// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/entry_impl.h" #include "base/histogram.h" #include "base/message_loop.h" #include "base/string_util.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/backend_impl.h" #include "net/disk_cache/bitmap.h" #include "net/disk_cache/cache_util.h" #include "net/disk_cache/histogram_macros.h" #include "net/disk_cache/sparse_control.h" using base::Time; using base::TimeDelta; namespace { // Index for the file used to store the key, if any (files_[kKeyFileIndex]). const int kKeyFileIndex = 3; // This class implements FileIOCallback to buffer the callback from a file IO // operation from the actual net class. class SyncCallback: public disk_cache::FileIOCallback { public: SyncCallback(disk_cache::EntryImpl* entry, net::IOBuffer* buffer, net::CompletionCallback* callback ) : entry_(entry), callback_(callback), buf_(buffer), start_(Time::Now()) { entry->AddRef(); entry->IncrementIoCount(); } ~SyncCallback() {} virtual void OnFileIOComplete(int bytes_copied); void Discard(); private: disk_cache::EntryImpl* entry_; net::CompletionCallback* callback_; scoped_refptr buf_; Time start_; DISALLOW_EVIL_CONSTRUCTORS(SyncCallback); }; void SyncCallback::OnFileIOComplete(int bytes_copied) { entry_->DecrementIoCount(); if (callback_) { entry_->ReportIOTime(disk_cache::EntryImpl::kAsyncIO, start_); callback_->Run(bytes_copied); } entry_->Release(); delete this; } void SyncCallback::Discard() { callback_ = NULL; buf_ = NULL; OnFileIOComplete(0); } // Clears buffer before offset and after valid_len, knowing that the size of // buffer is kMaxBlockSize. void ClearInvalidData(char* buffer, int offset, int valid_len) { DCHECK(offset >= 0); DCHECK(valid_len >= 0); DCHECK(disk_cache::kMaxBlockSize >= offset + valid_len); if (offset) memset(buffer, 0, offset); int end = disk_cache::kMaxBlockSize - offset - valid_len; if (end) memset(buffer + offset + valid_len, 0, end); } } // namespace namespace disk_cache { EntryImpl::EntryImpl(BackendImpl* backend, Addr address) : entry_(NULL, Addr(0)), node_(NULL, Addr(0)) { entry_.LazyInit(backend->File(address), address); doomed_ = false; backend_ = backend; for (int i = 0; i < kNumStreams; i++) { unreported_size_[i] = 0; } key_file_ = NULL; } // When an entry is deleted from the cache, we clean up all the data associated // with it for two reasons: to simplify the reuse of the block (we know that any // unused block is filled with zeros), and to simplify the handling of write / // read partial information from an entry (don't have to worry about returning // data related to a previous cache entry because the range was not fully // written before). EntryImpl::~EntryImpl() { // Save the sparse info to disk before deleting this entry. sparse_.reset(); if (doomed_) { DeleteEntryData(true); } else { bool ret = true; for (int index = 0; index < kNumStreams; index++) { if (user_buffers_[index].get()) { if (!(ret = Flush(index, entry_.Data()->data_size[index], false))) LOG(ERROR) << "Failed to save user data"; } else if (unreported_size_[index]) { backend_->ModifyStorageSize( entry_.Data()->data_size[index] - unreported_size_[index], entry_.Data()->data_size[index]); } } if (!ret) { // There was a failure writing the actual data. Mark the entry as dirty. int current_id = backend_->GetCurrentEntryId(); node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1; node_.Store(); } else if (node_.HasData() && node_.Data()->dirty) { node_.Data()->dirty = 0; node_.Store(); } } backend_->CacheEntryDestroyed(entry_.address()); } void EntryImpl::Doom() { if (doomed_) return; SetPointerForInvalidEntry(backend_->GetCurrentEntryId()); backend_->InternalDoomEntry(this); } void EntryImpl::Close() { Release(); } std::string EntryImpl::GetKey() const { CacheEntryBlock* entry = const_cast(&entry_); if (entry->Data()->key_len <= kMaxInternalKeyLength) return std::string(entry->Data()->key); Addr address(entry->Data()->long_key); DCHECK(address.is_initialized()); size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!key_file_) { // We