// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/entry_impl.h" #include "base/message_loop.h" #include "base/metrics/histogram.h" #include "base/string_util.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/backend_impl.h" #include "net/disk_cache/bitmap.h" #include "net/disk_cache/cache_util.h" #include "net/disk_cache/histogram_macros.h" #include "net/disk_cache/sparse_control.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { // Index for the file used to store the key, if any (files_[kKeyFileIndex]). const int kKeyFileIndex = 3; // This class implements FileIOCallback to buffer the callback from a file IO // operation from the actual net class. class SyncCallback: public disk_cache::FileIOCallback { public: SyncCallback(disk_cache::EntryImpl* entry, net::IOBuffer* buffer, net::CompletionCallback* callback ) : entry_(entry), callback_(callback), buf_(buffer), start_(TimeTicks::Now()) { entry->AddRef(); entry->IncrementIoCount(); } ~SyncCallback() {} virtual void OnFileIOComplete(int bytes_copied); void Discard(); private: disk_cache::EntryImpl* entry_; net::CompletionCallback* callback_; scoped_refptr buf_; TimeTicks start_; DISALLOW_COPY_AND_ASSIGN(SyncCallback); }; void SyncCallback::OnFileIOComplete(int bytes_copied) { entry_->DecrementIoCount(); if (callback_) { entry_->ReportIOTime(disk_cache::EntryImpl::kAsyncIO, start_); callback_->Run(bytes_copied); } entry_->Release(); delete this; } void SyncCallback::Discard() { callback_ = NULL; buf_ = NULL; OnFileIOComplete(0); } const int kMaxBufferSize = 1024 * 1024; // 1 MB. } // namespace namespace disk_cache { // This class handles individual memory buffers that store data before it is // sent to disk. The buffer can start at any offset, but if we try to write to // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to // zero. The buffer grows up to a size determined by the backend, to keep the // total memory used under control. class EntryImpl::UserBuffer { public: explicit UserBuffer(BackendImpl* backend) : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) { buffer_.reserve(kMaxBlockSize); } ~UserBuffer() { if (backend_) backend_->BufferDeleted(capacity() - kMaxBlockSize); } // Returns true if we can handle writing |len| bytes to |offset|. bool PreWrite(int offset, int len); // Truncates the buffer to |offset| bytes. void Truncate(int offset); // Writes |len| bytes from |buf| at the given |offset|. void Write(int offset, net::IOBuffer* buf, int len); // Returns true if we can read |len| bytes from |offset|, given that the // actual file has |eof| bytes stored. Note that the number of bytes to read // may be modified by this method even though it returns false: that means we // should do a smaller read from disk. bool PreRead(int eof, int offset, int* len); // Read |len| bytes from |buf| at the given |offset|. int Read(int offset, net::IOBuffer* buf, int len); // Prepare this buffer for reuse. void Reset(); char* Data() { return buffer_.size() ? &buffer_[0] : NULL; } int Size() { return static_cast(buffer_.size()); } int Start() { return offset_; } int End() { return offset_ + Size(); } private: int capacity() { return static_cast(buffer_.capacity()); } bool GrowBuffer(int required, int limit); base::WeakPtr backend_; int offset_; std::vector buffer_; bool grow_allowed_; DISALLOW_COPY_AND_ASSIGN(UserBuffer); }; bool EntryImpl::UserBuffer::PreWrite(int offset, int len) { DCHECK_GE(offset, 0); DCHECK_GE(len, 0); DCHECK_GE(offset + len, 0); // We don't want to write before our current start. if (offset < offset_) return false; // Lets get the common case out of the way. if (offset + len <= capacity()) return true; // If we are writing to the first 16K (kMaxBlockSize), we want to keep the // buffer offset_ at 0. if (!Size() && offset > kMaxBlockSize) return GrowBuffer(len, kMaxBufferSize); int required = offset - offset_ + len; return GrowBuffer(required, kMaxBufferSize * 6 / 5); } void EntryImpl::UserBuffer::Truncate(int offset) { DCHECK_GE(offset, 0); DCHECK_GE(offset, offset_); DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_; offset -= offset_; if (Size() >= offset) buffer_.resize(offset); } void EntryImpl::UserBuffer::Write(int