// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/x509_certificate.h" #include #include #include #include #include #include #include #include #include "base/memory/singleton.h" #include "base/pickle.h" #include "base/sha1.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "crypto/openssl_util.h" #include "crypto/scoped_openssl_types.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/cert/x509_util_openssl.h" #if defined(OS_ANDROID) #include "base/logging.h" #include "net/android/network_library.h" #endif namespace net { namespace { using ScopedGENERAL_NAMES = crypto::ScopedOpenSSL; void CreateOSCertHandlesFromPKCS7Bytes( const char* data, int length, X509Certificate::OSCertHandles* handles) { crypto::EnsureOpenSSLInit(); crypto::OpenSSLErrStackTracer err_cleaner(FROM_HERE); CBS der_data; CBS_init(&der_data, reinterpret_cast(data), length); STACK_OF(X509)* certs = sk_X509_new_null(); if (PKCS7_get_certificates(certs, &der_data)) { for (size_t i = 0; i < sk_X509_num(certs); ++i) { X509* x509_cert = X509Certificate::DupOSCertHandle(sk_X509_value(certs, i)); handles->push_back(x509_cert); } } sk_X509_pop_free(certs, X509_free); } void ParsePrincipalValues(X509_NAME* name, int nid, std::vector* fields) { for (int index = -1; (index = X509_NAME_get_index_by_NID(name, nid, index)) != -1;) { std::string field; if (!x509_util::ParsePrincipalValueByIndex(name, index, &field)) break; fields->push_back(field); } } void ParsePrincipal(X509Certificate::OSCertHandle cert, X509_NAME* x509_name, CertPrincipal* principal) { if (!x509_name) return; ParsePrincipalValues(x509_name, NID_streetAddress, &principal->street_addresses); ParsePrincipalValues(x509_name, NID_organizationName, &principal->organization_names); ParsePrincipalValues(x509_name, NID_organizationalUnitName, &principal->organization_unit_names); ParsePrincipalValues(x509_name, NID_domainComponent, &principal->domain_components); x509_util::ParsePrincipalValueByNID(x509_name, NID_commonName, &principal->common_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_localityName, &principal->locality_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_stateOrProvinceName, &principal->state_or_province_name); x509_util::ParsePrincipalValueByNID(x509_name, NID_countryName, &principal->country_name); } void ParseSubjectAltName(X509Certificate::OSCertHandle cert, std::vector* dns_names, std::vector* ip_addresses) { DCHECK(dns_names || ip_addresses); int index = X509_get_ext_by_NID(cert, NID_subject_alt_name, -1); X509_EXTENSION* alt_name_ext = X509_get_ext(cert, index); if (!alt_name_ext) return; ScopedGENERAL_NAMES alt_names( reinterpret_cast(X509V3_EXT_d2i(alt_name_ext))); if (!alt_names.get()) return; for (size_t i = 0; i < sk_GENERAL_NAME_num(alt_names.get()); ++i) { const GENERAL_NAME* name = sk_GENERAL_NAME_value(alt_names.get(), i); if (name->type == GEN_DNS && dns_names) { const unsigned char* dns_name = ASN1_STRING_data(name->d.dNSName); if (!dns_name) continue; int dns_name_len = ASN1_STRING_length(name->d.dNSName); dns_names->push_back( std::string(reinterpret_cast(dns_name), dns_name_len)); } else if (name->type == GEN_IPADD && ip_addresses) { const unsigned char* ip_addr = name->d.iPAddress->data; if (!ip_addr) continue; int ip_addr_len = name->d.iPAddress->length; if (ip_addr_len != static_cast(kIPv4AddressSize) && ip_addr_len != static_cast(kIPv6AddressSize)) { // http://www.ietf.org/rfc/rfc3280.txt requires subjectAltName iPAddress // to have 4 or 16 bytes, whereas in a name constraint it includes a // net mask hence 8 or 32 bytes. Logging to help diagnose any mixup. LOG(WARNING) << "Bad sized IP Address in cert: " << ip_addr_len; continue; } ip_addresses->push_back( std::string(reinterpret_cast(ip_addr), ip_addr_len)); } } } class X509InitSingleton { public: static X509InitSingleton* GetInstance() { // We allow the X509 store to leak, because it is used from a non-joinable // worker that is not stopped on shutdown, hence may still be using // OpenSSL library after the AtExit runner has completed. return Singleton >::get(); } X509_STORE* store() const { return store_.get(); } void