// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/blockfile/index_table_v3.h" #include #include #include #include "base/bits.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/disk_cache.h" using base::Time; using base::TimeDelta; using disk_cache::CellInfo; using disk_cache::CellList; using disk_cache::IndexCell; using disk_cache::IndexIterator; namespace { // The following constants describe the bitfields of an IndexCell so they are // implicitly synchronized with the descrption of IndexCell on file_format_v3.h. const uint64 kCellLocationMask = (1 << 22) - 1; const uint64 kCellIdMask = (1 << 18) - 1; const uint64 kCellTimestampMask = (1 << 20) - 1; const uint64 kCellReuseMask = (1 << 4) - 1; const uint8 kCellStateMask = (1 << 3) - 1; const uint8 kCellGroupMask = (1 << 3) - 1; const uint8 kCellSumMask = (1 << 2) - 1; const uint64 kCellSmallTableLocationMask = (1 << 16) - 1; const uint64 kCellSmallTableIdMask = (1 << 24) - 1; const int kCellIdOffset = 22; const int kCellTimestampOffset = 40; const int kCellReuseOffset = 60; const int kCellGroupOffset = 3; const int kCellSumOffset = 6; const int kCellSmallTableIdOffset = 16; // The number of bits that a hash has to be shifted to grab the part that // defines the cell id. const int kHashShift = 14; const int kSmallTableHashShift = 8; // Unfortunately we have to break the abstaction a little here: the file number // where entries are stored is outside of the control of this code, and it is // usually part of the stored address. However, for small tables we only store // 16 bits of the address so the file number is never stored on a cell. We have // to infere the file number from the type of entry (normal vs evicted), and // the knowledge that given that the table will not keep more than 64k entries, // a single file of each type is enough. const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1; const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1; const int kMaxLocation = 1 << 22; const int kMinFileNumber = 1 << 16; uint32 GetCellLocation(const IndexCell& cell) { return cell.first_part & kCellLocationMask; } uint32 GetCellSmallTableLocation(const IndexCell& cell) { return cell.first_part & kCellSmallTableLocationMask; } uint32 GetCellId(const IndexCell& cell) { return (cell.first_part >> kCellIdOffset) & kCellIdMask; } uint32 GetCellSmallTableId(const IndexCell& cell) { return (cell.first_part >> kCellSmallTableIdOffset) & kCellSmallTableIdMask; } int GetCellTimestamp(const IndexCell& cell) { return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask; } int GetCellReuse(const IndexCell& cell) { return (cell.first_part >> kCellReuseOffset) & kCellReuseMask; } int GetCellState(const IndexCell& cell) { return cell.last_part & kCellStateMask; } int GetCellGroup(const IndexCell& cell) { return (cell.last_part >> kCellGroupOffset) & kCellGroupMask; } int GetCellSum(const IndexCell& cell) { return (cell.last_part >> kCellSumOffset) & kCellSumMask; } void SetCellLocation(IndexCell* cell, uint32 address) { DCHECK_LE(address, static_cast(kCellLocationMask)); cell->first_part &= ~kCellLocationMask; cell->first_part |= address; } void SetCellSmallTableLocation(IndexCell* cell, uint32 address) { DCHECK_LE(address, static_cast(kCellSmallTableLocationMask)); cell->first_part &= ~kCellSmallTableLocationMask; cell->first_part |= address; } void SetCellId(IndexCell* cell, uint32 hash) { DCHECK_LE(hash, static_cast(kCellIdMask)); cell->first_part &= ~(kCellIdMask << kCellIdOffset); cell->first_part |= static_cast(hash) << kCellIdOffset; } void SetCellSmallTableId(IndexCell* cell, uint32 hash) { DCHECK_LE(hash, static_cast(kCellSmallTableIdMask)); cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset); cell->first_part |= static_cast(hash) << kCellSmallTableIdOffset; } void SetCellTimestamp(IndexCell* cell, int timestamp) { DCHECK_LT(timestamp, 1 << 20); DCHECK_GE(timestamp, 0); cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset); cell->first_part |= static_cast(timestamp) << kCellTimestampOffset; } void SetCellReuse(IndexCell* cell, int count) { DCHECK_LT(count, 16); DCHECK_GE(count, 