offset, net::IOBuffer* buf, int len) { DCHECK_GE(offset, 0); DCHECK_GE(len, 0); DCHECK_GE(offset + len, 0); DCHECK_GE(offset, offset_); DVLOG(3) << "Buffer write at " << offset << " current " << offset_; if (!Size() && offset > kMaxBlockSize) offset_ = offset; offset -= offset_; if (offset > Size()) buffer_.resize(offset); if (!len) return; char* buffer = buf->data(); int valid_len = Size() - offset; int copy_len = std::min(valid_len, len); if (copy_len) { memcpy(&buffer_[offset], buffer, copy_len); len -= copy_len; buffer += copy_len; } if (!len) return; buffer_.insert(buffer_.end(), buffer, buffer + len); } bool EntryImpl::UserBuffer::PreRead(int eof, int offset, int* len) { DCHECK_GE(offset, 0); DCHECK_GT(*len, 0); if (offset < offset_) { // We are reading before this buffer. if (offset >= eof) return true; // If the read overlaps with the buffer, change its length so that there is // no overlap. *len = std::min(*len, offset_ - offset); *len = std::min(*len, eof - offset); // We should read from disk. return false; } if (!Size()) return false; // See if we can fulfill the first part of the operation. return (offset - offset_ < Size()); } int EntryImpl::UserBuffer::Read(int offset, net::IOBuffer* buf, int len) { DCHECK_GE(offset, 0); DCHECK_GT(len, 0); DCHECK(Size() || offset < offset_); int clean_bytes = 0; if (offset < offset_) { // We don't have a file so lets fill the first part with 0. clean_bytes = std::min(offset_ - offset, len); memset(buf->data(), 0, clean_bytes); if (len == clean_bytes) return len; offset = offset_; len -= clean_bytes; } int start = offset - offset_; int available = Size() - start; DCHECK_GE(start, 0); DCHECK_GE(available, 0); len = std::min(len, available); memcpy(buf->data() + clean_bytes, &buffer_[start], len); return len + clean_bytes; } void EntryImpl::UserBuffer::Reset() { if (!grow_allowed_) { if (backend_) backend_->BufferDeleted(capacity() - kMaxBlockSize); grow_allowed_ = true; std::vector tmp; buffer_.swap(tmp); buffer_.reserve(kMaxBlockSize); } offset_ = 0; buffer_.clear(); } bool EntryImpl::UserBuffer::GrowBuffer(int required, int limit) { DCHECK_GE(required, 0); int current_size = capacity(); if (required <= current_size) return true; if (required > limit) return false; if (!backend_) return false; int to_add = std::max(required - current_size, kMaxBlockSize * 4); to_add = std::max(current_size, to_add); required = std::min(current_size + to_add, limit); grow_allowed_ = backend_->IsAllocAllowed(current_size, required); if (!grow_allowed_) return false; DVLOG(3) << "Buffer grow to " << required; buffer_.reserve(required); return true; } // ------------------------------------------------------------------------ EntryImpl::EntryImpl(BackendImpl* backend, Addr address, bool read_only) : entry_(NULL, Addr(0)), node_(NULL, Addr(0)), read_only_(read_only) { entry_.LazyInit(backend->File(address), address); doomed_ = false; backend_ = backend; for (int i = 0; i < kNumStreams; i++) { unreported_size_[i] = 0; } } // When an entry is deleted from the cache, we clean up all the data associated // with it for two reasons: to simplify the reuse of the block (we know that any // unused block is filled with zeros), and to simplify the handling of write / // read partial information from an entry (don't have to worry about returning // data related to a previous cache entry because the range was not fully // written before). EntryImpl::~EntryImpl() { Log("~EntryImpl in"); backend_->OnEntryDestroyBegin(entry_.address()); // Save the sparse info to disk before deleting this entry. sparse_.reset(); if (doomed_) { DeleteEntryData(true); } else { bool ret = true; for (int index = 0; index < kNumStreams; index++) { if (user_buffers_[index].get()) { if (!