true; } } // namespace NameConstraints::GeneralNames::GeneralNames() {} NameConstraints::GeneralNames::~GeneralNames() {} NameConstraints::~NameConstraints() {} // static scoped_ptr<NameConstraints> NameConstraints::CreateFromDer( const der::Input& extension_value, bool is_critical) { scoped_ptr<NameConstraints> name_constraints(new NameConstraints()); if (!name_constraints->Parse(extension_value, is_critical)) return nullptr; return name_constraints; } bool NameConstraints::Parse(const der::Input& extension_value, bool is_critical) { der::Parser extension_parser(extension_value); der::Parser sequence_parser; // NameConstraints ::= SEQUENCE { // permittedSubtrees [0] GeneralSubtrees OPTIONAL, // excludedSubtrees [1] GeneralSubtrees OPTIONAL } if (!extension_parser.ReadSequence(&sequence_parser)) return false; if (extension_parser.HasMore()) return false; bool had_permitted_subtrees = false; der::Input permitted_subtrees_value; if (!sequence_parser.ReadOptionalTag(der::ContextSpecificConstructed(0), &permitted_subtrees_value, &had_permitted_subtrees)) { return false; } if (had_permitted_subtrees && !ParseGeneralSubtrees(permitted_subtrees_value, is_critical, &permitted_subtrees_)) { return false; } bool had_excluded_subtrees = false; der::Input excluded_subtrees_value; if (!sequence_parser.ReadOptionalTag(der::ContextSpecificConstructed(1), &excluded_subtrees_value, &had_excluded_subtrees)) { return false; } if (had_excluded_subtrees && !ParseGeneralSubtrees(excluded_subtrees_value, is_critical, &excluded_subtrees_)) { return false; } // RFC 5280 section 4.2.1.10: // Conforming CAs MUST NOT issue certificates where name constraints is an // empty sequence. That is, either the permittedSubtrees field or the // excludedSubtrees MUST be present. if (!had_permitted_subtrees && !had_excluded_subtrees) return false; if (sequence_parser.HasMore()) return false; return true; } bool NameConstraints::IsPermittedCert( const der::Input& subject_rdn_sequence, const der::Input& subject_alt_name_extnvalue_tlv) const { // Subject Alternative Name handling: // // RFC 5280 section 4.2.1.6: // id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 } // // SubjectAltName ::= GeneralNames // // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName GeneralNames san_names; if (subject_alt_name_extnvalue_tlv.Length()) { der::Parser extnvalue_parser(subject_alt_name_extnvalue_tlv); der::Input subject_alt_name_tlv; if (!extnvalue_parser.ReadTag(der::kOctetString, &subject_alt_name_tlv)) return false; der::Parser subject_alt_name_parser(subject_alt_name_tlv); der::Parser san_sequence_parser; if (!subject_alt_name_parser.ReadSequence(&san_sequence_parser)) return false; // Should not have trailing data after subjectAltName sequence. if (subject_alt_name_parser.HasMore()) return false; // The subjectAltName sequence should have at least 1 element. if (!san_sequence_parser.HasMore()) return false; while (san_sequence_parser.HasMore()) { der::Input raw_general_name; if (!san_sequence_parser.ReadRawTLV(&raw_general_name)) return false; if (!ParseGeneralName(raw_general_name, RECORD_UNSUPPORTED, IP_ADDRESS_ONLY, &san_names)) return false; } // Check unsupported name types: // ConstrainedNameTypes for the unsupported types will only be true if that // type of name was present in a name constraint that was marked critical. // // RFC 5280 section 4.2.1.10: // If a name constraints extension that is marked as critical // imposes constraints on a particular name form, and an instance of // that name form appears in the subject field or subjectAltName // extension of a subsequent certificate, then the application MUST // either process the constraint or reject the certificate. if (ConstrainedNameTypes() & san_names.present_name_types & ~kSupportedNameTypes) { return false; } // Check supported name types: for (const auto& dns_name : san_names.dns_names) { if (!IsPermittedDNSName(dns_name)) return false; } for (const