// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/x509_certificate.h" #include #include #include #include #include #include #include "base/base64.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "base/memory/singleton.h" #include "base/metrics/histogram_macros.h" #include "base/pickle.h" #include "base/profiler/scoped_tracker.h" #include "base/sha1.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "base/synchronization/lock.h" #include "base/time/time.h" #include "crypto/secure_hash.h" #include "net/base/registry_controlled_domains/registry_controlled_domain.h" #include "net/base/url_util.h" #include "net/cert/pem_tokenizer.h" #include "url/url_canon.h" namespace net { namespace { // Indicates the order to use when trying to decode binary data, which is // based on (speculation) as to what will be most common -> least common const X509Certificate::Format kFormatDecodePriority[] = { X509Certificate::FORMAT_SINGLE_CERTIFICATE, X509Certificate::FORMAT_PKCS7 }; // The PEM block header used for DER certificates const char kCertificateHeader[] = "CERTIFICATE"; // The PEM block header used for PKCS#7 data const char kPKCS7Header[] = "PKCS7"; #if !defined(USE_NSS_CERTS) // A thread-safe cache for OS certificate handles. // // Within each of the supported underlying crypto libraries, a certificate // handle is represented as a ref-counted object that contains the parsed // data for the certificate. In addition, the underlying OS handle may also // contain a copy of the original ASN.1 DER used to constructed the handle. // // In order to reduce the memory usage when multiple SSL connections exist, // with each connection storing the server's identity certificate plus any // intermediates supplied, the certificate handles are cached. Any two // X509Certificates that were created from the same ASN.1 DER data, // regardless of where that data came from, will share the same underlying // OS certificate handle. class X509CertificateCache { public: // Performs a compare-and-swap like operation. If an OS certificate handle // for the same certificate data as |*cert_handle| already exists in the // cache, the original |*cert_handle| will be freed and |cert_handle| // will be updated to point to a duplicated reference to the existing cached // certificate, with the caller taking ownership of this duplicated handle. // If an equivalent OS certificate handle is not found, a duplicated // reference to |*cert_handle| will be added to the cache. In either case, // upon return, the caller fully owns |*cert_handle| and is responsible for // calling FreeOSCertHandle(), after first calling Remove(). void InsertOrUpdate(X509Certificate::OSCertHandle* cert_handle); // Decrements the cache reference count for |cert_handle|, a handle that was // previously obtained by calling InsertOrUpdate(). If this is the last // cached reference held, this will remove the handle from the cache. The // caller retains ownership of |cert_handle| and remains responsible for // calling FreeOSCertHandle() to release the underlying OS certificate void Remove(X509Certificate::OSCertHandle cert_handle); private: // A single entry in the cache. Certificates will be keyed by their SHA1 // fingerprints, but will not be considered equivalent unless the entire // certificate data matches. struct Entry { Entry() : cert_handle(NULL), ref_count(0) {} X509Certificate::OSCertHandle cert_handle; // Increased by each call to InsertOrUpdate(), and balanced by each call // to Remove(). When it equals 0, all references created by // InsertOrUpdate() have been released, so the cache entry will be removed // the cached OS certificate handle will be freed. int ref_count; }; typedef std::map CertMap; // Obtain an instance of X509CertificateCache via a LazyInstance. X509CertificateCache() {} ~X509CertificateCache() {} friend struct base::DefaultLazyInstanceTraits; // You must acquire this lock before using any private data of this object // You must not block while holding this lock. base::Lock lock_; // The certificate cache. You must acquire |lock_| before using |cache_|. CertMap cache_; DISALLOW_COPY_AND_ASSIGN(X509CertificateCache); }; base::LazyInstance::Leaky g_x509_certificate_cache = LAZY_INSTANCE_INITIALIZER; void X509CertificateCache::InsertOrUpdate( X509Certificate::OSCertHandle* cert_handle) { DCHECK(cert_handle); SHA1HashValue