(ret = Flush(index, 0))) LOG(ERROR) << "Failed to save user data"; } if (unreported_size_[index]) { backend_->ModifyStorageSize( entry_.Data()->data_size[index] - unreported_size_[index], entry_.Data()->data_size[index]); } } if (!ret) { // There was a failure writing the actual data. Mark the entry as dirty. int current_id = backend_->GetCurrentEntryId(); node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1; node_.Store(); } else if (node_.HasData() && node_.Data()->dirty) { node_.Data()->dirty = 0; node_.Store(); } } Trace("~EntryImpl out 0x%p", reinterpret_cast(this)); backend_->OnEntryDestroyEnd(); } void EntryImpl::Doom() { backend_->background_queue()->DoomEntryImpl(this); } void EntryImpl::Close() { backend_->background_queue()->CloseEntryImpl(this); } std::string EntryImpl::GetKey() const { CacheEntryBlock* entry = const_cast(&entry_); if (entry->Data()->key_len <= kMaxInternalKeyLength) return std::string(entry->Data()->key); // We keep a copy of the key so that we can always return it, even if the // backend is disabled. if (!key_.empty()) return key_; Addr address(entry->Data()->long_key); DCHECK(address.is_initialized()); size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index); File* key_file = const_cast(this)->GetBackingFile(address, kKeyFileIndex); if (!key_file || !key_file->Read(WriteInto(&key_, entry->Data()->key_len + 1), entry->Data()->key_len + 1, offset)) key_.clear(); return key_; } Time EntryImpl::GetLastUsed() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_used); } Time EntryImpl::GetLastModified() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_modified); } int32 EntryImpl::GetDataSize(int index) const { if (index < 0 || index >= kNumStreams) return 0; CacheEntryBlock* entry = const_cast(&entry_); return entry->Data()->data_size[index]; } int EntryImpl::ReadData(int index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* callback) { if (!callback) return ReadDataImpl(index, offset, buf, buf_len, callback); DCHECK(node_.Data()->dirty || read_only_); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; int entry_size = entry_.Data()->data_size[index]; if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (buf_len < 0) return net::ERR_INVALID_ARGUMENT; backend_->background_queue()->ReadData(this, index, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::WriteData(int index, int offset, net::IOBuffer* buf, int buf_len, CompletionCallback* callback, bool truncate) { if (!callback) return WriteDataImpl(index, offset, buf, buf_len, callback, truncate); DCHECK(node_.Data()->dirty || read_only_); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; backend_->background_queue()->WriteData(this, index, offset, buf, buf_len, truncate, callback); return net::ERR_IO_PENDING; } int EntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* callback) { if (!callback) return ReadSparseDataImpl(offset, buf, buf_len, callback); backend_->background_queue()->ReadSparseData(this, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* callback) { if (!callback) return WriteSparseDataImpl(offset, buf, buf_len, callback); backend_->background_queue()->WriteSparseData(this, offset, buf, buf_len, callback); return net::ERR_IO_PENDING; } int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start, CompletionCallback* callback) { backend_->background_queue()->GetAvailableRange(this, offset, len, start, callback); return net::ERR_IO_PENDING; } bool EntryImpl::CouldBeSparse() const { if (sparse_.get()) return true; scoped_ptr sparse; sparse.reset(new SparseControl(const_cast(this))); return sparse->CouldBeSparse(); } void EntryImpl::CancelSparseIO() { backend_->background_queue()->CancelSparseIO(this); } int EntryImpl::ReadyForSparseIO(net::CompletionCallback* callback) { if (!sparse_.get()) return net::OK; backend_->background_queue()->ReadyForSparseIO(this, callback); return net::ERR_IO_PENDING; } // ------------------------------------------------------------------------ void EntryImpl::DoomImpl() { if (doomed_) return; SetPointerForInvalidEntry(backend_->GetCurrentEntryId()); backend_->InternalDoomEntry(this); } int EntryImpl::ReadDataImpl(int index, int offset, net::IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(node_.Data()->dirty || read_only_); DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len; if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; int entry_size = entry_.Data()->data_size[index]; if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (buf_len < 0) return net::ERR_INVALID_ARGUMENT; TimeTicks start = TimeTicks::Now(); if (offset + buf_len > entry_size) buf_len = entry_size - offset; UpdateRank(false); backend_->OnEvent(Stats::READ_DATA); backend_->OnRead(buf_len); Addr