0); cell->first_part &= ~(kCellReuseMask << kCellReuseOffset); cell->first_part |= static_cast(count) << kCellReuseOffset; } void SetCellState(IndexCell* cell, disk_cache::EntryState state) { cell->last_part &= ~kCellStateMask; cell->last_part |= state; } void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) { cell->last_part &= ~(kCellGroupMask << kCellGroupOffset); cell->last_part |= group << kCellGroupOffset; } void SetCellSum(IndexCell* cell, int sum) { DCHECK_LT(sum, 4); DCHECK_GE(sum, 0); cell->last_part &= ~(kCellSumMask << kCellSumOffset); cell->last_part |= sum << kCellSumOffset; } // This is a very particular way to calculate the sum, so it will not match if // compared a gainst a pure 2 bit, modulo 2 sum. int CalculateCellSum(const IndexCell& cell) { uint32* words = bit_cast(&cell); uint8* bytes = bit_cast(&cell); uint32 result = words[0] + words[1]; result += result >> 16; result += (result >> 8) + (bytes[8] & 0x3f); result += result >> 4; result += result >> 2; return result & 3; } bool SanityCheck(const IndexCell& cell) { if (GetCellSum(cell) != CalculateCellSum(cell)) return false; if (GetCellState(cell) > disk_cache::ENTRY_USED || GetCellGroup(cell) == disk_cache::ENTRY_RESERVED || GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) { return false; } return true; } int FileNumberFromLocation(int location) { return location / kMinFileNumber; } int StartBlockFromLocation(int location) { return location % kMinFileNumber; } bool IsValidAddress(disk_cache::Addr address) { if (!address.is_initialized() || (address.file_type() != disk_cache::BLOCK_EVICTED && address.file_type() != disk_cache::BLOCK_ENTRIES)) { return false; } return address.FileNumber() < FileNumberFromLocation(kMaxLocation); } bool IsNormalState(const IndexCell& cell) { disk_cache::EntryState state = static_cast(GetCellState(cell)); DCHECK_NE(state, disk_cache::ENTRY_FREE); return state != disk_cache::ENTRY_DELETED && state != disk_cache::ENTRY_FIXING; } inline int GetNextBucket(int min_bucket_num, int max_bucket_num, disk_cache::IndexBucket* table, disk_cache::IndexBucket** bucket) { if (!(*bucket)->next) return 0; int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket; if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) { // The next bucket must fall within the extra table. Note that this is not // an uncommon path as growing the table may not cleanup the link from the // main table to the extra table, and that cleanup is performed here when // accessing that bucket for the first time. This behavior has to change if // the tables are ever shrinked. (*bucket)->next = 0; return 0; } *bucket = &table[bucket_num - min_bucket_num]; return bucket_num; } // Updates the |iterator| with the current |cell|. This cell may cause all // previous cells to be deleted (when a new target timestamp is found), the cell // may be added to the list (if it matches the target timestamp), or may it be // ignored. void UpdateIterator(const disk_cache::EntryCell& cell, int limit_time, IndexIterator* iterator) { int time = cell.GetTimestamp(); // Look for not interesting times. if (iterator->forward && time <= limit_time) return; if (!iterator->forward && time >= limit_time) return; if ((iterator->forward && time < iterator->timestamp) || (!iterator->forward && time > iterator->timestamp)) { // This timestamp is better than the one we had. iterator->timestamp = time; iterator->cells.clear(); } if (time == iterator->timestamp) { CellInfo cell_info = { cell.hash(), cell.GetAddress() }; iterator->cells.push_back(cell_info); } } void InitIterator(IndexIterator* iterator) { iterator->cells.clear(); iterator->timestamp = iterator->forward ? kint32max : 0; } } // namespace namespace disk_cache { EntryCell::~EntryCell() { } bool EntryCell::IsValid() const { return GetCellLocation(cell_) != 0; } // This code has to map the cell address (up to 22 bits) to a general cache Addr // (up to 24 bits of general addressing). It also set the implied file_number // in the case of small tables. See also the comment by the definition of // kEntriesFile. Addr EntryCell::GetAddress() const { uint32 location = GetLocation(); int file_number = FileNumberFromLocation(location); if (small_table_) { DCHECK_EQ(0, file_number); file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile : kEntriesFile; } DCHECK_NE(0, file_number); FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED : BLOCK_ENTRIES; return Addr(file_type, 1, file_number, StartBlockFromLocation(location)); } EntryState EntryCell::GetState() const { return static_cast(GetCellState(cell_)); } EntryGroup EntryCell::GetGroup() const { return static_cast(GetCellGroup(cell_)); } int EntryCell::GetReuse() const { return GetCellReuse(cell_); } int EntryCell::GetTimestamp() const { return GetCellTimestamp(cell_); } void EntryCell::SetState(EntryState state) { SetCellState(&cell_, state); } void EntryCell::SetGroup(EntryGroup group) { SetCellGroup(&cell_, group); } void EntryCell::SetReuse(int count) { SetCellReuse(&cell_, count); } void EntryCell::SetTimestamp(int timestamp) { SetCellTimestamp(&cell_, timestamp); } // Static. EntryCell EntryCell::GetEntryCellForTest(int32 cell_num, uint32 hash, Addr address, IndexCell* cell, bool small_table) { if (cell) { EntryCell entry_cell(cell_num, hash, *cell, small_table); return entry_cell; } return EntryCell(cell_num, hash, address, small_table); } void EntryCell::SerializaForTest(IndexCell* destination) { FixSum(); Serialize(destination); } EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) { cell_.Clear(); } EntryCell::EntryCell(int32 cell_num, uint32 hash, Addr address, bool small_table) : cell_num_(cell_num), hash_(hash), small_table_(small_table) { DCHECK(IsValidAddress(address) || !address.value()); cell_.Clear(); SetCellState(&cell_, ENTRY_NEW); SetCellGroup(&cell_, ENTRY_NO_USE); if (small_table) { DCHECK(address.FileNumber() == kEntriesFile || address.FileNumber() == kEvictedEntriesFile); SetCellSmallTableLocation(&cell_, address.start_block()); SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift); } else { uint32 location = address.FileNumber() << 16 | address.start_block(); SetCellLocation(&cell_, location); SetCellId(&cell_, hash >> kHashShift); } } EntryCell::EntryCell(int32 cell_num, uint32 hash, const IndexCell& cell, bool small_table) : cell_num_(cell_num), hash_(hash), cell_(cell), small_table_(small_table) { } void EntryCell::FixSum() { SetCellSum(&cell_, CalculateCellSum(cell_)); } uint32 EntryCell::GetLocation() const { if (small_table_) return GetCellSmallTableLocation(cell_); return GetCellLocation(cell_); } uint32 EntryCell::RecomputeHash() { if (small_table_) { hash_ &= (1 << kSmallTableHashShift) - 1; hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift; return hash_; } hash_ &= (1 << kHashShift) - 1; hash_ |= GetCellId(cell_) << kHashShift; return hash_; } void EntryCell::Serialize(IndexCell* destination) const { *destination = cell_; } EntrySet::EntrySet() : evicted_count(0), current(0) { } EntrySet::~EntrySet() { } IndexIterator::IndexIterator() { } IndexIterator::~IndexIterator() { } IndexTableInitData::IndexTableInitData() { } IndexTableInitData::~IndexTableInitData() { } // ----------------------------------------------------------------------- IndexTable::IndexTable(IndexTableBackend* backend) : backend_(backend), header_(NULL), main_table_(NULL), extra_table_(NULL), modified_(false), small_table_(false) { } IndexTable::~IndexTable() { } // For a general description of the index tables see: // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Index // // The index is split between two tables: the main_table_ and the extra_table_. // The main table can grow only by doubling its number of cells, while the // extra table can grow slowly, because it only contain cells that overflow // from the main table. In order to locate a given cell, part of the hash is // used directly as an index into the main table; once that bucket is located, // all cells with that partial hash (i.e., belonging to that bucket) are // inspected, and if present, the next bucket (located on the extra table) is // then located. For more information on bucket chaining see: // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Buckets // // There are two cases when increasing the size: // - Doubling the size of the main table // - Adding more entries to the extra table // // For example, consider a 64k main table with 8k cells on the extra table (for // a total of 72k cells). Init can be called to add another 8k cells at the end // (grow to 80k cells). When the size of the extra table approaches 64k, Init // can be called to double the main table (to 128k) and go back to a small extra // table. void IndexTable::Init(IndexTableInitData* params) { bool growing = header_ != NULL; scoped_ptr old_extra_table; header_ = ¶ms->index_bitmap->header; if (params->main_table) { if (main_table_) { // This is doubling the size of main table. DCHECK_EQ(base::bits::Log2Floor(header_->table_len), base::bits::Log2Floor(backup_header_->table_len) + 1); int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket; DCHECK_GE(extra_size, 0); // Doubling the size implies deleting the extra table and moving as many // cells as we can to the main table, so we first copy the old one. This // is not required when just growing the extra table because we don't // move any cell in that case. old_extra_table.reset(new IndexBucket[extra_size]); memcpy(old_extra_table.get(), extra_table_, extra_size * sizeof(IndexBucket)); memset(params->extra_table, 0, extra_size * sizeof(IndexBucket)); } main_table_ = params->main_table; } DCHECK(main_table_); extra_table_ = params->extra_table; // extra_bits_ is really measured against table-size specific values. const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table. const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table. extra_bits_ = base::bits::Log2Floor(header_->table_len) - base::bits::Log2Floor(kBaseTableLen); DCHECK_GE(extra_bits_, 0); DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits); // Note that following the previous code the constants could be derived as // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) - // base::bits::Log2Floor(kBaseTableLen); // = 22 - base::bits::Log2Floor(1024) = 22 - 10; // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10. mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1; small_table_ = extra_bits_ < kMaxExtraBitsSmallTable; if (!small_table_) extra_bits_ -= kMaxExtraBitsSmallTable; // table_len keeps the max number of cells stored by the index. We need a // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words. int num_words = (header_->table_len + 31) / 32; if (old_extra_table) { // All the cells from the extra table are moving to the new tables so before // creating the bitmaps, clear the part of the bitmap referring to the extra // table. int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32; DCHECK_GT(num_words, old_main_table_bit_words); memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0, (num_words - old_main_table_bit_words) * sizeof(int32)); DCHECK(growing); int old_num_words = (backup_header_.get()->table_len + 31) / 32; DCHECK_GT(old_num_words, old_main_table_bit_words); memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0, (old_num_words - old_main_table_bit_words) * sizeof(int32)); } bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len, num_words)); if (growing) { int old_num_words = (backup_header_.get()->table_len + 31) / 32; DCHECK_GE(num_words, old_num_words); scoped_ptr storage(new uint32[num_words]); memcpy(storage.get(), backup_bitmap_storage_.get(), old_num_words * sizeof(int32)); memset(storage.get() + old_num_words, 0, (num_words - old_num_words) * sizeof(int32)); backup_bitmap_storage_.swap(storage); backup_header_->table_len = header_->table_len; } else { backup_bitmap_storage_.reset(params->backup_bitmap.release()); backup_header_.reset(params->backup_header.release()); } num_words = (backup_header_->table_len + 31) / 32; backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(), backup_header_->table_len, num_words)); if (old_extra_table) MoveCells(old_extra_table.get()); if (small_table_) DCHECK(header_->flags & SMALL_CACHE); // All tables and backups are needed for