fingerprint = X509Certificate::CalculateFingerprint(*cert_handle); X509Certificate::OSCertHandle old_handle = NULL; { base::AutoLock lock(lock_); CertMap::iterator pos = cache_.find(fingerprint); if (pos == cache_.end()) { // A cached entry was not found, so initialize a new entry. The entry // assumes ownership of the current |*cert_handle|. Entry cache_entry; cache_entry.cert_handle = *cert_handle; cache_entry.ref_count = 0; CertMap::value_type cache_value(fingerprint, cache_entry); pos = cache_.insert(cache_value).first; } else { bool is_same_cert = X509Certificate::IsSameOSCert(*cert_handle, pos->second.cert_handle); if (!is_same_cert) { // Two certificates don't match, due to a SHA1 hash collision. Given // the low probability, the simplest solution is to not cache the // certificate, which should not affect performance too negatively. return; } // A cached entry was found and will be used instead of the caller's // handle. Ensure the caller's original handle will be freed, since // ownership is assumed. old_handle = *cert_handle; } // Whether an existing cached handle or a new handle, increment the // cache's reference count and return a handle that the caller can own. ++pos->second.ref_count; *cert_handle = X509Certificate::DupOSCertHandle(pos->second.cert_handle); } // If the caller's handle was replaced with a cached handle, free the // original handle now. This is done outside of the lock because // |old_handle| may be the only handle for this particular certificate, so // freeing it may be complex or resource-intensive and does not need to // be guarded by the lock. if (old_handle) { X509Certificate::FreeOSCertHandle(old_handle); #ifndef NDEBUG LOCAL_HISTOGRAM_BOOLEAN("X509CertificateReuseCount", true); #endif } } void X509CertificateCache::Remove(X509Certificate::OSCertHandle cert_handle) { SHA1HashValue fingerprint = X509Certificate::CalculateFingerprint(cert_handle); base::AutoLock lock(lock_); CertMap::iterator pos = cache_.find(fingerprint); if (pos == cache_.end()) return; // A hash collision where the winning cert was already freed. bool is_same_cert = X509Certificate::IsSameOSCert(cert_handle, pos->second.cert_handle); if (!is_same_cert) return; // A hash collision where the winning cert is still around. if (--pos->second.ref_count == 0) { // The last reference to |cert_handle| has been removed, so release the // Entry's OS handle and remove the Entry. The caller still holds a // reference to |cert_handle| and is responsible for freeing it. X509Certificate::FreeOSCertHandle(pos->second.cert_handle); cache_.erase(pos); } } #endif // !defined(USE_NSS_CERTS) // See X509CertificateCache::InsertOrUpdate. NSS has a built-in cache, so there // is no point in wrapping another cache around it. void InsertOrUpdateCache(X509Certificate::OSCertHandle* cert_handle) { #if !defined(USE_NSS_CERTS) g_x509_certificate_cache.Pointer()->InsertOrUpdate(cert_handle); #endif } // See X509CertificateCache::Remove. void RemoveFromCache(X509Certificate::OSCertHandle cert_handle) { #if !defined(USE_NSS_CERTS) g_x509_certificate_cache.Pointer()->Remove(cert_handle); #endif } // Utility to split |src| on the first occurrence of |c|, if any. |right| will // either be empty if |c| was not found, or will contain the remainder of the // string including the split character itself. void SplitOnChar(const base::StringPiece& src, char c, base::StringPiece* left, base::StringPiece* right) { size_t pos = src.find(c); if (pos == base::StringPiece::npos) { *left = src; right->clear(); } else { *left = src.substr(0, pos); *right = src.substr(pos); } } } // namespace bool X509Certificate::LessThan::operator()( const scoped_refptr& lhs, const scoped_refptr& rhs) const { if (lhs.get() == rhs.get()) return false; int rv = memcmp(lhs->fingerprint_.data, rhs->fingerprint_.data, sizeof(lhs->fingerprint_.data)); if (rv != 0) return rv < 0; rv = memcmp(lhs->ca_fingerprint_.data, rhs->ca_fingerprint_.data, sizeof(lhs->ca_fingerprint_.data)); return rv < 0; } X509Certificate::X509Certificate(const std::string& subject, const std::string& issuer, base::Time start_date, base::Time expiration_date) : subject_(subject), issuer_(issuer), valid_start_(start_date), valid_expiry_(expiration_date), cert_handle_(NULL) { memset(fingerprint_.data, 