address(entry_.Data()->data_addr[index]); int eof = address.is_initialized() ? entry_size : 0; if (user_buffers_[index].get() && user_buffers_[index]->PreRead(eof, offset, &buf_len)) { // Complete the operation locally. buf_len = user_buffers_[index]->Read(offset, buf, buf_len); ReportIOTime(kRead, start); return buf_len; } address.set_value(entry_.Data()->data_addr[index]); DCHECK(address.is_initialized()); if (!address.is_initialized()) return net::ERR_FAILED; File* file = GetBackingFile(address, index); if (!file) return net::ERR_FAILED; size_t file_offset = offset; if (address.is_block_file()) { DCHECK_LE(offset + buf_len, kMaxBlockSize); file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; } SyncCallback* io_callback = NULL; if (callback) io_callback = new SyncCallback(this, buf, callback); bool completed; if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); return net::ERR_FAILED; } if (io_callback && completed) io_callback->Discard(); ReportIOTime(kRead, start); return (completed || !callback) ? buf_len : net::ERR_IO_PENDING; } int EntryImpl::WriteDataImpl(int index, int offset, net::IOBuffer* buf, int buf_len, CompletionCallback* callback, bool truncate) { DCHECK(node_.Data()->dirty || read_only_); DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len; if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; int max_file_size = backend_->MaxFileSize(); // offset or buf_len could be negative numbers. if (offset > max_file_size || buf_len > max_file_size || offset + buf_len > max_file_size) { int size = offset + buf_len; if (size <= max_file_size) size = kint32max; backend_->TooMuchStorageRequested(size); return net::ERR_FAILED; } TimeTicks start = TimeTicks::Now(); // Read the size at this point (it may change inside prepare). int entry_size = entry_.Data()->data_size[index]; bool extending = entry_size < offset + buf_len; truncate = truncate && entry_size > offset + buf_len; Trace("To PrepareTarget 0x%x", entry_.address().value()); if (!PrepareTarget(index, offset, buf_len, truncate)) return net::ERR_FAILED; Trace("From PrepareTarget 0x%x", entry_.address().value()); if (extending || truncate) UpdateSize(index, entry_size, offset + buf_len); UpdateRank(true); backend_->OnEvent(Stats::WRITE_DATA); backend_->OnWrite(buf_len); if (user_buffers_[index].get()) { // Complete the operation locally. user_buffers_[index]->Write(offset, buf, buf_len); ReportIOTime(kWrite, start); return buf_len; } Addr address(entry_.Data()->data_addr[index]); if (offset + buf_len == 0) { if (truncate) { DCHECK(!address.is_initialized()); } return 0; } File* file = GetBackingFile(address, index); if (!file) return net::ERR_FAILED; size_t file_offset = offset; if (address.is_block_file()) { DCHECK_LE(offset + buf_len, kMaxBlockSize); file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; } else if (truncate || (extending && !buf_len)) { if (!file->SetLength(offset + buf_len)) return net::ERR_FAILED; } if (!buf_len) return 0; SyncCallback* io_callback = NULL; if (callback) io_callback = new SyncCallback(this, buf, callback); bool completed; if (!file->Write(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); return net::ERR_FAILED; } if (io_callback && completed) io_callback->Discard(); ReportIOTime(kWrite, start); return (completed || !callback) ? buf_len : net::ERR_IO_PENDING; } int EntryImpl::ReadSparseDataImpl(int64 offset, net::IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(node_.Data()->dirty || read_only_); int result = InitSparseData(); if (net::OK != result) return result; TimeTicks start = TimeTicks::Now(); result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len, callback); ReportIOTime(kSparseRead, start); return result; } int EntryImpl::WriteSparseDataImpl(int64 offset, net::IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(node_.Data()->dirty || read_only_); int result = InitSparseData(); if (net::OK != result) return result; TimeTicks start = TimeTicks::Now(); result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf, buf_len, callback); ReportIOTime(kSparseWrite, start); return result; } int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) { int