// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/blockfile/entry_impl_v3.h" #include "base/hash.h" #include "base/message_loop/message_loop.h" #include "base/metrics/histogram.h" #include "base/strings/string_util.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/blockfile/backend_impl_v3.h" #include "net/disk_cache/blockfile/bitmap.h" #include "net/disk_cache/blockfile/disk_format_v3.h" #include "net/disk_cache/blockfile/histogram_macros_v3.h" #include "net/disk_cache/cache_util.h" #include "net/disk_cache/net_log_parameters.h" // #include "net/disk_cache/blockfile/sparse_control_v3.h" // Provide a BackendImpl object to macros from histogram_macros.h. #define CACHE_UMA_BACKEND_IMPL_OBJ backend_ using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { const int kMaxBufferSize = 1024 * 1024; // 1 MB. } // namespace namespace disk_cache { typedef StorageBlock CacheEntryBlockV3; typedef StorageBlock CacheShortEntryBlock; // This class handles individual memory buffers that store data before it is // sent to disk. The buffer can start at any offset, but if we try to write to // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to // zero. The buffer grows up to a size determined by the backend, to keep the // total memory used under control. class EntryImplV3::UserBuffer { public: explicit UserBuffer(BackendImplV3* backend) : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) { buffer_.reserve(kMaxBlockSize); } ~UserBuffer() { if (backend_) backend_->BufferDeleted(capacity() - kMaxBlockSize); } // Returns true if we can handle writing |len| bytes to |offset|. bool PreWrite(int offset, int len); // Truncates the buffer to |offset| bytes. void Truncate(int offset); // Writes |len| bytes from |buf| at the given |offset|. void Write(int offset, IOBuffer* buf, int len); // Returns true if we can read |len| bytes from |offset|, given that the // actual file has |eof| bytes stored. Note that the number of bytes to read // may be modified by this method even though it returns false: that means we // should do a smaller read from disk. bool PreRead(int eof, int offset, int* len); // Read |len| bytes from |buf| at the given |offset|. int Read(int offset, IOBuffer* buf, int len); // Prepare this buffer for reuse. void Reset(); char* Data() { return buffer_.size() ? &buffer_[0] : NULL; } int Size() { return static_cast(buffer_.size()); } int Start() { return offset_; } int End() { return offset_ + Size(); } private: int capacity() { return static_cast(buffer_.capacity()); } bool GrowBuffer(int required, int limit); base::WeakPtr backend_; int offset_; std::vector buffer_; bool grow_allowed_; DISALLOW_COPY_AND_ASSIGN(UserBuffer); }; bool EntryImplV3::UserBuffer::PreWrite(int offset, int len) { DCHECK_GE(offset, 0); DCHECK_GE(len, 0); DCHECK_GE(offset + len, 0); // We don't want to write before our current start. if (offset < offset_) return false; // Lets get the common case out of the way. if (offset + len <= capacity()) return true; // If we are writing to the first 16K (kMaxBlockSize), we want to keep the // buffer offset_ at 0. if (!Size() && offset > kMaxBlockSize) return GrowBuffer(len, kMaxBufferSize); int required = offset - offset_ + len; return GrowBuffer(required, kMaxBufferSize * 6 / 5); } void EntryImplV3::UserBuffer::Truncate(int offset) { DCHECK_GE(offset, 0); DCHECK_GE(offset, offset_); DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_; offset -= offset_; if (Size() >= offset) buffer_.resize(offset); } void EntryImplV3::UserBuffer::Write(int offset, IOBuffer* buf, int len) { DCHECK_GE(offset, 0); DCHECK_GE(len, 0); DCHECK_GE(offset + len, 0); DCHECK_GE(offset, offset_); DVLOG(3) << "Buffer write at " << offset << " current " << offset_; if (!Size() && offset > kMaxBlockSize) offset_ = offset; offset -= offset_; if (offset > Size()) buffer_.resize(offset); if (!len) return; char* buffer = buf->data(); int valid_len = Size() - offset; int copy_len = std::min(valid_len, len); if (copy_len) { memcpy(&buffer_[offset], buffer, copy_len); len -= copy_len; buffer += copy_len; } if (!len) return; buffer_.insert(buffer_.end(), buffer, buffer + len); } bool EntryImplV3::UserBuffer::PreRead(int eof, int offset, int* len) { DCHECK_GE(offset, 0); DCHECK_GT(*len, 0); if (offset < offset_) { // We are reading before this buffer. if (offset >= eof) return true; // If the read overlaps with the buffer, change its length so that there is // no overlap. *len = std::min(*len, offset_ - offset); *len = std::min(*len, eof - offset); // We should read from disk. return false; } if (!Size()) return false; // See if we can fulfill the first part of the operation. return (offset - offset_ < Size()); } int EntryImplV3::UserBuffer::Read(int offset, IOBuffer* buf, int len) { DCHECK_GE(offset, 0); DCHECK_GT(len, 0); DCHECK(Size() || offset < offset_); int clean_bytes = 0; if (offset < offset_) { // We don't have a file so lets fill the first part with 0. clean_bytes = std::min(offset_ - offset, len); memset(buf->data(), 0, clean_bytes); if (len == clean_bytes) return len; offset = offset_; len -= clean_bytes; } int start = offset - offset_; int available = Size() - start; DCHECK_GE(start, 0); DCHECK_GE(available, 0); len = std::min(len, available); memcpy(buf->data() + clean_bytes, &buffer_[start], len); return len + clean_bytes; } void EntryImplV3::UserBuffer::Reset() { if (!grow_allowed_) { if (backend_) backend_->BufferDeleted(capacity() - kMaxBlockSize); grow_allowed_ = true; std::vector tmp; buffer_.swap(tmp); buffer_.reserve(kMaxBlockSize); } offset_ = 0; buffer_.clear(); } bool EntryImplV3::UserBuffer::GrowBuffer(int required, int limit) { DCHECK_GE(required, 0); int current_size = capacity(); if (required <= current_size) return true; if (required > limit) return false; if (!backend_) return false; int to_add = std::max(required - current_size, kMaxBlockSize * 4); to_add = std::max(current_size, to_add); required = std::min(current_size + to_add, limit); grow_allowed_ = backend_->IsAllocAllowed(current_size, required); if (!grow_allowed_) return false; DVLOG(3) << "Buffer grow to " << required; buffer_.reserve(required); return true; } // ------------------------------------------------------------------------ EntryImplV3::EntryImplV3(BackendImplV3* backend, Addr address, bool read_only) : backend_(backend->GetWeakPtr()), address_(address), doomed_(false), read_only_(read_only), dirty_(true), modified_(false) { for (int i = 0; i < kNumStreams; i++) { unreported_size_[i] = 0; } } #if defined(V3_NOT_JUST_YET_READY) bool EntryImplV3::CreateEntry(Addr node_address, const std::string& key, uint32 hash) { Trace("Create entry In"); EntryStore* entry_store = entry_.Data(); RankingsNode* node = node_.Data(); memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks()); memset(node, 0, sizeof(RankingsNode)); if (!node_.LazyInit(backend_->File(node_address), node_address)) return false; entry_store->rankings_node = node_address.value(); node->contents = entry_.address().value(); entry_store->hash = hash; entry_store->creation_time = Time::Now().ToInternalValue(); entry_store->key_len = static_cast(key.size()); if (entry_store->key_len > kMaxInternalKeyLength) { Addr address(0); if (!CreateBlock(entry_store->key_len + 1, &address)) return false; entry_store->long_key = address.value(); File* key_file = GetBackingFile(address, kKeyFileIndex); key_ = key; size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!key_file || !key_file->Write(key.data(), key.size(), offset)) { DeleteData(address, kKeyFileIndex); return false; } if (address.is_separate_file()) key_file->SetLength(key.size() + 1); } else { memcpy(entry_store->key, key.data(), key.size()); entry_store->key[key.size()] = '\0'; } backend_->ModifyStorageSize(0, static_cast(key.size())); CACHE_UMA(COUNTS, "KeySize", 0, static_cast(key.size())); node->dirty = backend_->GetCurrentEntryId(); Log("Create Entry "); return true; } uint32 EntryImplV3::GetHash() { return entry_.Data()->hash; } bool EntryImplV3::IsSameEntry(const std::string& key, uint32 hash) { if (entry_.Data()->hash != hash || static_cast(entry_.Data()->key_len) != key.size()) return false; return (key.compare(GetKey()) == 0); } void EntryImplV3::InternalDoom() { net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM); DCHECK(node_.HasData()); if (!node_.Data()->dirty) { node_.Data()->dirty = backend_->GetCurrentEntryId(); node_.Store(); } doomed_ = true; } // This only includes checks that relate to the first block of the entry (the // first 256 bytes), and values that should be set from the entry creation. // Basically, even if there is something wrong with this entry, we want to see // if it is possible to load the rankings node and delete them together. bool EntryImplV3::SanityCheck() { if (!entry_.VerifyHash()) return false; EntryStore* stored = entry_.Data(); if (!stored->rankings_node || stored->key_len <= 0) return false; if (stored->reuse_count < 0 || stored->refetch_count < 0) return false; Addr rankings_addr(stored->rankings_node); if (!rankings_addr.SanityCheckForRankings()) return false; Addr next_addr(stored->next); if (next_addr.is_initialized() && !next_addr.SanityCheckForEntry()) { STRESS_NOTREACHED(); return false; } STRESS_DCHECK(next_addr.value() != entry_.address().value()); if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL) return