keep a copy of the file needed to access the key so that we can // always return this object's key, even if the backend is disabled. COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index); key_file_ = const_cast(this)->GetBackingFile(address, kKeyFileIndex); } std::string key; if (!key_file_ || !key_file_->Read(WriteInto(&key, entry->Data()->key_len + 1), entry->Data()->key_len + 1, offset)) key.clear(); return key; } Time EntryImpl::GetLastUsed() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_used); } Time EntryImpl::GetLastModified() const { CacheRankingsBlock* node = const_cast(&node_); return Time::FromInternalValue(node->Data()->last_modified); } int32 EntryImpl::GetDataSize(int index) const { if (index < 0 || index >= kNumStreams) return 0; CacheEntryBlock* entry = const_cast(&entry_); return entry->Data()->data_size[index]; } int EntryImpl::ReadData(int index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback) { DCHECK(node_.Data()->dirty); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; int entry_size = entry_.Data()->data_size[index]; if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (buf_len < 0) return net::ERR_INVALID_ARGUMENT; Time start = Time::Now(); if (offset + buf_len > entry_size) buf_len = entry_size - offset; UpdateRank(false); backend_->OnEvent(Stats::READ_DATA); if (user_buffers_[index].get()) { // Complete the operation locally. DCHECK(kMaxBlockSize >= offset + buf_len); memcpy(buf->data() , user_buffers_[index].get() + offset, buf_len); ReportIOTime(kRead, start); return buf_len; } Addr address(entry_.Data()->data_addr[index]); DCHECK(address.is_initialized()); if (!address.is_initialized()) return net::ERR_FAILED; File* file = GetBackingFile(address, index); if (!file) return net::ERR_FAILED; size_t file_offset = offset; if (address.is_block_file()) file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; SyncCallback* io_callback = NULL; if (completion_callback) io_callback = new SyncCallback(this, buf, completion_callback); bool completed; if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); return net::ERR_FAILED; } if (io_callback && completed) io_callback->Discard(); ReportIOTime(kRead, start); return (completed || !completion_callback) ? buf_len : net::ERR_IO_PENDING; } int EntryImpl::WriteData(int index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback, bool truncate) { DCHECK(node_.Data()->dirty); if (index < 0 || index >= kNumStreams) return net::ERR_INVALID_ARGUMENT; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; int max_file_size = backend_->MaxFileSize(); // offset of buf_len could be negative numbers. if (offset > max_file_size || buf_len > max_file_size || offset + buf_len > max_file_size) { int size = offset + buf_len; if (size <= max_file_size) size = kint32max; backend_->TooMuchStorageRequested(size); return net::ERR_FAILED; } Time start = Time::Now(); // Read the size at this point (it may change inside prepare). int entry_size = entry_.Data()->data_size[index]; if (!PrepareTarget(index, offset, buf_len, truncate)) return net::ERR_FAILED; if (entry_size < offset + buf_len) { unreported_size_[index] += offset + buf_len - entry_size; entry_.Data()->data_size[index] = offset + buf_len; entry_.set_modified(); if (!buf_len) truncate = true; // Force file extension. } else if (truncate) { // If the size was modified inside PrepareTarget, we should not do // anything here. if ((entry_size > offset + buf_len) && (entry_size == entry_.Data()->data_size[index])) { unreported_size_[index] += offset + buf_len - entry_size; entry_.Data()->data_size[index] = offset + buf_len; entry_.set_modified(); } else { // Nothing to truncate. truncate = false; } } UpdateRank(true); backend_->OnEvent(Stats::WRITE_DATA); if (user_buffers_[index].get()) { // Complete the operation locally. if (!buf_len) return 0; DCHECK(kMaxBlockSize >= offset + buf_len); memcpy(user_buffers_[index].get() + offset, buf->data(), buf_len); ReportIOTime(kWrite, start); return buf_len; } Addr