result = InitSparseData(); if (net::OK != result) return result; return sparse_->GetAvailableRange(offset, len, start); } void EntryImpl::CancelSparseIOImpl() { if (!sparse_.get()) return; sparse_->CancelIO(); } int EntryImpl::ReadyForSparseIOImpl(CompletionCallback* callback) { DCHECK(sparse_.get()); return sparse_->ReadyToUse(callback); } // ------------------------------------------------------------------------ uint32 EntryImpl::GetHash() { return entry_.Data()->hash; } bool EntryImpl::CreateEntry(Addr node_address, const std::string& key, uint32 hash) { Trace("Create entry In"); EntryStore* entry_store = entry_.Data(); RankingsNode* node = node_.Data(); memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks()); memset(node, 0, sizeof(RankingsNode)); if (!node_.LazyInit(backend_->File(node_address), node_address)) return false; entry_store->rankings_node = node_address.value(); node->contents = entry_.address().value(); entry_store->hash = hash; entry_store->creation_time = Time::Now().ToInternalValue(); entry_store->key_len = static_cast(key.size()); if (entry_store->key_len > kMaxInternalKeyLength) { Addr address(0); if (!CreateBlock(entry_store->key_len + 1, &address)) return false; entry_store->long_key = address.value(); File* key_file = GetBackingFile(address, kKeyFileIndex); key_ = key; size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!key_file || !key_file->Write(key.data(), key.size(), offset)) { DeleteData(address, kKeyFileIndex); return false; } if (address.is_separate_file()) key_file->SetLength(key.size() + 1); } else { memcpy(entry_store->key, key.data(), key.size()); entry_store->key[key.size()] = '\0'; } backend_->ModifyStorageSize(0, static_cast(key.size())); CACHE_UMA(COUNTS, "KeySize", 0, static_cast(key.size())); node->dirty = backend_->GetCurrentEntryId(); Log("Create Entry "); return true; } bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) { if (entry_.Data()->hash != hash || static_cast(entry_.Data()->key_len) != key.size()) return false; std::string my_key = GetKey(); return key.compare(my_key) ? false : true; } void EntryImpl::InternalDoom() { DCHECK(node_.HasData()); if (!node_.Data()->dirty) { node_.Data()->dirty = backend_->GetCurrentEntryId(); node_.Store(); } doomed_ = true; } void EntryImpl::DeleteEntryData(bool everything) { DCHECK(doomed_ || !everything); if (GetEntryFlags() & PARENT_ENTRY) { // We have some child entries that must go away. SparseControl::DeleteChildren(this); } if (GetDataSize(0)) CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0)); if (GetDataSize(1)) CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1)); for (int index = 0; index < kNumStreams; index++) { Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized()) { backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; entry_.Store(); DeleteData(address, index); } } if (!everything) return; // Remove all traces of this entry. backend_->RemoveEntry(this); Addr address(entry_.Data()->long_key); DeleteData(address, kKeyFileIndex); backend_->ModifyStorageSize(entry_.Data()->key_len, 0); memset(node_.buffer(), 0, node_.size()); memset(entry_.buffer(), 0, entry_.size()); node_.Store(); entry_.Store(); backend_->DeleteBlock(node_.address(), false); backend_->DeleteBlock(entry_.address(), false); } CacheAddr EntryImpl::GetNextAddress() { return entry_.Data()->next; } void EntryImpl::SetNextAddress(Addr address) { entry_.Data()->next = address.value(); bool success = entry_.Store(); DCHECK(success); } bool EntryImpl::LoadNodeAddress() { Addr address(entry_.Data()->rankings_node); if (!node_.LazyInit(backend_->File(address), address)) return false; return node_.Load(); } bool EntryImpl::Update() { DCHECK(node_.HasData()); if (read_only_) return true; RankingsNode* rankings = node_.Data(); if (!rankings->dirty) { rankings->dirty = backend_->GetCurrentEntryId(); if (!node_.Store()) return false; } return true; } bool EntryImpl::IsDirty(int32 current_id) { DCHECK(node_.HasData()); // We are checking if the entry is valid or not. If there is a pointer here, // we should not be checking the entry. if (node_.Data()->dummy) return true; return node_.Data()->dirty && current_id != node_.Data()->dirty; } void