auto& directory_name : san_names.directory_names) { if (!IsPermittedDirectoryName( der::Input(directory_name.data(), directory_name.size()))) { return false; } } for (const auto& ip_address : san_names.ip_addresses) { if (!IsPermittedIP(ip_address)) return false; } } // Subject handling: // RFC 5280 section 4.2.1.10: // Legacy implementations exist where an electronic mail address is embedded // in the subject distinguished name in an attribute of type emailAddress // (Section 4.1.2.6). When constraints are imposed on the rfc822Name name // form, but the certificate does not include a subject alternative name, the // rfc822Name constraint MUST be applied to the attribute of type emailAddress // in the subject distinguished name. if (!subject_alt_name_extnvalue_tlv.Length() && (ConstrainedNameTypes() & GENERAL_NAME_RFC822_NAME)) { bool contained_email_address = false; if (!NameContainsEmailAddress(subject_rdn_sequence, &contained_email_address)) { return false; } if (contained_email_address) return false; } // RFC 5280 4.1.2.6: // If subject naming information is present only in the subjectAltName // extension (e.g., a key bound only to an email address or URI), then the // subject name MUST be an empty sequence and the subjectAltName extension // MUST be critical. // This code assumes that criticality condition is checked by the caller, and // therefore only needs to avoid the IsPermittedDirectoryName check against an // empty subject in such a case. if (subject_alt_name_extnvalue_tlv.Length() && subject_rdn_sequence.Length() == 0) { return true; } return IsPermittedDirectoryName(subject_rdn_sequence); } bool NameConstraints::IsPermittedDNSName(const std::string& name) const { // If there are no name constraints for DNS names, all names are accepted. if (!(ConstrainedNameTypes() & GENERAL_NAME_DNS_NAME)) return true; for (const std::string& excluded_name : excluded_subtrees_.dns_names) { // When matching wildcard hosts against excluded subtrees, consider it a // match if the constraint would match any expansion of the wildcard. Eg, // *.bar.com should match a constraint of foo.bar.com. if (DNSNameMatches(name, excluded_name, WILDCARD_PARTIAL_MATCH)) return false; } for (const std::string& permitted_name : permitted_subtrees_.dns_names) { // When matching wildcard hosts against permitted subtrees, consider it a // match only if the constraint would match all expansions of the wildcard. // Eg, *.bar.com should match a constraint of bar.com, but not foo.bar.com. if (DNSNameMatches(name, permitted_name, WILDCARD_FULL_MATCH)) return true; } return false; } bool NameConstraints::IsPermittedDirectoryName( const der::Input& name_rdn_sequence) const { // If there are no name constraints for directory names, all names are // accepted. if (!(ConstrainedNameTypes() & GENERAL_NAME_DIRECTORY_NAME)) return true; for (const auto& excluded_name : excluded_subtrees_.directory_names) { if (VerifyNameInSubtree( name_rdn_sequence, der::Input(excluded_name.data(), excluded_name.size()))) { return false; } } for (const auto& permitted_name : permitted_subtrees_.directory_names) { if (VerifyNameInSubtree( name_rdn_sequence, der::Input(permitted_name.data(), permitted_name.size()))) { return true; } } return false; } bool NameConstraints::IsPermittedIP(const IPAddressNumber& ip) const { // If there are no name constraints for IP Address names, all names are // accepted. if (!(ConstrainedNameTypes() & GENERAL_NAME_IP_ADDRESS)) return true; for (const auto& excluded_ip : excluded_subtrees_.ip_address_ranges) { if (IPNumberMatchesPrefix(ip, excluded_ip.first, excluded_ip.second)) return false; } for (const auto& permitted_ip : permitted_subtrees_.ip_address_ranges) { if (IPNumberMatchesPrefix(ip, permitted_ip.first, permitted_ip.second)) return true; } return false; } int NameConstraints::ConstrainedNameTypes() const { return (permitted_subtrees_.present_name_types | excluded_subtrees_.present_name_types); } } // namespace net