address(entry_.Data()->data_addr[index]); File* file = GetBackingFile(address, index); if (!file) return net::ERR_FAILED; size_t file_offset = offset; if (address.is_block_file()) { file_offset += address.start_block() * address.BlockSize() + kBlockHeaderSize; } else if (truncate) { if (!file->SetLength(offset + buf_len)) return net::ERR_FAILED; } if (!buf_len) return 0; SyncCallback* io_callback = NULL; if (completion_callback) io_callback = new SyncCallback(this, buf, completion_callback); bool completed; if (!file->Write(buf->data(), buf_len, file_offset, io_callback, &completed)) { if (io_callback) io_callback->Discard(); return net::ERR_FAILED; } if (io_callback && completed) io_callback->Discard(); ReportIOTime(kWrite, start); return (completed || !completion_callback) ? buf_len : net::ERR_IO_PENDING; } int EntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback) { DCHECK(node_.Data()->dirty); int result = InitSparseData(); if (net::OK != result) return result; Time start = Time::Now(); result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len, completion_callback); ReportIOTime(kSparseRead, start); return result; } int EntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback) { DCHECK(node_.Data()->dirty); int result = InitSparseData(); if (net::OK != result) return result; Time start = Time::Now(); result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf, buf_len, completion_callback); ReportIOTime(kSparseWrite, start); return result; } int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start) { int result = InitSparseData(); if (net::OK != result) return result; return sparse_->GetAvailableRange(offset, len, start); } int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start, CompletionCallback* callback) { return GetAvailableRange(offset, len, start); } void EntryImpl::CancelSparseIO() { if (!sparse_.get()) return; sparse_->CancelIO(); } int EntryImpl::ReadyForSparseIO(net::CompletionCallback* completion_callback) { if (!sparse_.get()) return net::OK; return sparse_->ReadyToUse(completion_callback); } // ------------------------------------------------------------------------ uint32 EntryImpl::GetHash() { return entry_.Data()->hash; } bool EntryImpl::CreateEntry(Addr node_address, const std::string& key, uint32 hash) { Trace("Create entry In"); EntryStore* entry_store = entry_.Data(); RankingsNode* node = node_.Data(); memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks()); memset(node, 0, sizeof(RankingsNode)); if (!node_.LazyInit(backend_->File(node_address), node_address)) return false; entry_store->rankings_node = node_address.value(); node->contents = entry_.address().value(); entry_store->hash = hash; entry_store->creation_time = Time::Now().ToInternalValue(); entry_store->key_len = static_cast(key.size()); if (entry_store->key_len > kMaxInternalKeyLength) { Addr address(0); if (!CreateBlock(entry_store->key_len + 1, &address)) return false; entry_store->long_key = address.value(); key_file_ = GetBackingFile(address, kKeyFileIndex); size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!key_file_ || !key_file_->Write(key.data(), key.size(), offset)) { DeleteData(address, kKeyFileIndex); return false; } if (address.is_separate_file()) key_file_->SetLength(key.size() + 1); } else { memcpy(entry_store->key, key.data(), key.size()); entry_store->key[key.size()] = '\0'; } backend_->ModifyStorageSize(0, static_cast(key.size())); node->dirty = backend_->GetCurrentEntryId(); Log("Create Entry "); return true; } bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) { if (entry_.Data()->hash != hash || static_cast(entry_.Data()->key_len) != key.size()) return false; std::string my_key = GetKey(); return key.compare(my_key) ? false : true; } void EntryImpl::InternalDoom() { DCHECK(node_.HasData()); if (!node_.Data()->dirty) { node_.Data()->dirty = backend_->GetCurrentEntryId(); node_.Store(); } doomed_ = true; } void EntryImpl::DeleteEntryData(bool everything) { DCHECK(doomed_ || !everything); if (GetEntryFlags() & PARENT_ENTRY) { // We have