EntryImpl::ClearDirtyFlag() { node_.Data()->dirty = 0; } void EntryImpl::SetPointerForInvalidEntry(int32 new_id) { node_.Data()->dirty = new_id; node_.Data()->dummy = 0; node_.Store(); } bool EntryImpl::SanityCheck() { if (!entry_.Data()->rankings_node || !entry_.Data()->key_len) return false; Addr rankings_addr(entry_.Data()->rankings_node); if (!rankings_addr.is_initialized() || rankings_addr.is_separate_file() || rankings_addr.file_type() != RANKINGS) return false; Addr next_addr(entry_.Data()->next); if (next_addr.is_initialized() && (next_addr.is_separate_file() || next_addr.file_type() != BLOCK_256)) return false; return true; } void EntryImpl::IncrementIoCount() { backend_->IncrementIoCount(); } void EntryImpl::DecrementIoCount() { backend_->DecrementIoCount(); } void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) { node_.Data()->last_used = last_used.ToInternalValue(); node_.Data()->last_modified = last_modified.ToInternalValue(); node_.set_modified(); } void EntryImpl::ReportIOTime(Operation op, const base::TimeTicks& start) { int group = backend_->GetSizeGroup(); switch (op) { case kRead: CACHE_UMA(AGE_MS, "ReadTime", group, start); break; case kWrite: CACHE_UMA(AGE_MS, "WriteTime", group, start); break; case kSparseRead: CACHE_UMA(AGE_MS, "SparseReadTime", 0, start); break; case kSparseWrite: CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start); break; case kAsyncIO: CACHE_UMA(AGE_MS, "AsyncIOTime", group, start); break; default: NOTREACHED(); } } // ------------------------------------------------------------------------ bool EntryImpl::CreateDataBlock(int index, int size) { DCHECK(index >= 0 && index < kNumStreams); Addr address(entry_.Data()->data_addr[index]); if (!CreateBlock(size, &address)) return false; entry_.Data()->data_addr[index] = address.value(); entry_.Store(); return true; } bool EntryImpl::CreateBlock(int size, Addr* address) { DCHECK(!address->is_initialized()); FileType file_type = Addr::RequiredFileType(size); if (EXTERNAL == file_type) { if (size > backend_->MaxFileSize()) return false; if (!backend_->CreateExternalFile(address)) return false; } else { int num_blocks = (size + Addr::BlockSizeForFileType(file_type) - 1) / Addr::BlockSizeForFileType(file_type); if (!backend_->CreateBlock(file_type, num_blocks, address)) return false; } return true; } // Note that this method may end up modifying a block file so upon return the // involved block will be free, and could be reused for something else. If there // is a crash after that point (and maybe before returning to the caller), the // entry will be left dirty... and at some point it will be discarded; it is // important that the entry doesn't keep a reference to this address, or we'll // end up deleting the contents of |address| once again. void EntryImpl::DeleteData(Addr address, int index) { if (!address.is_initialized()) return; if (address.is_separate_file()) { int failure = !DeleteCacheFile(backend_->GetFileName(address)); CACHE_UMA(COUNTS, "DeleteFailed", 0, failure); if (failure) { LOG(ERROR) << "Failed to delete " << backend_->GetFileName(address).value() << " from the cache."; } if (files_[index]) files_[index] = NULL; // Releases the object. } else { backend_->DeleteBlock(address, true); } } void EntryImpl::UpdateRank(bool modified) { if (!doomed_) { // Everything is handled by the backend. backend_->UpdateRank(this, modified); return; } Time current = Time::Now(); node_.Data()->last_used = current.ToInternalValue(); if (modified) node_.Data()->last_modified = current.ToInternalValue(); } File* EntryImpl::GetBackingFile(Addr address, int index) { File* file; if (address.is_separate_file()) file = GetExternalFile(address, index); else file = backend_->File(address); return file; } File* EntryImpl::GetExternalFile(Addr address, int index) { DCHECK(index >= 0 && index <= kKeyFileIndex); if (!files_[index].get()) { // For a key file, use mixed mode IO. scoped_refptr file(new File(kKeyFileIndex == index)); if (file->Init(backend_->GetFileName(address))) files_[index].swap(file); } return files_[index].get(); } // We keep a memory buffer for everything that ends up stored on a block file // (because we don't know