operation. DCHECK(main_table_); DCHECK(extra_table_); DCHECK(bitmap_.get()); } void IndexTable::Shutdown() { header_ = NULL; main_table_ = NULL; extra_table_ = NULL; bitmap_.reset(); backup_bitmap_.reset(); backup_header_.reset(); backup_bitmap_storage_.reset(); modified_ = false; } // The general method for locating cells is to: // 1. Get the first bucket. This usually means directly indexing the table (as // this method does), or iterating through all possible buckets. // 2. Iterate through all the cells in that first bucket. // 3. If there is a linked bucket, locate it directly in the extra table. // 4. Go back to 2, as needed. // // One consequence of this pattern is that we never start looking at buckets in // the extra table, unless we are following a link from the main table. EntrySet IndexTable::LookupEntries(uint32 hash) { EntrySet entries; int bucket_num = static_cast(hash & mask_); IndexBucket* bucket = &main_table_[bucket_num]; do { for (int i = 0; i < kCellsPerBucket; i++) { IndexCell* current_cell = &bucket->cells[i]; if (!GetLocation(*current_cell)) continue; if (!SanityCheck(*current_cell)) { NOTREACHED(); int cell_num = bucket_num * kCellsPerBucket + i; current_cell->Clear(); bitmap_->Set(cell_num, false); backup_bitmap_->Set(cell_num, false); modified_ = true; continue; } int cell_num = bucket_num * kCellsPerBucket + i; if (MisplacedHash(*current_cell, hash)) { HandleMisplacedCell(current_cell, cell_num, hash & mask_); } else if (IsHashMatch(*current_cell, hash)) { EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); CheckState(entry_cell); if (entry_cell.GetState() != ENTRY_DELETED) { entries.cells.push_back(entry_cell); if (entry_cell.GetGroup() == ENTRY_EVICTED) entries.evicted_count++; } } } bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, &bucket); } while (bucket_num); return entries; } EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) { DCHECK(IsValidAddress(address)); DCHECK(address.FileNumber() || address.start_block()); int bucket_num = static_cast(hash & mask_); int cell_num = 0; IndexBucket* bucket = &main_table_[bucket_num]; IndexCell* current_cell = NULL; bool found = false; do { for (int i = 0; i < kCellsPerBucket && !found; i++) { current_cell = &bucket->cells[i]; if (!GetLocation(*current_cell)) { cell_num = bucket_num * kCellsPerBucket + i; found = true; } } if (found) break; bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, &bucket); } while (bucket_num); if (!found) { bucket_num = NewExtraBucket(); if (bucket_num) { cell_num = bucket_num * kCellsPerBucket; bucket->next = cell_num; bucket = &extra_table_[bucket_num - (mask_ + 1)]; bucket->hash = hash & mask_; found = true; } else { // address 0 is a reserved value, and the caller interprets it as invalid. address.set_value(0); } } EntryCell entry_cell(cell_num, hash, address, small_table_); if (address.file_type() == BLOCK_EVICTED) entry_cell.SetGroup(ENTRY_EVICTED); else entry_cell.SetGroup(ENTRY_NO_USE); Save(&entry_cell); if (found) { bitmap_->Set(cell_num, true); backup_bitmap_->Set(cell_num, true); header()->used_cells++; modified_ = true; } return entry_cell; } EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) { return FindEntryCellImpl(hash, address, false); } int IndexTable::CalculateTimestamp(Time time) { TimeDelta delta = time - Time::FromInternalValue(header_->base_time); return std::max(delta.InMinutes(), 0); } base::Time IndexTable::TimeFromTimestamp(int timestamp) { return Time::FromInternalValue(header_->base_time) + TimeDelta::FromMinutes(timestamp); } void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) { EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE); if (!cell.IsValid()) { NOTREACHED(); return; } EntryState old_state = cell.GetState(); switch (state) { case ENTRY_FREE: DCHECK_EQ(old_state, ENTRY_DELETED); break; case ENTRY_NEW: DCHECK_EQ(old_state, ENTRY_FREE); break; case ENTRY_OPEN: DCHECK_EQ(old_state, ENTRY_USED); break; case ENTRY_MODIFIED: DCHECK_EQ(old_state, ENTRY_OPEN); break; case ENTRY_DELETED: DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || old_state == ENTRY_MODIFIED); break; case ENTRY_USED: DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || old_state == ENTRY_MODIFIED); break; case ENTRY_FIXING: break; }; modified_ = true; if (state == ENTRY_DELETED) { bitmap_->Set(cell.cell_num(), false); backup_bitmap_->Set(cell.cell_num(), false); } else if (state == ENTRY_FREE) { cell.Clear(); Write(cell); header()->used_cells--; return; } cell.SetState(state); Save(&cell); } void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) { EntryCell cell = FindEntryCell(hash, address); if (!cell.IsValid()) return; int minutes = CalculateTimestamp(current); // Keep about 3 months of headroom. const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90; if (minutes > kMaxTimestamp) { // TODO(rvargas): // Update header->old_time and trigger a timer // Rebaseline timestamps and don't update sums // Start a timer (about 2 backups) // fix all ckecksums and trigger another timer // update header->old_time because rebaseline is done. minutes = std::min(minutes, (1 << 20) - 1); } cell.SetTimestamp(minutes); Save(&cell); } void IndexTable::Save(EntryCell* cell) { cell->FixSum(); Write(*cell); } void IndexTable::GetOldest(IndexIterator* no_use, IndexIterator* low_use, IndexIterator* high_use) { no_use->forward = true; low_use->forward = true; high_use->forward = true; InitIterator(no_use); InitIterator(low_use); InitIterator(high_use); WalkTables(-1, no_use, low_use, high_use); } bool IndexTable::GetNextCells(IndexIterator* iterator) { int current_time = iterator->timestamp; InitIterator(iterator); WalkTables(current_time, iterator, iterator, iterator); return !iterator->cells.empty(); } void IndexTable::OnBackupTimer() { if (!modified_) return; int num_words = (header_->table_len + 31) / 32; int num_bytes = num_words * 4 + static_cast(sizeof(*header_)); scoped_refptr buffer(new net::IOBuffer(num_bytes)); memcpy(buffer->data(), header_, sizeof(*header_)); memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(), num_words * 4); backend_->SaveIndex(buffer.get(), num_bytes); modified_ = false; } // ----------------------------------------------------------------------- EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address, bool allow_deleted) { int bucket_num = static_cast(hash & mask_); IndexBucket* bucket = &main_table_[bucket_num]; do { for (int i = 0; i < kCellsPerBucket; i++) { IndexCell* current_cell = &bucket->cells[i]; if (!GetLocation(*current_cell)) continue; DCHECK(SanityCheck(*current_cell)); if (IsHashMatch(*current_cell, hash)) { // We have a match. int cell_num = bucket_num * kCellsPerBucket + i; EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); if (entry_cell.GetAddress() != address) continue; if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED) continue; return entry_cell; } } bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, &bucket); } while (bucket_num); return EntryCell(); } void IndexTable::CheckState(const EntryCell& cell) { int current_state = cell.GetState(); if (current_state != ENTRY_FIXING) { bool present = ((current_state & 3) != 0); // Look at the last two bits. if (present != bitmap_->Get(cell.cell_num()) || present != backup_bitmap_->Get(cell.cell_num())) { // There's a mismatch. if (current_state == ENTRY_DELETED) { // We were in the process of deleting this entry. Finish now. backend_->DeleteCell(cell); } else { current_state = ENTRY_FIXING; EntryCell bad_cell(cell); bad_cell.SetState(ENTRY_FIXING); Save(&bad_cell); } } } if (current_state == ENTRY_FIXING) backend_->FixCell(cell); } void IndexTable::Write(const EntryCell& cell) { IndexBucket* bucket = NULL; int bucket_num = cell.cell_num() / kCellsPerBucket; if (bucket_num < static_cast(mask_ + 1)) { bucket = &main_table_[bucket_num]; } else { DCHECK_LE(bucket_num, header()->max_bucket); bucket = &extra_table_[bucket_num - (mask_ + 1)]; } int cell_number = cell.cell_num() % kCellsPerBucket; if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) { DCHECK_EQ(cell.GetLocation(), GetLocation(bucket->cells[cell_number])); } cell.Serialize(&bucket->cells[cell_number]); } int IndexTable::NewExtraBucket() { int safe_window = (header()->table_len < kNumExtraBlocks * 2) ? kNumExtraBlocks / 4 : kNumExtraBlocks; if (header()->table_len - header()->max_bucket * kCellsPerBucket < safe_window) { backend_->GrowIndex(); } if (header()->max_bucket * kCellsPerBucket == header()->table_len - kCellsPerBucket) { return 0; } header()->max_bucket++; return header()->max_bucket; } void IndexTable::WalkTables(int limit_time, IndexIterator* no_use, IndexIterator* low_use, IndexIterator* high_use) { header_->num_no_use_entries = 0; header_->num_low_use_entries = 0; header_->num_high_use_entries = 0; header_->num_evicted_entries = 0; for (int i = 0; i < static_cast(mask_ + 1); i++) { int bucket_num = i; IndexBucket* bucket = &main_table_[i]; do { UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use); bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, &bucket); } while (bucket_num); } header_->num_entries = header_->num_no_use_entries + header_->num_low_use_entries + header_->num_high_use_entries + header_->num_evicted_entries; modified_ = true; } void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash, int limit_time, IndexIterator* no_use, IndexIterator* low_use, IndexIterator* high_use) { for (int i = 0; i < kCellsPerBucket; i++) { IndexCell& current_cell = bucket->cells[i]; if (!GetLocation(current_cell)) continue; DCHECK(SanityCheck(current_cell)); if (!IsNormalState(current_cell)) continue; EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash), current_cell, small_table_); switch (GetCellGroup(current_cell)) { case ENTRY_NO_USE: UpdateIterator(entry_cell, limit_time, no_use); header_->num_no_use_entries++; break; case ENTRY_LOW_USE: UpdateIterator(entry_cell, limit_time, low_use); header_->num_low_use_entries++; break; case ENTRY_HIGH_USE: UpdateIterator(entry_cell, limit_time, high_use); header_->num_high_use_entries++; break; case ENTRY_EVICTED: header_->num_evicted_entries++; break; default: NOTREACHED(); } } } // This code is only called from Init() so the internal state of this object is // in flux (this method is performing the last steps of re-initialization). As // such, random methods are not supposed to work at this point, so whatever this // method calls should be relatively well controlled and it may require some // degree of "stable state faking". void IndexTable::MoveCells(IndexBucket* old_extra_table) { int max_hash = (mask_ + 1) / 2; int max_bucket = header()->max_bucket; header()->max_bucket = mask_; int used_cells = header()->used_cells; // Consider a large cache: a cell stores the upper 18 bits of the hash // (h >> 14). If the table is say 8 times the original size (growing from 4x), // the bit that we are interested in would be the 3rd bit of the stored value, // in other words 'multiplier' >> 1. uint32 new_bit = (1 << extra_bits_) >> 1; scoped_ptr old_main_table; IndexBucket* source_table = main_table_; bool upgrade_format = !extra_bits_; if (upgrade_format) { // This method should deal with migrating a small table to a big one. Given // that the first thing to do is read the old table, set small_table_ for // the size of the old table. Now, when moving a cell, the result cannot be // placed in the old table or we will end up reading it again and attempting // to move it, so we have to copy the whole table at once. DCHECK(!small_table_); small_table_ = true; old_main_table.reset(new IndexBucket[max_hash]); memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket)); memset(main_table_, 0, max_hash * sizeof(IndexBucket)); source_table = old_main_table.get(); } for (int i = 0; i < max_hash; i++) { int bucket_num = i; IndexBucket* bucket = &source_table[i]; do { for (int j = 0; j < kCellsPerBucket; j++) { IndexCell& current_cell = bucket->cells[j]; if (!GetLocation(current_cell)) continue; DCHECK(SanityCheck(current_cell)); if (bucket_num == i) { if (upgrade_format || (GetHashValue(current_cell) & new_bit)) { // Move this cell to the upper half of the table. MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, true); } } else { // All cells on extra buckets have to move. MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, true); } } // There is no need to clear the