some child entries that must go away. SparseControl::DeleteChildren(this); } if (GetDataSize(0)) CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0)); if (GetDataSize(1)) CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1)); for (int index = 0; index < kNumStreams; index++) { Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized()) { DeleteData(address, index); backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; } } if (!everything) { entry_.Store(); return; } // Remove all traces of this entry. backend_->RemoveEntry(this); Addr address(entry_.Data()->long_key); DeleteData(address, kKeyFileIndex); backend_->ModifyStorageSize(entry_.Data()->key_len, 0); memset(node_.buffer(), 0, node_.size()); memset(entry_.buffer(), 0, entry_.size()); node_.Store(); entry_.Store(); backend_->DeleteBlock(node_.address(), false); backend_->DeleteBlock(entry_.address(), false); } CacheAddr EntryImpl::GetNextAddress() { return entry_.Data()->next; } void EntryImpl::SetNextAddress(Addr address) { entry_.Data()->next = address.value(); bool success = entry_.Store(); DCHECK(success); } bool EntryImpl::LoadNodeAddress() { Addr address(entry_.Data()->rankings_node); if (!node_.LazyInit(backend_->File(address), address)) return false; return node_.Load(); } bool EntryImpl::Update() { DCHECK(node_.HasData()); RankingsNode* rankings = node_.Data(); if (!rankings->dirty) { rankings->dirty = backend_->GetCurrentEntryId(); if (!node_.Store()) return false; } return true; } bool EntryImpl::IsDirty(int32 current_id) { DCHECK(node_.HasData()); // We are checking if the entry is valid or not. If there is a pointer here, // we should not be checking the entry. if (node_.Data()->dummy) return true; return node_.Data()->dirty && current_id != node_.Data()->dirty; } void EntryImpl::ClearDirtyFlag() { node_.Data()->dirty = 0; } void EntryImpl::SetPointerForInvalidEntry(int32 new_id) { node_.Data()->dirty = new_id; node_.Data()->dummy = 0; node_.Store(); } bool EntryImpl::SanityCheck() { if (!entry_.Data()->rankings_node || !entry_.Data()->key_len) return false; Addr rankings_addr(entry_.Data()->rankings_node); if (!rankings_addr.is_initialized() || rankings_addr.is_separate_file() || rankings_addr.file_type() != RANKINGS) return false; Addr next_addr(entry_.Data()->next); if (next_addr.is_initialized() && (next_addr.is_separate_file() || next_addr.file_type() != BLOCK_256)) return false; return true; } void EntryImpl::IncrementIoCount() { backend_->IncrementIoCount(); } void EntryImpl::DecrementIoCount() { backend_->DecrementIoCount(); } void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) { node_.Data()->last_used = last_used.ToInternalValue(); node_.Data()->last_modified = last_modified.ToInternalValue(); node_.set_modified(); } void EntryImpl::ReportIOTime(Operation op, const base::Time& start) { int group = backend_->GetSizeGroup(); switch (op) { case kRead: CACHE_UMA(AGE_MS, "ReadTime", group, start); break; case kWrite: CACHE_UMA(AGE_MS, "WriteTime", group, start); break; case kSparseRead: CACHE_UMA(AGE_MS, "SparseReadTime", 0, start); break; case kSparseWrite: CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start); break; case kAsyncIO: CACHE_UMA(AGE_MS, "AsyncIOTime", group, start); break; default: NOTREACHED(); } } // ------------------------------------------------------------------------ bool EntryImpl::CreateDataBlock(int index, int size) { DCHECK(index >= 0 && index < kNumStreams); Addr address(entry_.Data()->data_addr[index]); if (!CreateBlock(size, &address)) return false; entry_.Data()->data_addr[index] = address.value(); entry_.Store(); return true; } bool EntryImpl::CreateBlock(int size, Addr* address) { DCHECK(!address->is_initialized()); FileType file_type = Addr::RequiredFileType(size); if (EXTERNAL == file_type) { if (size > backend_->MaxFileSize()) return false; if (!backend_->CreateExternalFile(address)) return false; } else { int num_blocks = (size + Addr::BlockSizeForFileType(file_type) - 1) / Addr::BlockSizeForFileType(file_type); if (!backend_->CreateBlock(file_type, num_blocks, address)) return false; } return true; } void EntryImpl::DeleteData(Addr address, int index) { if (!address.is_initialized()) return; if (address.is_separate_file()) { if (files_[index]) files_[index] = NULL; // Releases the object. int failure = DeleteCacheFile(backend_->GetFileName(address)) ? 