0, sizeof(fingerprint_.data)); memset(ca_fingerprint_.data, 0, sizeof(ca_fingerprint_.data)); } // static scoped_refptr X509Certificate::CreateFromHandle( OSCertHandle cert_handle, const OSCertHandles& intermediates) { DCHECK(cert_handle); return new X509Certificate(cert_handle, intermediates); } // static scoped_refptr X509Certificate::CreateFromDERCertChain( const std::vector& der_certs) { // TODO(cbentzel): Remove ScopedTracker below once crbug.com/424386 is fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION( "424386 X509Certificate::CreateFromDERCertChain")); if (der_certs.empty()) return NULL; X509Certificate::OSCertHandles intermediate_ca_certs; for (size_t i = 1; i < der_certs.size(); i++) { OSCertHandle handle = CreateOSCertHandleFromBytes( const_cast(der_certs[i].data()), der_certs[i].size()); if (!handle) break; intermediate_ca_certs.push_back(handle); } OSCertHandle handle = NULL; // Return NULL if we failed to parse any of the certs. if (der_certs.size() - 1 == intermediate_ca_certs.size()) { handle = CreateOSCertHandleFromBytes( const_cast(der_certs[0].data()), der_certs[0].size()); } scoped_refptr cert = nullptr; if (handle) { cert = CreateFromHandle(handle, intermediate_ca_certs); FreeOSCertHandle(handle); } for (size_t i = 0; i < intermediate_ca_certs.size(); i++) FreeOSCertHandle(intermediate_ca_certs[i]); return cert; } // static scoped_refptr X509Certificate::CreateFromBytes( const char* data, size_t length) { OSCertHandle cert_handle = CreateOSCertHandleFromBytes(data, length); if (!cert_handle) return NULL; scoped_refptr cert = CreateFromHandle(cert_handle, OSCertHandles()); FreeOSCertHandle(cert_handle); return cert; } // static scoped_refptr X509Certificate::CreateFromPickle( base::PickleIterator* pickle_iter, PickleType type) { if (type == PICKLETYPE_CERTIFICATE_CHAIN_V3) { int chain_length = 0; if (!pickle_iter->ReadLength(&chain_length)) return NULL; std::vector cert_chain; const char* data = NULL; int data_length = 0; for (int i = 0; i < chain_length; ++i) { if (!pickle_iter->ReadData(&data, &data_length)) return NULL; cert_chain.push_back(base::StringPiece(data, data_length)); } return CreateFromDERCertChain(cert_chain); } // Legacy / Migration code. This should eventually be removed once // sufficient time has passed that all pickles serialized prior to // PICKLETYPE_CERTIFICATE_CHAIN_V3 have been removed. OSCertHandle cert_handle = ReadOSCertHandleFromPickle(pickle_iter); if (!cert_handle) return NULL; OSCertHandles intermediates; uint32_t num_intermediates = 0; if (type != PICKLETYPE_SINGLE_CERTIFICATE) { if (!pickle_iter->ReadUInt32(&num_intermediates)) { FreeOSCertHandle(cert_handle); return NULL; } #if defined(OS_POSIX) && !defined(OS_MACOSX) && defined(__x86_64__) // On 64-bit Linux (and any other 64-bit platforms), the intermediate count // might really be a 64-bit field since we used to use Pickle::WriteSize(), // which writes either 32 or 64 bits depending on the architecture. Since // x86-64 is little-endian, if that happens, the next 32 bits will be all // zeroes (the high bits) and the 32 bits we already read above are the // correct value (we assume there are never more than 2^32 - 1 intermediate // certificates in a chain; in practice, more than a dozen or so is // basically unheard of). Since it's invalid for a certificate to start with // 32 bits of zeroes, we check for that here and skip it if we find it. We // save a copy of the pickle iterator to restore in case we don't get 32 // bits of zeroes. Now we always write 32 bits, so after a while, these old // cached pickles will all get replaced. // TODO(mdm): remove this compatibility code in April 2013 or so. base::PickleIterator saved_iter = *pickle_iter; uint32_t zero_check = 0; if (!pickle_iter->ReadUInt32(&zero_check)) { // This may not be an error. If there are no intermediates, and we're // reading an old 32-bit pickle, and there's nothing else after this in // the pickle, we should report success. Note that it is technically // possible for us to skip over zeroes that should have occurred after // an empty certificate list; to avoid this going forward, only do this // backward-compatibility stuff for PICKLETYPE_CERTIFICATE_CHAIN_V1 // which comes from the pickle version number in http_response_info.cc. if (num_intermediates) { FreeOSCertHandle(cert_handle); return NULL; } } if (zero_check) *pickle_iter = saved_iter; #endif // defined(OS_POSIX) && !defined(OS_MACOSX) && defined(__x86_64__) for (uint32_t i = 0; i < num_intermediates; ++i) { OSCertHandle intermediate = ReadOSCertHandleFromPickle(pickle_iter); if (!intermediate) break; intermediates.push_back(intermediate); } } scoped_refptr cert = nullptr; if (intermediates.size() == num_intermediates) cert = CreateFromHandle(cert_handle, intermediates); FreeOSCertHandle(cert_handle); for (size_t i = 0; i < intermediates.size(); ++i) FreeOSCertHandle(intermediates[i]); return cert; } // static CertificateList X509Certificate::CreateCertificateListFromBytes( const char* data, size_t length, int format) { OSCertHandles certificates; // Check to see if it is in a PEM-encoded form. This check is performed // first, as both OS X and NSS will both try to convert if they detect // PEM encoding, except they don't do it consistently between the two. base::StringPiece data_string(data, length); std::vector pem_headers; // To maintain compatibility with NSS/Firefox, CERTIFICATE is a universally // valid PEM block header for any format. pem_headers.push_back(kCertificateHeader); if (format & FORMAT_PKCS7) pem_headers.push_back(kPKCS7Header); PEMTokenizer pem_tokenizer(data_string, pem_headers); while (pem_tokenizer.GetNext()) { std::string decoded(pem_tokenizer.data()); OSCertHandle handle = NULL; if (format & FORMAT_PEM_CERT_SEQUENCE) handle = CreateOSCertHandleFromBytes(decoded.c_str(), decoded.size()); if (handle != NULL) { // Parsed a DER encoded certificate. All PEM blocks that follow must // also be DER encoded certificates wrapped inside of PEM blocks. format = FORMAT_PEM_CERT_SEQUENCE; certificates.push_back(handle); continue; } // If the first block failed to parse as a DER certificate, and // formats other than PEM are acceptable, check to see if the decoded // data is one of the accepted formats. if (format & ~FORMAT_PEM_CERT_SEQUENCE) { for (size_t i = 0; certificates.empty() && i < arraysize(kFormatDecodePriority); ++i) { if (format & kFormatDecodePriority[i]) { certificates = CreateOSCertHandlesFromBytes(decoded.c_str(), decoded.size(), kFormatDecodePriority[i]); } } } // Stop parsing after the first block for any format but a sequence of // PEM-encoded DER certificates. The case of FORMAT_PEM_CERT_SEQUENCE // is handled above, and continues processing until a certificate fails // to parse. break; } // Try each of the formats, in order of parse preference, to see if |data| // contains the binary representation of a Format, if it failed to parse // as a PEM certificate/chain. for (size_t i = 0; certificates.empty() && i < arraysize(kFormatDecodePriority); ++i) { if (format & kFormatDecodePriority[i]) certificates = CreateOSCertHandlesFromBytes(data, length, kFormatDecodePriority[i]); } CertificateList results; // No certificates parsed. if (certificates.empty()) return results; for (OSCertHandles::iterator it = certificates.begin(); it != certificates.end(); ++it) { results.push_back(CreateFromHandle(*it, OSCertHandles())); FreeOSCertHandle(*it); } return results; } void X509Certificate::Persist(base::Pickle* pickle) { DCHECK(cert_handle_); // This would be an absolutely insane number of intermediates. if (intermediate_ca_certs_.size() > static_cast(INT_MAX) - 1) { NOTREACHED(); return; } if (!pickle->WriteInt( static_cast(intermediate_ca_certs_.size() + 1)) || !WriteOSCertHandleToPickle(cert_handle_, pickle)) { NOTREACHED(); return; } for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) { if (!WriteOSCertHandleToPickle(intermediate_ca_certs_[i], pickle)) { NOTREACHED(); return; } } } void X509Certificate::GetDNSNames(std::vector* dns_names) const { GetSubjectAltName(dns_names, NULL); if (dns_names->empty()) dns_names->push_back(subject_.common_name); } bool X509Certificate::HasExpired() const { return base::Time::Now() > valid_expiry(); } bool X509Certificate::Equals(const X509Certificate* other) const { return IsSameOSCert(cert_handle_, other->cert_handle_); } // static bool X509Certificate::VerifyHostname( const std::string& hostname, const std::string& cert_common_name, const std::vector& cert_san_dns_names, const std::vector& cert_san_ip_addrs, bool* common_name_fallback_used) { DCHECK(!hostname.empty()); // Perform