ResetCertStore() { store_.reset(X509_STORE_new()); DCHECK(store_.get()); X509_STORE_set_default_paths(store_.get()); // TODO(joth): Enable CRL (see X509_STORE_set_flags(X509_V_FLAG_CRL_CHECK)). } private: friend struct DefaultSingletonTraits; X509InitSingleton() { crypto::EnsureOpenSSLInit(); ResetCertStore(); } crypto::ScopedOpenSSL store_; DISALLOW_COPY_AND_ASSIGN(X509InitSingleton); }; // Used to free a list of X509_NAMEs and the objects it points to. void sk_X509_NAME_free_all(STACK_OF(X509_NAME)* sk) { sk_X509_NAME_pop_free(sk, X509_NAME_free); } } // namespace // static X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle( OSCertHandle cert_handle) { DCHECK(cert_handle); return X509_up_ref(cert_handle); } // static void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) { // Decrement the ref-count for the cert and, if all references are gone, // free the memory and any application-specific data associated with the // certificate. X509_free(cert_handle); } void X509Certificate::Initialize() { crypto::EnsureOpenSSLInit(); fingerprint_ = CalculateFingerprint(cert_handle_); ca_fingerprint_ = CalculateCAFingerprint(intermediate_ca_certs_); ASN1_INTEGER* serial_num = X509_get_serialNumber(cert_handle_); if (serial_num) { // ASN1_INTEGERS represent the decoded number, in a format internal to // OpenSSL. Most notably, this may have leading zeroes stripped off for // numbers whose first byte is >= 0x80. Thus, it is necessary to // re-encoded the integer back into DER, which is what the interface // of X509Certificate exposes, to ensure callers get the proper (DER) // value. int bytes_required = i2c_ASN1_INTEGER(serial_num, NULL); unsigned char* buffer = reinterpret_cast( WriteInto(&serial_number_, bytes_required + 1)); int bytes_written = i2c_ASN1_INTEGER(serial_num, &buffer); DCHECK_EQ(static_cast(bytes_written), serial_number_.size()); } ParsePrincipal(cert_handle_, X509_get_subject_name(cert_handle_), &subject_); ParsePrincipal(cert_handle_, X509_get_issuer_name(cert_handle_), &issuer_); x509_util::ParseDate(X509_get_notBefore(cert_handle_), &valid_start_); x509_util::ParseDate(X509_get_notAfter(cert_handle_), &valid_expiry_); } // static void X509Certificate::ResetCertStore() { X509InitSingleton::GetInstance()->ResetCertStore(); } // static SHA1HashValue X509Certificate::CalculateFingerprint(OSCertHandle cert) { SHA1HashValue sha1; unsigned int sha1_size = static_cast(sizeof(sha1.data)); int ret = X509_digest(cert, EVP_sha1(), sha1.data, &sha1_size); CHECK(ret); CHECK_EQ(sha1_size, sizeof(sha1.data)); return sha1; } // static SHA256HashValue X509Certificate::CalculateFingerprint256(OSCertHandle cert) { SHA256HashValue sha256; unsigned int sha256_size = static_cast(sizeof(sha256.data)); int ret = X509_digest(cert, EVP_sha256(), sha256.data, &sha256_size); CHECK(ret); CHECK_EQ(sha256_size, sizeof(sha256.data)); return sha256; } // static SHA1HashValue X509Certificate::CalculateCAFingerprint( const OSCertHandles& intermediates) { SHA1HashValue sha1; memset(sha1.data, 0, sizeof(sha1.data)); SHA_CTX sha1_ctx; SHA1_Init(&sha1_ctx); base::StringPiece der; for (size_t i = 0; i < intermediates.size(); ++i) { if (!x509_util::GetDER(intermediates[i], &der)) return sha1; SHA1_Update(&sha1_ctx, der.data(), der.length()); } SHA1_Final(sha1.data, &sha1_ctx); return sha1; } // static X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes( const char* data, int length) { if (length < 0) return NULL; crypto::EnsureOpenSSLInit(); const unsigned char* d2i_data = reinterpret_cast(data); // Don't cache this data for x509_util::GetDER as this wire format // may be not be identical from the i2d_X509 roundtrip. X509* cert = d2i_X509(NULL, &d2i_data, length); return cert; } // static X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes( const char* data, int length, Format format) { OSCertHandles results; if (length < 0) return results; switch (format) { case FORMAT_SINGLE_CERTIFICATE: { OSCertHandle handle = CreateOSCertHandleFromBytes(data, length); if (handle) results.push_back(handle); break; } case FORMAT_PKCS7: { CreateOSCertHandlesFromPKCS7Bytes(data, length, &results); break; } default: { NOTREACHED() << "Certificate format " << format << " unimplemented"; break; } } return results; } void X509Certificate::GetSubjectAltName( std::vector* dns_names, std::vector* ip_addrs) const { if (dns_names) dns_names->clear(); if (ip_addrs) ip_addrs->clear(); ParseSubjectAltName(cert_handle_, dns_names, ip_addrs); } // static X509_STORE* X509Certificate::cert_store() { return X509InitSingleton::GetInstance()->store(); } // static bool X509Certificate::GetDEREncoded(X509Certificate::OSCertHandle cert_handle, std::string* encoded) { base::StringPiece der; if (!cert_handle || !x509_util::GetDER(cert_handle, &der)) return false; encoded->assign(der.data(), der.length()); return true; } // static bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a, X509Certificate::OSCertHandle b) { DCHECK(a && b); if (a == b) return true; // X509_cmp only checks the fingerprint, but we want to compare the whole // DER data. Encoding it from OSCertHandle is an expensive operation, so we // cache the DER (if not already cached via X509_set_ex_data). base::StringPiece der_a, der_b; return x509_util::GetDER(a, &der_a) && x509_util::GetDER(b, &der_b) && der_a == der_b; } // static X509Certificate::OSCertHandle X509Certificate::ReadOSCertHandleFromPickle(PickleIterator* pickle_iter) { const char* data; int length; if (!pickle_iter->ReadData(&data, &length)) return NULL; return CreateOSCertHandleFromBytes(data, length); } // static bool X509Certificate::WriteOSCertHandleToPickle(OSCertHandle cert_handle, Pickle* pickle) { base::StringPiece der; if (!x509_util::GetDER(cert_handle, &der)) return false; return pickle->WriteData(der.data(), der.length()); } // static void X509Certificate::GetPublicKeyInfo(OSCertHandle cert_handle, size_t* size_bits, PublicKeyType* type) { *type = kPublicKeyTypeUnknown; *size_bits = 0; crypto::ScopedEVP_PKEY scoped_key(X509_get_pubkey(cert_handle)); if (!scoped_key.get()) return; CHECK(scoped_key.get()); EVP_PKEY* key = scoped_key.get(); switch (key->type) { case EVP_PKEY_RSA: *type = kPublicKeyTypeRSA; *size_bits = EVP_PKEY_size(key) * 8; break; case EVP_PKEY_DSA: *type = kPublicKeyTypeDSA; *size_bits = EVP_PKEY_size(key) * 8; break; case EVP_PKEY_EC: *type = kPublicKeyTypeECDSA; *size_bits = EVP_PKEY_bits(key); break; case EVP_PKEY_DH: *type = kPublicKeyTypeDH; *size_bits = EVP_PKEY_size(key) * 8; break; } } bool X509Certificate::IsIssuedByEncoded( const std::vector& valid_issuers) { if (valid_issuers.empty()) return false; // Convert to a temporary list of X509_NAME objects. // It will own the objects it points to. crypto::ScopedOpenSSL issuer_names(sk_X509_NAME_new_null()); if (!issuer_names.get()) return false; for (std::vector::const_iterator it = valid_issuers.begin(); it != valid_issuers.end(); ++it) { const unsigned char* p = reinterpret_cast(it->data()); long len = static_cast(it->length()); X509_NAME* ca_name = d2i_X509_NAME(NULL, &p, len); if (ca_name == NULL) return false; sk_X509_NAME_push(issuer_names.get(), ca_name); } // Create a temporary list of X509_NAME objects corresponding // to the certificate chain. It doesn't own the object it points to. std::vector cert_names; X509_NAME* issuer = X509_get_issuer_name(cert_handle_); if (issuer == NULL) return false; cert_names.push_back(issuer); for (OSCertHandles::iterator it = intermediate_ca_certs_.begin(); it != intermediate_ca_certs_.end(); ++it) { issuer = X509_get_issuer_name(*it); if (issuer == NULL) return false; cert_names.push_back(issuer); } // and 'cert_names'. for (size_t n = 0; n < cert_names.size(); ++n) { for (size_t m = 0; m < sk_X509_NAME_num(issuer_names.get()); ++m) { X509_NAME* issuer = sk_X509_NAME_value(issuer_names.get(), m); if (X509_NAME_cmp(issuer, cert_names[n]) == 0) { return true; } } } return false; } // static bool X509Certificate::IsSelfSigned(OSCertHandle cert_handle) { crypto::ScopedEVP_PKEY scoped_key(X509_get_pubkey(cert_handle)); if (!scoped_key) return false; // NOTE: X509_verify() returns 1 in case of success, 0 or -1 on error. return X509_verify(cert_handle, scoped_key.get()) == 1; } } // namespace net