old bucket->next value because if falls // within the main table so it will be fixed when attempting to follow // the link. bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table, &bucket); } while (bucket_num); } DCHECK_EQ(header()->used_cells, used_cells); if (upgrade_format) { small_table_ = false; header()->flags &= ~SMALL_CACHE; } } void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num, int main_table_index, bool growing) { uint32 hash = GetFullHash(*current_cell, main_table_index); EntryCell old_cell(cell_num, hash, *current_cell, small_table_); // This method may be called when moving entries from a small table to a // normal table. In that case, the caller (MoveCells) has to read the old // table, so it needs small_table_ set to true, but this method needs to // write to the new table so small_table_ has to be set to false, and the // value restored to true before returning. bool upgrade_format = !extra_bits_ && growing; if (upgrade_format) small_table_ = false; EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress()); if (!new_cell.IsValid()) { // We'll deal with this entry later. if (upgrade_format) small_table_ = true; return; } new_cell.SetState(old_cell.GetState()); new_cell.SetGroup(old_cell.GetGroup()); new_cell.SetReuse(old_cell.GetReuse()); new_cell.SetTimestamp(old_cell.GetTimestamp()); Save(&new_cell); modified_ = true; if (upgrade_format) small_table_ = true; if (old_cell.GetState() == ENTRY_DELETED) { bitmap_->Set(new_cell.cell_num(), false); backup_bitmap_->Set(new_cell.cell_num(), false); } if (!growing || cell_num / kCellsPerBucket == main_table_index) { // Only delete entries that live on the main table. if (!upgrade_format) { old_cell.Clear(); Write(old_cell); } if (cell_num != new_cell.cell_num()) { bitmap_->Set(old_cell.cell_num(), false); backup_bitmap_->Set(old_cell.cell_num(), false); } } header()->used_cells--; } void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num, int main_table_index) { NOTREACHED(); // No unit tests yet. // The cell may be misplaced, or a duplicate cell exists with this data. uint32 hash = GetFullHash(*current_cell, main_table_index); MoveSingleCell(current_cell, cell_num, main_table_index, false); // Now look for a duplicate cell. CheckBucketList(hash & mask_); } void IndexTable::CheckBucketList(int bucket_num) { typedef std::pair AddressAndGroup; std::set entries; IndexBucket* bucket = &main_table_[bucket_num]; int bucket_hash = bucket_num; do { for (int i = 0; i < kCellsPerBucket; i++) { IndexCell* current_cell = &bucket->cells[i]; if (!GetLocation(*current_cell)) continue; if (!SanityCheck(*current_cell)) { NOTREACHED(); current_cell->Clear(); continue; } int cell_num = bucket_num * kCellsPerBucket + i; EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash), *current_cell, small_table_); if (!entries.insert(std::make_pair(cell.GetAddress().value(), cell.GetGroup())).second) { current_cell->Clear(); continue; } CheckState(cell); } bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, &bucket); } while (bucket_num); } uint32 IndexTable::GetLocation(const IndexCell& cell) { if (small_table_) return GetCellSmallTableLocation(cell); return GetCellLocation(cell); } uint32 IndexTable::GetHashValue(const IndexCell& cell) { if (small_table_) return GetCellSmallTableId(cell); return GetCellId(cell); } uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) { // It is OK for the high order bits of lower_part to overlap with the stored // part of the hash. if (small_table_) return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part; return (GetCellId(cell) << kHashShift) | lower_part; } // All the bits stored in the cell should match the provided hash. bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) { hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; return GetHashValue(cell) == hash; } bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) { if (!extra_bits_) return false; uint32 mask = (1 << extra_bits_) - 1; hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; return (GetHashValue(cell) & mask) != (hash & mask); } } // namespace disk_cache