name verification following http://tools.ietf.org/html/rfc6125. // The terminology used in this method is as per that RFC:- // Reference identifier == the host the local user/agent is intending to // access, i.e. the thing displayed in the URL bar. // Presented identifier(s) == name(s) the server knows itself as, in its cert. // CanonicalizeHost requires surrounding brackets to parse an IPv6 address. const std::string host_or_ip = hostname.find(':') != std::string::npos ? "[" + hostname + "]" : hostname; url::CanonHostInfo host_info; std::string reference_name = CanonicalizeHost(host_or_ip, &host_info); // CanonicalizeHost does not normalize absolute vs relative DNS names. If // the input name was absolute (included trailing .), normalize it as if it // was relative. if (!reference_name.empty() && *reference_name.rbegin() == '.') reference_name.resize(reference_name.size() - 1); if (reference_name.empty()) return false; // Allow fallback to Common name matching? const bool common_name_fallback = cert_san_dns_names.empty() && cert_san_ip_addrs.empty(); *common_name_fallback_used = common_name_fallback; // Fully handle all cases where |hostname| contains an IP address. if (host_info.IsIPAddress()) { if (common_name_fallback && host_info.family == url::CanonHostInfo::IPV4) { // Fallback to Common name matching. As this is deprecated and only // supported for compatibility refuse it for IPv6 addresses. return reference_name == cert_common_name; } base::StringPiece ip_addr_string( reinterpret_cast(host_info.address), host_info.AddressLength()); return std::find(cert_san_ip_addrs.begin(), cert_san_ip_addrs.end(), ip_addr_string) != cert_san_ip_addrs.end(); } // |reference_domain| is the remainder of |host| after the leading host // component is stripped off, but includes the leading dot e.g. // "www.f.com" -> ".f.com". // If there is no meaningful domain part to |host| (e.g. it contains no dots) // then |reference_domain| will be empty. base::StringPiece reference_host, reference_domain; SplitOnChar(reference_name, '.', &reference_host, &reference_domain); bool allow_wildcards = false; if (!reference_domain.empty()) { DCHECK(reference_domain.starts_with(".")); // Do not allow wildcards for public/ICANN registry controlled domains - // that is, prevent *.com or *.co.uk as valid presented names, but do not // prevent *.appspot.com (a private registry controlled domain). // In addition, unknown top-level domains (such as 'intranet' domains or // new TLDs/gTLDs not yet added to the registry controlled domain dataset) // are also implicitly prevented. // Because |reference_domain| must contain at least one name component that // is not registry controlled, this ensures that all reference domains // contain at least three domain components when using wildcards. size_t registry_length = registry_controlled_domains::GetRegistryLength( reference_name, registry_controlled_domains::INCLUDE_UNKNOWN_REGISTRIES, registry_controlled_domains::EXCLUDE_PRIVATE_REGISTRIES); // Because |reference_name| was already canonicalized, the following // should never happen. CHECK_NE(std::string::npos, registry_length); // Account for the leading dot in |reference_domain|. bool is_registry_controlled = registry_length != 0 && registry_length == (reference_domain.size() - 1); // Additionally, do not attempt wildcard matching for purely numeric // hostnames. allow_wildcards = !is_registry_controlled && reference_name.find_first_not_of("0123456789.") != std::string::npos; } // Now step through the DNS names doing wild card comparison (if necessary) // on each against the reference name. If subjectAltName is empty, then // fallback to use the common name instead. std::vector common_name_as_vector; const std::vector* presented_names = &cert_san_dns_names; if (common_name_fallback) { // Note: there's a small possibility cert_common_name is an international // domain name in non-standard encoding (e.g. UTF8String or BMPString // instead of A-label). As common name fallback is deprecated we're not // doing anything specific to deal with this. common_name_as_vector.push_back(cert_common_name); presented_names = &common_name_as_vector; } for (std::vector::const_iterator it = presented_names->begin(); it != presented_names->end(); ++it) { // Catch