false; Addr key_addr(stored->long_key); if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) || (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized())) return false; if (!key_addr.SanityCheck()) return false; if (key_addr.is_initialized() && ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) || (stored->key_len >= kMaxBlockSize && key_addr.is_block_file()))) return false; int num_blocks = NumBlocksForEntry(stored->key_len); if (entry_.address().num_blocks() != num_blocks) return false; return true; } bool EntryImplV3::DataSanityCheck() { EntryStore* stored = entry_.Data(); Addr key_addr(stored->long_key); // The key must be NULL terminated. if (!key_addr.is_initialized() && stored->key[stored->key_len]) return false; if (stored->hash != base::Hash(GetKey())) return false; for (int i = 0; i < kNumStreams; i++) { Addr data_addr(stored->data_addr[i]); int data_size = stored->data_size[i]; if (data_size < 0) return false; if (!data_size && data_addr.is_initialized()) return false; if (!data_addr.SanityCheck()) return false; if (!data_size) continue; if (data_size <= kMaxBlockSize && data_addr.is_separate_file()) return false; if (data_size > kMaxBlockSize && data_addr.is_block_file()) return false; } return true; } void EntryImplV3::FixForDelete() { EntryStore* stored = entry_.Data(); Addr key_addr(stored->long_key); if (!key_addr.is_initialized()) stored->key[stored->key_len] = '\0'; for (int i = 0; i < kNumStreams; i++) { Addr data_addr(stored->data_addr[i]); int data_size = stored->data_size[i]; if (data_addr.is_initialized()) { if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) || (data_size > kMaxBlockSize && data_addr.is_block_file()) || !data_addr.SanityCheck()) { STRESS_NOTREACHED(); // The address is weird so don't attempt to delete it. stored->data_addr[i] = 0; // In general, trust the stored size as it should be in sync with the // total size tracked by the backend. } } if (data_size < 0) stored->data_size[i] = 0; } entry_.Store(); } void EntryImplV3::SetTimes(base::Time last_used, base::Time last_modified) { node_.Data()->last_used = last_used.ToInternalValue(); node_.Data()->last_modified = last_modified.ToInternalValue(); node_.set_modified(); } void EntryImplV3::BeginLogging(net::NetLog* net_log, bool created) { DCHECK(!net_log_.net_log()); net_log_ = net::BoundNetLog::Make( net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY); net_log_.BeginEvent( net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL, CreateNetLogEntryCreationCallback(this, created)); } const net::BoundNetLog& EntryImplV3::net_log() const { return net_log_; } // ------------------------------------------------------------------------ void EntryImplV3::Doom() { if (background_queue_) background_queue_->DoomEntryImpl(this); } void EntryImplV3::DoomImpl() { if (doomed_ || !backend_) return; SetPointerForInvalidEntry(backend_->GetCurrentEntryId()); backend_->InternalDoomEntry(this); } void EntryImplV3::Close() { if (background_queue_) background_queue_->CloseEntryImpl(this); } std::string EntryImplV3::GetKey() const { CacheEntryBlock* entry = const_cast(&entry_); int key_len = entry->Data()->key_len; if (key_len <= kMaxInternalKeyLength) return std::string(entry->Data()->key); // We keep a copy of the key so that we can always return it, even if the // backend is disabled. if (!key_.empty()) return key_; Addr address(entry->Data()->long_key); DCHECK(address.is_initialized()); size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; static_assert(kNumStreams == kKeyFileIndex, "invalid key index"); File* key_file = const_cast(this)->GetBackingFile(address, kKeyFileIndex); if (!key_file) return std::string(); ++key_len; // We store a trailing \0 on disk that we read back below. if (!offset && key_file->GetLength() != static_cast(key_len)) return std::string(); if (!key_file->Read(WriteInto(&key_, key_len), key_len, offset)) key_.clear(); return key_; } Time EntryImplV3::GetLastUsed() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_used); } Time EntryImplV3::GetLastModified() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_modified); } int32 EntryImplV3::GetDataSize(int index) const { if (index < 0 || index >= kNumStreams) return 0; CacheEntryBlock* entry = const_cast(&entry_); return entry->Data()->data_size[index]; } int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (callback.is_null()) return ReadDataImpl(index, offset, buf, buf_len, callback); DCHECK(node_.Data()->dirty || read_only_); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; int entry_size = entry_.Data()->data_size[index]; if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (buf_len < 0) return net::ERR_INVALID_ARGUMENT; if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->ReadData(this, index, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (net_log_.IsLogging()) { net_log_.BeginEvent( net::NetLog::TYPE_ENTRY_READ_DATA, CreateNetLogReadWriteDataCallback(index, offset, buf_len, false)); } int result = InternalReadData(index, offset, buf, buf_len, callback); if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) { net_log_.EndEvent( net::NetLog::TYPE_ENTRY_READ_DATA, CreateNetLogReadWriteCompleteCallback(result)); } return result; } int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { if (callback.is_null()) return WriteDataImpl(index, offset, buf, buf_len, callback, truncate); DCHECK(node_.Data()->dirty || read_only_); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->WriteData(this, index, offset, buf, buf_len, truncate, callback); return net::ERR_IO_PENDING; } int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { if (net_log_.IsLogging()) { net_log_.BeginEvent( net::NetLog::TYPE_ENTRY_WRITE_DATA, CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate)); } int result = InternalWriteData(index, offset, buf, buf_len, callback, truncate); if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) { net_log_.EndEvent( net::NetLog::TYPE_ENTRY_WRITE_DATA, CreateNetLogReadWriteCompleteCallback(result)); } return result; } int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (callback.is_null()) return ReadSparseDataImpl(offset, buf, buf_len, callback); if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->ReadSparseData(this, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(node_.Data()->dirty || read_only_); int result = InitSparseData(); if (net::OK != result) return result; TimeTicks start = TimeTicks::Now(); result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len, callback); ReportIOTime(kSparseRead, start); return result; } int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (callback.is_null()) return WriteSparseDataImpl(offset, buf, buf_len, callback); if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->WriteSparseData(this, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(node_.Data()->dirty || read_only_); int result = InitSparseData(); if (net::OK != result) return result; TimeTicks start = TimeTicks::Now(); result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf, buf_len, callback); ReportIOTime(kSparseWrite, start); return result; } int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start, const CompletionCallback& callback) { if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->GetAvailableRange(this, offset, len, start, callback); return net::ERR_IO_PENDING; } int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) { int result = InitSparseData(); if (net::OK != result) return result; return sparse_->GetAvailableRange(offset, len, start); } bool EntryImplV3::CouldBeSparse() const { if (sparse_.get()) return true; scoped_ptr sparse; sparse.reset(new SparseControl(const_cast(this))); return sparse->CouldBeSparse(); } void EntryImplV3::CancelSparseIO() { if (background_queue_) background_queue_->CancelSparseIO(this); } void EntryImplV3::CancelSparseIOImpl() { if (!sparse_.get()) return; sparse_->CancelIO(); } int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) { if (!sparse_.get()) return net::OK; if (!background_queue_) return net::ERR_UNEXPECTED; background_queue_->ReadyForSparseIO(this, callback); return net::ERR_IO_PENDING; } int EntryImplV3::ReadyForSparseIOImpl(const CompletionCallback& callback) { DCHECK(sparse_.get()); return sparse_->ReadyToUse(callback); } // ------------------------------------------------------------------------ // When an entry is deleted from the cache, we clean up all the data associated // with it for two reasons: to simplify the reuse of the block (we know that any // unused block is filled with zeros), and to simplify the handling of write / // read partial information from an entry (don't have to worry about returning // data related to a previous cache entry because the range was not fully // written before). EntryImplV3::~EntryImplV3() { if (!backend_) { entry_.clear_modified(); node_.clear_modified(); return; } Log("~EntryImpl in"); // Save the sparse info to disk. This will generate IO for this entry and // maybe for a child entry, so it is important to do it before deleting this // entry. sparse_.reset(); // Remove this entry from the list of open entries. backend_->OnEntryDestroyBegin(entry_.address()); if (doomed_) { DeleteEntryData(true); } else { #if defined(NET_BUILD_STRESS_CACHE) SanityCheck(); #endif net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE); bool ret = true; for (int index = 0; index < kNumStreams; index++) { if (user_buffers_[index].get()) { if (!