0 : 1; CACHE_UMA(COUNTS, "DeleteFailed", 0, failure); if (failure) LOG(ERROR) << "Failed to delete " << backend_->GetFileName(address).value() << " from the cache."; } else { backend_->DeleteBlock(address, true); } } void EntryImpl::UpdateRank(bool modified) { if (!doomed_) { // Everything is handled by the backend. backend_->UpdateRank(this, true); return; } Time current = Time::Now(); node_.Data()->last_used = current.ToInternalValue(); if (modified) node_.Data()->last_modified = current.ToInternalValue(); } File* EntryImpl::GetBackingFile(Addr address, int index) { File* file; if (address.is_separate_file()) file = GetExternalFile(address, index); else file = backend_->File(address); return file; } File* EntryImpl::GetExternalFile(Addr address, int index) { DCHECK(index >= 0 && index <= kKeyFileIndex); if (!files_[index].get()) { // For a key file, use mixed mode IO. scoped_refptr file(new File(kKeyFileIndex == index)); if (file->Init(backend_->GetFileName(address))) files_[index].swap(file); } return files_[index].get(); } bool EntryImpl::PrepareTarget(int index, int offset, int buf_len, bool truncate) { Addr address(entry_.Data()->data_addr[index]); if (address.is_initialized() || user_buffers_[index].get()) return GrowUserBuffer(index, offset, buf_len, truncate); if (offset + buf_len > kMaxBlockSize) return CreateDataBlock(index, offset + buf_len); user_buffers_[index].reset(new char[kMaxBlockSize]); // Overwrite the parts of the buffer that are not going to be written // by the current operation (and yes, let's assume that nothing is going // to fail, and we'll actually write over the part that we are not cleaning // here). The point is to avoid writing random stuff to disk later on. ClearInvalidData(user_buffers_[index].get(), offset, buf_len); return true; } // We get to this function with some data already stored. If there is a // truncation that results on data stored internally, we'll explicitly // handle the case here. bool EntryImpl::GrowUserBuffer(int index, int offset, int buf_len, bool truncate) { Addr address(entry_.Data()->data_addr[index]); if (offset + buf_len > kMaxBlockSize) { // The data has to be stored externally. if (address.is_initialized()) { if (address.is_separate_file()) return true; if (!MoveToLocalBuffer(index)) return false; } return Flush(index, offset + buf_len, true); } if (!address.is_initialized()) { DCHECK(user_buffers_[index].get()); if (truncate) ClearInvalidData(user_buffers_[index].get(), 0, offset + buf_len); return true; } if (address.is_separate_file()) { if (!truncate) return true; return ImportSeparateFile(index, offset, buf_len); } // At this point we are dealing with data stored on disk, inside a block file. if (offset + buf_len <= address.BlockSize() * address.num_blocks()) return true; // ... and the allocated block has to change. if (!MoveToLocalBuffer(index)) return false; int clear_start = entry_.Data()->data_size[index]; if (truncate) clear_start = std::min(clear_start, offset + buf_len); else if (offset < clear_start) clear_start = std::max(offset + buf_len, clear_start); // Clear the end of the buffer. ClearInvalidData(user_buffers_[index].get(), 0, clear_start); return true; } bool EntryImpl::MoveToLocalBuffer(int index) { Addr address(entry_.Data()->data_addr[index]); DCHECK(!user_buffers_[index].get()); DCHECK(address.is_initialized()); scoped_array buffer(new char[kMaxBlockSize]); File* file = GetBackingFile(address, index); size_t len = entry_.Data()->data_size[index]; size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; if (!file || !file->Read(buffer.get(), len, offset, NULL, NULL)) return false; DeleteData(address, index); entry_.Data()->data_addr[index] = 0; entry_.Store(); // If