badly corrupt cert names up front. if (it->empty() || it->find('\0') != std::string::npos) { DVLOG(1) << "Bad name in cert: " << *it; continue; } std::string presented_name(base::ToLowerASCII(*it)); // Remove trailing dot, if any. if (*presented_name.rbegin() == '.') presented_name.resize(presented_name.length() - 1); // The hostname must be at least as long as the cert name it is matching, // as we require the wildcard (if present) to match at least one character. if (presented_name.length() > reference_name.length()) continue; base::StringPiece presented_host, presented_domain; SplitOnChar(presented_name, '.', &presented_host, &presented_domain); if (presented_domain != reference_domain) continue; if (presented_host != "*") { if (presented_host == reference_host) return true; continue; } if (!allow_wildcards) continue; return true; } return false; } bool X509Certificate::VerifyNameMatch(const std::string& hostname, bool* common_name_fallback_used) const { std::vector dns_names, ip_addrs; GetSubjectAltName(&dns_names, &ip_addrs); return VerifyHostname(hostname, subject_.common_name, dns_names, ip_addrs, common_name_fallback_used); } // static bool X509Certificate::GetPEMEncodedFromDER(const std::string& der_encoded, std::string* pem_encoded) { if (der_encoded.empty()) return false; std::string b64_encoded; base::Base64Encode(der_encoded, &b64_encoded); *pem_encoded = "-----BEGIN CERTIFICATE-----\n"; // Divide the Base-64 encoded data into 64-character chunks, as per // 4.3.2.4 of RFC 1421. static const size_t kChunkSize = 64; size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize; for (size_t i = 0, chunk_offset = 0; i < chunks; ++i, chunk_offset += kChunkSize) { pem_encoded->append(b64_encoded, chunk_offset, kChunkSize); pem_encoded->append("\n"); } pem_encoded->append("-----END CERTIFICATE-----\n"); return true; } // static bool X509Certificate::GetPEMEncoded(OSCertHandle cert_handle, std::string* pem_encoded) { std::string der_encoded; if (!GetDEREncoded(cert_handle, &der_encoded)) return false; return GetPEMEncodedFromDER(der_encoded, pem_encoded); } bool X509Certificate::GetPEMEncodedChain( std::vector* pem_encoded) const { std::vector encoded_chain; std::string pem_data; if (!GetPEMEncoded(os_cert_handle(), &pem_data)) return false; encoded_chain.push_back(pem_data); for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) { if (!GetPEMEncoded(intermediate_ca_certs_[i], &pem_data)) return false; encoded_chain.push_back(pem_data); } pem_encoded->swap(encoded_chain); return true; } // static SHA256HashValue X509Certificate::CalculateCAFingerprint256( const OSCertHandles& intermediates) { SHA256HashValue sha256; memset(sha256.data, 0, sizeof(sha256.data)); scoped_ptr hash( crypto::SecureHash::Create(crypto::SecureHash::SHA256)); for (size_t i = 0; i < intermediates.size(); ++i) { std::string der_encoded; if (!GetDEREncoded(intermediates[i], &der_encoded)) return sha256; hash->Update(der_encoded.data(), der_encoded.length()); } hash->Finish(sha256.data, sizeof(sha256.data)); return sha256; } // static SHA256HashValue X509Certificate::CalculateChainFingerprint256( OSCertHandle leaf, const OSCertHandles& intermediates) { OSCertHandles chain; chain.push_back(leaf); chain.insert(chain.end(), intermediates.begin(), intermediates.end()); return CalculateCAFingerprint256(chain); } X509Certificate::X509Certificate(OSCertHandle cert_handle, const OSCertHandles& intermediates) : cert_handle_(DupOSCertHandle(cert_handle)) { InsertOrUpdateCache(&cert_handle_); for (size_t i = 0; i < intermediates.size(); ++i) { // Duplicate the incoming certificate, as the caller retains ownership // of |intermediates|. OSCertHandle intermediate = DupOSCertHandle(intermediates[i]); // Update the cache, which will assume ownership of the duplicated // handle and return a suitable equivalent, potentially from the cache. InsertOrUpdateCache(&intermediate); intermediate_ca_certs_.push_back(intermediate); } // Platform-specific initialization. Initialize(); } X509Certificate::~X509Certificate() { if (cert_handle_) { RemoveFromCache(cert_handle_); FreeOSCertHandle(cert_handle_); } for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) { RemoveFromCache(intermediate_ca_certs_[i]); FreeOSCertHandle(intermediate_ca_certs_[i]); } } } // namespace net