(ret = Flush(index, 0))) LOG(ERROR) << "Failed to save user data"; } if (unreported_size_[index]) { backend_->ModifyStorageSize( entry_.Data()->data_size[index] - unreported_size_[index], entry_.Data()->data_size[index]); } } if (!ret) { // There was a failure writing the actual data. Mark the entry as dirty. int current_id = backend_->GetCurrentEntryId(); node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1; node_.Store(); } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) { node_.Data()->dirty = 0; node_.Store(); } } Trace("~EntryImpl out 0x%p", reinterpret_cast(this)); net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL); backend_->OnEntryDestroyEnd(); } int EntryImpl::InternalReadData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(node_.Data()->dirty || read_only_); DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len; if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; int entry_size = entry_.Data()->data_size[index]; if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (buf_len < 0) return net::ERR_INVALID_ARGUMENT; if (!backend_) return net::ERR_UNEXPECTED; TimeTicks start = TimeTicks::Now(); if (offset + buf_len > entry_size) buf_len = entry_size - offset; UpdateRank(false); backend_->OnEvent(Stats::READ_DATA); backend_->OnRead(buf_len); Addr address(entry_.Data()->data_addr[index]); int eof = address.is_initialized() ? entry_size : 0; if (user_buffers_[index].get() && user_buffers_[index]->PreRead(eof, offset, &buf_len)) { // Complete the operation locally. buf_len = user_buffers_[index]->Read(offset, buf, buf_len); ReportIOTime(kRead, start); return buf_len; } address.set_value(entry_.Data()->data_addr[index]); DCHECK(address.is_initialized()); if (!address.is_initialized()) { DoomImpl(); return net::ERR_FAILED; } File* file = GetBackingFile(address, index); if (!file) { DoomImpl(); LOG(ERROR) << "No file for " << std::hex << address.value(); return net::ERR_FILE_NOT_FOUND; } size_t file_offset = offset; if (address.is_block_file()) { DCHECK_LE(offset + buf_len, kMaxBlockSize); file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; } SyncCallback* io_callback = NULL; if (!callback.is_null()) { io_callback = new SyncCallback(this, buf, callback, net::NetLog::TYPE_ENTRY_READ_DATA); } TimeTicks start_async = TimeTicks::Now(); bool completed; if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); DoomImpl(); return net::ERR_CACHE_READ_FAILURE; } if (io_callback && completed) io_callback->Discard(); if (io_callback) ReportIOTime(kReadAsync1, start_async); ReportIOTime(kRead, start); return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING; } int EntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { DCHECK(node_.Data()->dirty || read_only_); DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len; if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; if (!backend_) return net::ERR_UNEXPECTED; int max_file_size = backend_->MaxFileSize(); // offset or buf_len could be negative numbers. if (offset > max_file_size || buf_len > max_file_size || offset + buf_len > max_file_size) { int size = offset + buf_len; if (size <= max_file_size) size = kint32max; backend_->TooMuchStorageRequested(size); return net::ERR_FAILED; } TimeTicks start = TimeTicks::Now(); // Read the size at this point (it may change inside prepare). int entry_size = entry_.Data()->data_size[index]; bool extending = entry_size < offset + buf_len; truncate = truncate && entry_size > offset + buf_len; Trace("To PrepareTarget 0x%x", entry_.address().value()); if (!PrepareTarget(index, offset, buf_len, truncate)) return net::ERR_FAILED; Trace("From PrepareTarget 0x%x", entry_.address().value()); if (extending || truncate) UpdateSize(index, entry_size, offset + buf_len); UpdateRank(true); backend_->OnEvent(Stats::WRITE_DATA); backend_->OnWrite(buf_len); if (user_buffers_[index].get()) { // Complete the operation locally. user_buffers_[index]->Write(offset, buf, buf_len); ReportIOTime(kWrite, start); return buf_len; } Addr address(entry_.Data()->data_addr[index]); if (offset + buf_len == 0) { if (truncate) { DCHECK(!address.is_initialized()); } return 0; } File* file = GetBackingFile(address, index); if (!file) return net::ERR_FILE_NOT_FOUND; size_t file_offset = offset; if (address.is_block_file()) { DCHECK_LE(offset + buf_len, kMaxBlockSize); file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; } else if (truncate || (extending && !buf_len)) { if (!file->SetLength(offset + buf_len)) return net::ERR_FAILED; } if (!buf_len) return 0; SyncCallback* io_callback = NULL; if (!callback.is_null()) { io_callback = new SyncCallback(this, buf, callback, net::NetLog::TYPE_ENTRY_WRITE_DATA); } TimeTicks start_async = TimeTicks::Now(); bool completed; if (!file->Write(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); return net::ERR_CACHE_WRITE_FAILURE; } if (io_callback && completed) io_callback->Discard(); if (io_callback) ReportIOTime(kWriteAsync1, start_async); ReportIOTime(kWrite, start); return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING; } // ------------------------------------------------------------------------ bool EntryImpl::CreateDataBlock(int index, int size) { DCHECK(index >= 0 && index < kNumStreams); Addr address(entry_.Data()->data_addr[index]); if (!CreateBlock(size, &address)) return false; entry_.Data()->data_addr[index] = address.value(); entry_.Store(); return true; } bool EntryImpl::CreateBlock(int size, Addr* address) { DCHECK(!address->is_initialized()); if (!backend_) return false; FileType file_type = Addr::RequiredFileType(size); if (EXTERNAL == file_type) { if (size > backend_->MaxFileSize()) return false; if (!backend_->CreateExternalFile(address)) return false; } else { int num_blocks = Addr::RequiredBlocks(size, file_type); if (!backend_->CreateBlock(file_type, num_blocks, address)) return false; } return true; } // Note that this method may end up modifying a block file so upon return the // involved block will be free, and could be reused for something else. If there // is a crash after that point (and maybe before returning to the caller), the // entry will be left dirty... and at some point it will be discarded; it is // important that the entry doesn't keep a reference to this address, or we'll // end up deleting the contents of |address| once again. void EntryImpl::DeleteData(Addr address, int index) { DCHECK(backend_); if (!address.is_initialized()) return; if (address.is_separate_file()) { int failure = !DeleteCacheFile(backend_->GetFileName(address)); CACHE_UMA(COUNTS, "DeleteFailed", 0, failure); if (failure) { LOG(ERROR) << "Failed to delete " << backend_->GetFileName(address).value() << " from the cache."; } if (files_[index]) files_[index] = NULL; // Releases the object. } else { backend_->DeleteBlock(address, true); } } void EntryImpl::UpdateRank(bool modified) { if (!backend_) return; if (!doomed_) { // Everything is handled by the backend. backend_->UpdateRank(this, modified); return; } Time current = Time::Now(); node_.Data()->last_used = current.ToInternalValue(); if (modified) node_.Data()->last_modified = current.ToInternalValue(); } void EntryImpl::DeleteEntryData(bool everything) { DCHECK(doomed_ || !everything); if (GetEntryFlags() & PARENT_ENTRY) { // We have some child entries that must go away. SparseControl::DeleteChildren(this); } if (GetDataSize(0)) CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0)); if (GetDataSize(1)) CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1)); for (int index = 0; index < kNumStreams; index++) { Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized()) { backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; entry_.Store(); DeleteData(address, index); } } if (!everything) return; // Remove all traces of this entry. backend_->RemoveEntry(this); // Note that at this point node_ and entry_ are just two blocks of data, and // even if they reference each other, nobody should be referencing them. Addr address(entry_.Data()->long_key); DeleteData(address, kKeyFileIndex); backend_->ModifyStorageSize(entry_.Data()->key_len, 0); backend_->DeleteBlock(entry_.address(), true); entry_.Discard(); if (!LeaveRankingsBehind()) { backend_->DeleteBlock(node_.address(), true); node_.Discard(); } } // We keep a memory buffer for everything that ends up stored on a block file // (because we don't know yet the final data size), and for some of the data // that end up on external files. This function will initialize that memory // buffer and / or the files needed to store the data. // // In general, a buffer may overlap data already stored on disk, and in that // case, the contents of the buffer are the most accurate. It may also extend // the file, but we don't want to read from disk just to keep the buffer up to // date. This means that as soon as there is a chance to get confused about what // is the most recent version of some part of a file, we'll flush the buffer and // reuse it for the new data. Keep in mind that the normal use pattern is quite // simple (write sequentially from the