we lose this entry we'll see it as zero sized. backend_->ModifyStorageSize(static_cast(len) - unreported_size_[index], 0); unreported_size_[index] = static_cast(len); user_buffers_[index].swap(buffer); return true; } bool EntryImpl::ImportSeparateFile(int index, int offset, int buf_len) { if (entry_.Data()->data_size[index] > offset + buf_len) { unreported_size_[index] += offset + buf_len - entry_.Data()->data_size[index]; entry_.Data()->data_size[index] = offset + buf_len; } if (!MoveToLocalBuffer(index)) return false; // Clear the end of the buffer. ClearInvalidData(user_buffers_[index].get(), 0, offset + buf_len); return true; } // The common scenario is that this is called from the destructor of the entry, // to write to disk what we have buffered. We don't want to hold the destructor // until the actual IO finishes, so we'll send an asynchronous write that will // free up the memory containing the data. To be consistent, this method always // returns with the buffer freed up (on success). bool EntryImpl::Flush(int index, int size, bool async) { Addr address(entry_.Data()->data_addr[index]); DCHECK(user_buffers_[index].get()); DCHECK(!address.is_initialized()); if (!size) return true; if (!CreateDataBlock(index, size)) return false; address.set_value(entry_.Data()->data_addr[index]); File* file = GetBackingFile(address, index); size_t len = entry_.Data()->data_size[index]; size_t offset = 0; if (address.is_block_file()) offset = address.start_block() * address.BlockSize() + kBlockHeaderSize; // We just told the backend to store len bytes for real. DCHECK(len == static_cast(unreported_size_[index])); backend_->ModifyStorageSize(0, static_cast(len)); unreported_size_[index] = 0; if (!file) return false; // TODO(rvargas): figure out if it's worth to re-enable posting operations. // Right now it is only used from GrowUserBuffer, not the destructor, and // it is not accounted for from the point of view of the total number of // pending operations of the cache. It is also racing with the actual write // on the GrowUserBuffer path because there is no code to exclude the range // that is going to be written. async = false; if (async) { if (!file->PostWrite(user_buffers_[index].get(), len, offset)) return false; } else { if (!file->Write(user_buffers_[index].get(), len, offset, NULL, NULL)) return false; user_buffers_[index].reset(NULL); } // The buffer is deleted from the PostWrite operation. user_buffers_[index].release(); return true; } int EntryImpl::InitSparseData() { if (sparse_.get()) return net::OK; sparse_.reset(new SparseControl(this)); int result = sparse_->Init(); if (net::OK != result) sparse_.reset(); return result; } void EntryImpl::SetEntryFlags(uint32 flags) { entry_.Data()->flags |= flags; entry_.set_modified(); } uint32 EntryImpl::GetEntryFlags() { return entry_.Data()->flags; } void EntryImpl::GetData(int index, char** buffer, Addr* address) { if (user_buffers_[index].get()) { // The data is already in memory, just copy it an we're done. int data_len = entry_.Data()->data_size[index]; DCHECK(data_len <= kMaxBlockSize); *buffer = new char[data_len]; memcpy(*buffer, user_buffers_[index].get(), data_len); return; } // Bad news: we'd have to read the info from disk so instead we'll just tell // the caller where to read from. *buffer = NULL; address->set_value(entry_.Data()->data_addr[index]); if (address->is_initialized()) { // Prevent us from deleting the block from the backing store. backend_->ModifyStorageSize(entry_.Data()->data_size[index] - unreported_size_[index], 0); entry_.Data()->data_addr[index] = 0; entry_.Data()->data_size[index] = 0; } } void EntryImpl::Log(const char* msg) { int dirty = 0; if (node_.HasData()) { dirty = node_.Data()->dirty; } Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast(this), entry_.address().value(), node_.address().value()); Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0], entry_.Data()->data_addr[1], entry_.Data()->long_key); Trace(" doomed: %d 0x%x", doomed_, dirty); } } // namespace disk_cache