yet the final data size), and for some of the data // that end up on external files. This function will initialize that memory // buffer and / or the files needed to store the data. // // In general, a buffer may overlap data already stored on disk, and in that // case, the contents of the buffer are the most accurate. It may also extend // the file, but we don't want to read from disk just to keep the buffer up to // date. This means that as soon as there is a chance to get confused about what // is the most recent version of some part of a file, we'll flush the buffer and // reuse it for the new data. Keep in mind that the normal use pattern is quite // simple (write sequentially from the beginning), so we optimize for handling // that case. bool EntryImpl::PrepareTarget(int index, int offset, int buf_len, bool truncate) { if (truncate) return HandleTruncation(index, offset, buf_len); if (!offset && !buf_len) return true; Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized()) { if (address.is_block_file() && !MoveToLocalBuffer(index)) return false; if (!user_buffers_[index].get() && offset < kMaxBlockSize) { // We are about to create a buffer for the first 16KB, make sure that we // preserve existing data. if (!CopyToLocalBuffer(index)) return false; } } if (!user_buffers_[index].get()) user_buffers_[index].reset(new UserBuffer(backend_)); return PrepareBuffer(index, offset, buf_len); } // We get to this function with some data already stored. If there is a // truncation that results on data stored internally, we'll explicitly // handle the case here. bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) { Addr address(entry_.Data()->data_addr[index]); int current_size = entry_.Data()->data_size[index]; int new_size = offset + buf_len; if (!new_size) { // This is by far the most common scenario. backend_->ModifyStorageSize(current_size - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; unreported_size_[index] = 0; entry_.Store(); DeleteData(address, index); user_buffers_[index].reset(); return true; } // We never postpone truncating a file, if there is one, but we may postpone // telling the backend about the size reduction. if (user_buffers_[index].get()) { DCHECK_GE(current_size, user_buffers_[index]->Start()); if (!address.is_initialized()) { // There is no overlap between the buffer and disk. if (new_size > user_buffers_[index]->Start()) { // Just truncate our buffer. DCHECK_LT(new_size, user_buffers_[index]->End()); user_buffers_[index]->Truncate(new_size); return true; } // Just discard our buffer. user_buffers_[index]->Reset(); return PrepareBuffer(index, offset, buf_len); } // There is some overlap or we need to extend the file before the // truncation. if (offset > user_buffers_[index]->Start()) user_buffers_[index]->Truncate(new_size); UpdateSize(index, current_size, new_size); if (!Flush(index, 0)) return false; user_buffers_[index].reset(); } // We have data somewhere, and it is not in a buffer. DCHECK(!user_buffers_[index].get()); DCHECK(address.is_initialized()); if (new_size > kMaxBlockSize) return true; // Let the operation go directly to disk. return ImportSeparateFile(index, offset + buf_len); } bool EntryImpl::CopyToLocalBuffer(int index) { Addr address(entry_.Data()->data_addr[index]); DCHECK(!user_buffers_[index].get()); DCHECK(address.is_initialized()); int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize); user_buffers_[index].reset(new UserBuffer(backend_)); user_buffers_[index]->Write(len, NULL, 0); File* file = GetBackingFile(address, index); int offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!file || !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) { user_buffers_[index].reset(); return false; } return true; } bool EntryImpl::MoveToLocalBuffer(int index) { if (!CopyToLocalBuffer(index)) return false; Addr address(entry_.Data()->data_addr[index]); entry_.Data()->data_addr[index] = 0; entry_.Store(); DeleteData(address, index); // If we lose this entry we'll see it as zero sized. int len = entry_.Data()->data_size[index]; backend_->ModifyStorageSize(len - unreported_size_[index], 0); unreported_size_[index] = len; return true; } bool EntryImpl::ImportSeparateFile(int index, int new_size) { if (entry_.Data()->data_size[index] > new_size) UpdateSize(index, entry_.Data()->data_size[index], new_size); return MoveToLocalBuffer(index); } bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) { DCHECK(user_buffers_[index].get()); if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) || offset > entry_.Data()->data_size[index]) { // We are about to extend the buffer or the file (with zeros), so make sure // that we are not overwriting anything. Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized() && address.is_separate_file()) { if (!Flush(index, 0)) return false; // There is an actual file already, and we don't want to keep track of // its length so we let this operation go straight to disk. // The only case when a buffer is allowed to extend the file (as in fill // with zeros before the start) is when there is no file yet to extend. user_buffers_[index].reset(); return true; } } if (!user_buffers_[index]->PreWrite(offset, buf_len)) { if (!Flush(index, offset + buf_len)) return false; // Lets try again. if (offset > user_buffers_[index]->End() || !user_buffers_[index]->PreWrite(offset, buf_len)) { // We cannot complete the operation with a buffer. DCHECK(!user_buffers_[index]->Size()); DCHECK(!user_buffers_[index]->Start()); user_buffers_[index].reset(); } } return true; } bool EntryImpl::Flush(int index, int min_len) { Addr address(entry_.Data()->data_addr[index]); DCHECK(user_buffers_[index].get()); DCHECK(!address.is_initialized() || address.is_separate_file()); DVLOG(3) << "Flush"; int size = std::max(entry_.Data()->data_size[index], min_len); if (size && !address.is_initialized() && !CreateDataBlock(index, size)) return false; if (!entry_.Data()->data_size[index]) { DCHECK(!user_buffers_[index]->Size()); return true; } address.set_value(entry_.Data()->data_addr[index]); int len = user_buffers_[index]->Size(); int offset = user_buffers_[index]->Start(); if (!len && !offset) return true; if (address.is_block_file()) { DCHECK_EQ(len, entry_.Data()->data_size[index]); DCHECK(!offset); offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; } File* file = GetBackingFile(address, index); if (!file) return false; if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL)) return false; user_buffers_[index]->Reset(); return true; } void EntryImpl::UpdateSize(int index, int old_size, int new_size) { if (entry_.Data()->data_size[index] == new_size) return; unreported_size_[index] += new_size - old_size; entry_.Data()->data_size[index] = new_size; entry_.set_modified(); } int EntryImpl::InitSparseData() { if (sparse_.get()) return net::OK; // Use a local variable so that sparse_ never goes from 'valid' to NULL. scoped_ptr sparse(new SparseControl(this)); int result = sparse->Init(); if (net::OK == result) sparse_.swap(sparse); return result; } void EntryImpl::SetEntryFlags(uint32 flags) { entry_.Data()->flags |= flags; entry_.set_modified(); } uint32 EntryImpl::GetEntryFlags() { return entry_.Data()->flags; } void EntryImpl::GetData(int index, char** buffer, Addr* address) { if (user_buffers_[index].get() && user_buffers_[index]->Size() && !user_buffers_[index]->Start()) { // The data is already in memory, just copy it and we're done. int data_len = entry_.Data()->data_size[index]; if (data_len <= user_buffers_[index]->Size()) { DCHECK(!user_buffers_[index]->Start()); *buffer = new char[data_len]; memcpy(*buffer, user_buffers_[index]->Data(), data_len); return; } } // Bad news: we'd have to read the info from disk so instead we'll just tell // the caller where to read from. *buffer = NULL; address->set_value(entry_.Data()->data_addr[index]); if (address->is_initialized()) { // Prevent us from deleting the block from the backing store. backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; } } void EntryImpl::Log(const char* msg) { int dirty = 0; if (node_.HasData()) { dirty = node_.Data()->dirty; } Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast(this), entry_.address().value(), node_.address().value()); Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0], entry_.Data()->data_addr[1], entry_.Data()->long_key); Trace(" doomed: %d 0x%x", doomed_, dirty); } } // namespace disk_cache