beginning), so we optimize for handling // that case. bool EntryImpl::PrepareTarget(int index, int offset, int buf_len, bool truncate) { if (truncate) return HandleTruncation(index, offset, buf_len); if (!offset && !buf_len) return true; Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized()) { if (address.is_block_file() && !MoveToLocalBuffer(index)) return false; if (!user_buffers_[index].get() && offset < kMaxBlockSize) { // We are about to create a buffer for the first 16KB, make sure that we // preserve existing data. if (!CopyToLocalBuffer(index)) return false; } } if (!user_buffers_[index].get()) user_buffers_[index].reset(new UserBuffer(backend_.get())); return PrepareBuffer(index, offset, buf_len); } // We get to this function with some data already stored. If there is a // truncation that results on data stored internally, we'll explicitly // handle the case here. bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) { Addr address(entry_.Data()->data_addr[index]); int current_size = entry_.Data()->data_size[index]; int new_size = offset + buf_len; if (!new_size) { // This is by far the most common scenario. backend_->ModifyStorageSize(current_size - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; unreported_size_[index] = 0; entry_.Store(); DeleteData(address, index); user_buffers_[index].reset(); return true; } // We never postpone truncating a file, if there is one, but we may postpone // telling the backend about the size reduction. if (user_buffers_[index].get()) { DCHECK_GE(current_size, user_buffers_[index]->Start()); if (!address.is_initialized()) { // There is no overlap between the buffer and disk. if (new_size > user_buffers_[index]->Start()) { // Just truncate our buffer. DCHECK_LT(new_size, user_buffers_[index]->End()); user_buffers_[index]->Truncate(new_size); return true; } // Just discard our buffer. user_buffers_[index]->Reset(); return PrepareBuffer(index, offset, buf_len); } // There is some overlap or we need to extend the file before the // truncation. if (offset > user_buffers_[index]->Start()) user_buffers_[index]->Truncate(new_size); UpdateSize(index, current_size, new_size); if (!Flush(index, 0)) return false; user_buffers_[index].reset(); } // We have data somewhere, and it is not in a buffer. DCHECK(!user_buffers_[index].get()); DCHECK(address.is_initialized()); if (new_size > kMaxBlockSize) return true; // Let the operation go directly to disk. return ImportSeparateFile(index, offset + buf_len); } bool EntryImpl::CopyToLocalBuffer(int index) { Addr address(entry_.Data()->data_addr[index]); DCHECK(!user_buffers_[index].get()); DCHECK(address.is_initialized()); int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize); user_buffers_[index].reset(new UserBuffer(backend_.get())); user_buffers_[index]->Write(len, NULL, 0); File* file = GetBackingFile(address, index); int offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!file || !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) { user_buffers_[index].reset(); return false; } return true; } bool EntryImpl::MoveToLocalBuffer(int index) { if (!CopyToLocalBuffer(index)) return false; Addr address(entry_.Data()->data_addr[index]); entry_.Data()->data_addr[index] = 0; entry_.Store(); DeleteData(address, index); // If we lose this entry we'll see it as zero sized. int len = entry_.Data()->data_size[index]; backend_->ModifyStorageSize(len - unreported_size_[index], 0); unreported_size_[index] = len; return true; } bool EntryImpl::ImportSeparateFile(int index, int new_size) { if (entry_.Data()->data_size[index] > new_size) UpdateSize(index, entry_.Data()->data_size[index], new_size); return MoveToLocalBuffer(index); } bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) { DCHECK(user_buffers_[index].get()); if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) || offset > entry_.Data()->data_size[index]) { // We are about to extend the buffer or the file (with zeros), so make sure // that we are not overwriting anything. Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized() && address.is_separate_file()) { if (!Flush(index, 0)) return false; // There is an actual file already, and we don't want to keep track of // its length so we let this operation go straight to disk. // The only case when a buffer is allowed to extend the file (as in fill // with zeros before the start) is when there is no file yet to extend. user_buffers_[index].reset(); return true; } } if (!user_buffers_[index]->PreWrite(offset, buf_len)) { if (!Flush(index, offset + buf_len)) return false; // Lets try again. if (offset > user_buffers_[index]->End() || !user_buffers_[index]->PreWrite(offset, buf_len)) { // We cannot complete the operation with a buffer. DCHECK(!user_buffers_[index]->Size()); DCHECK(!user_buffers_[index]->Start()); user_buffers_[index].reset(); } } return true; } bool EntryImpl::Flush(int index, int min_len) { Addr address(entry_.Data()->data_addr[index]); DCHECK(user_buffers_[index].get()); DCHECK(!address.is_initialized() || address.is_separate_file()); DVLOG(3) << "Flush"; int size = std::max(entry_.Data()->data_size[index], min_len); if (size && !address.is_initialized() && !CreateDataBlock(index, size)) return false; if (!entry_.Data()->data_size[index]) { DCHECK(!user_buffers_[index]->Size()); return true; } address.set_value(entry_.Data()->data_addr[index]); int len = user_buffers_[index]->Size(); int offset = user_buffers_[index]->Start(); if (!len && !offset) return true; if (address.is_block_file()) { DCHECK_EQ(len, entry_.Data()->data_size[index]); DCHECK(!offset); offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; } File* file = GetBackingFile(address, index); if (!file) return false; if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL)) return false; user_buffers_[index]->Reset(); return true; } void EntryImpl::UpdateSize(int index, int old_size, int new_size) { if (entry_.Data()->data_size[index] == new_size) return; unreported_size_[index] += new_size - old_size; entry_.Data()->data_size[index] = new_size; entry_.set_modified(); } int EntryImpl::InitSparseData() { if (sparse_.get()) return net::OK; // Use a local variable so that sparse_ never goes from 'valid' to NULL. scoped_ptr sparse(new SparseControl(this)); int result = sparse->Init(); if (net::OK == result) sparse_.swap(sparse); return result; } void EntryImpl::SetEntryFlags(uint32 flags) { entry_.Data()->flags |= flags; entry_.set_modified(); } uint32 EntryImpl::GetEntryFlags() { return entry_.Data()->flags; } void EntryImpl::GetData(int index, char** buffer, Addr* address) { DCHECK(backend_); if (user_buffers_[index].get() && user_buffers_[index]->Size() && !user_buffers_[index]->Start()) { // The data is already in memory, just copy it and we're done. int data_len = entry_.Data()->data_size[index]; if (data_len <= user_buffers_[index]->Size()) { DCHECK(!user_buffers_[index]->Start()); *buffer = new char[data_len]; memcpy(*buffer, user_buffers_[index]->Data(), data_len); return; } } // Bad news: we'd have to read the info from disk so instead we'll just tell // the caller where to read from. *buffer = NULL; address->set_value(entry_.Data()->data_addr[index]); if (address->is_initialized()) { // Prevent us from deleting the block from the backing store. backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; } } #endif // defined(V3_NOT_JUST_YET_READY). void EntryImplV3::ReportIOTime(Operation op, const base::TimeTicks& start) { if (!backend_) return; switch (op) { case kRead: CACHE_UMA(AGE_MS, "ReadTime", start); break; case kWrite: CACHE_UMA(AGE_MS, "WriteTime", start); break; case kSparseRead: CACHE_UMA(AGE_MS, "SparseReadTime", start); break; case kSparseWrite: CACHE_UMA(AGE_MS, "SparseWriteTime", start); break; case kAsyncIO: CACHE_UMA(AGE_MS, "AsyncIOTime", start); break; case kReadAsync1: CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", start); break; case kWriteAsync1: CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", start); break; default: NOTREACHED(); } } void EntryImplV3::Log(const char* msg) { Trace("%s 0x%p 0x%x", msg, reinterpret_cast(this), address_); Trace(" data: 0x%x 0x%x", entry_->data_addr[0], entry_->data_addr[1]); Trace(" doomed: %d", doomed_); } void EntryImplV3::Doom() { NOTIMPLEMENTED(); } void EntryImplV3::Close() { NOTIMPLEMENTED(); } std::string EntryImplV3::GetKey() const { return std::string(); } Time EntryImplV3::GetLastUsed() const { return Time(); } Time EntryImplV3::GetLastModified() const { return Time(); } int32 EntryImplV3::GetDataSize(int index) const { return 0; } int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return net::ERR_FAILED; } int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { return net::ERR_FAILED; } int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return net::ERR_FAILED; } int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return net::ERR_FAILED; } int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start, const CompletionCallback& callback) { return net::ERR_FAILED; } bool EntryImplV3::CouldBeSparse() const { return false; } void EntryImplV3::CancelSparseIO() { NOTIMPLEMENTED(); } int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) { return net::ERR_FAILED; } EntryImplV3::~EntryImplV3() { NOTIMPLEMENTED(); } } // namespace disk_cache