// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/basictypes.h" #include "base/platform_thread.h" #include "base/timer.h" #include "base/string_util.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/test_completion_callback.h" #include "net/disk_cache/backend_impl.h" #include "net/disk_cache/disk_cache_test_base.h" #include "net/disk_cache/disk_cache_test_util.h" #include "net/disk_cache/entry_impl.h" #include "net/disk_cache/mem_entry_impl.h" #include "testing/gtest/include/gtest/gtest.h" using base::Time; extern volatile int g_cache_tests_received; extern volatile bool g_cache_tests_error; // Tests that can run with different types of caches. class DiskCacheEntryTest : public DiskCacheTestWithCache { public: void InternalSyncIOBackground(disk_cache::Entry* entry); void ExternalSyncIOBackground(disk_cache::Entry* entry); protected: void InternalSyncIO(); void InternalAsyncIO(); void ExternalSyncIO(); void ExternalAsyncIO(); void StreamAccess(); void GetKey(); void GetTimes(); void GrowData(); void TruncateData(); void ZeroLengthIO(); void Buffering(); void SizeChanges(); void ReuseEntry(int size); void InvalidData(); void DoomNormalEntry(); void DoomedEntry(); void BasicSparseIO(); void HugeSparseIO(); void GetAvailableRange(); void CouldBeSparse(); void UpdateSparseEntry(); void DoomSparseEntry(); void PartialSparseEntry(); }; // Simple task to run part of a test from the cache thread. class SyncIOTask : public Task { public: SyncIOTask(DiskCacheEntryTest* test, disk_cache::Entry* entry) : test_(test), entry_(entry) {} protected: DiskCacheEntryTest* test_; disk_cache::Entry* entry_; }; class InternalSyncIOTask : public SyncIOTask { public: InternalSyncIOTask(DiskCacheEntryTest* test, disk_cache::Entry* entry) : SyncIOTask(test, entry) {} virtual void Run() { test_->InternalSyncIOBackground(entry_); } }; // This part of the test runs on the background thread. void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) { const int kSize1 = 10; scoped_refptr buffer1(new net::IOBuffer(kSize1)); CacheTestFillBuffer(buffer1->data(), kSize1, false); EXPECT_EQ(0, entry->ReadData(0, 0, buffer1, kSize1, NULL)); base::strlcpy(buffer1->data(), "the data", kSize1); EXPECT_EQ(10, entry->WriteData(0, 0, buffer1, kSize1, NULL, false)); memset(buffer1->data(), 0, kSize1); EXPECT_EQ(10, entry->ReadData(0, 0, buffer1, kSize1, NULL)); EXPECT_STREQ("the data", buffer1->data()); const int kSize2 = 5000; const int kSize3 = 10000; scoped_refptr buffer2(new net::IOBuffer(kSize2)); scoped_refptr buffer3(new net::IOBuffer(kSize3)); memset(buffer3->data(), 0, kSize3); CacheTestFillBuffer(buffer2->data(), kSize2, false); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2, kSize2, NULL, false)); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2, kSize2, NULL)); EXPECT_STREQ("big data goes here", buffer2->data()); EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2, kSize2, NULL)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2, kSize2, NULL)); EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2, kSize2, NULL)); EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3, kSize3, NULL)); EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3, 8192, NULL, false)); EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3, kSize3, NULL)); EXPECT_EQ(8192, entry->GetDataSize(1)); // We need to delete the memory buffer on this thread. EXPECT_EQ(0, entry->WriteData(0, 0, NULL, 0, NULL, true)); EXPECT_EQ(0, entry->WriteData(1, 0, NULL, 0, NULL, true)); } // We need to support synchronous IO even though it is not a supported operation // from the point of view of the disk cache's public interface, because we use // it internally, not just by a few tests, but as part of the implementation // (see sparse_control.cc, for example). void DiskCacheEntryTest::InternalSyncIO() { disk_cache::Entry* entry = NULL; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); ASSERT_TRUE(NULL != entry); // The bulk of the test runs from within the task, on the cache thread. RunTaskForTest(new InternalSyncIOTask(this, entry)); entry->Doom(); entry->Close(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, InternalSyncIO) { SetDirectMode(); InitCache(); InternalSyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { SetMemoryOnlyMode(); InitCache(); InternalSyncIO(); } void DiskCacheEntryTest::InternalAsyncIO() { disk_cache::Entry* entry = NULL; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); ASSERT_TRUE(NULL != entry); // Avoid using internal buffers for the test. We have to write something to // the entry and close it so that we flush the internal buffer to disk. After // that, IO operations will be really hitting the disk. We don't care about // the content, so just extending the entry is enough (all extensions zero- // fill any holes). EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false)); EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry("the first key", &entry)); // Let's verify that each IO goes to the right callback object. CallbackTest callback1(false); CallbackTest callback2(false); CallbackTest callback3(false); CallbackTest callback4(false); CallbackTest callback5(false); CallbackTest callback6(false); CallbackTest callback7(false); CallbackTest callback8(false); CallbackTest callback9(false); CallbackTest callback10(false); CallbackTest callback11(false); CallbackTest callback12(false); CallbackTest callback13(false); g_cache_tests_error = false; g_cache_tests_received = 0; MessageLoopHelper helper; const int kSize1 = 10; const int kSize2 = 5000; const int kSize3 = 10000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); scoped_refptr buffer3(new net::IOBuffer(kSize3)); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); CacheTestFillBuffer(buffer3->data(), kSize3, false); EXPECT_EQ(0, entry->ReadData(0, 15 * 1024, buffer1, kSize1, &callback1)); base::strlcpy(buffer1->data(), "the data", kSize1); int expected = 0; int ret = entry->WriteData(0, 0, buffer1, kSize1, &callback2, false); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer2->data(), 0, kSize2); ret = entry->ReadData(0, 0, buffer2, kSize1, &callback3); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("the data", buffer2->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); ret = entry->WriteData(1, 1500, buffer2, kSize2, &callback4, true); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer3->data(), 0, kSize3); ret = entry->ReadData(1, 1511, buffer3, kSize2, &callback5); EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("big data goes here", buffer3->data()); ret = entry->ReadData(1, 0, buffer2, kSize2, &callback6); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; memset(buffer3->data(), 0, kSize3); EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); ret = entry->ReadData(1, 5000, buffer2, kSize2, &callback7); EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry->ReadData(1, 0, buffer3, kSize3, &callback9); EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry->WriteData(1, 0, buffer3, 8192, &callback10, true); EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); ret = entry->ReadData(1, 0, buffer3, kSize3, &callback11); EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(8192, entry->GetDataSize(1)); ret = entry->ReadData(0, 0, buffer1, kSize1, &callback12); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry->ReadData(1, 0, buffer2, kSize2, &callback13); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_FALSE(g_cache_tests_error); EXPECT_EQ(expected, g_cache_tests_received); entry->Doom(); entry->Close(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, InternalAsyncIO) { SetDirectMode(); InitCache(); InternalAsyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { SetMemoryOnlyMode(); InitCache(); InternalAsyncIO(); } class ExternalSyncIOTask : public SyncIOTask { public: ExternalSyncIOTask(DiskCacheEntryTest* test, disk_cache::Entry* entry) : SyncIOTask(test, entry) {} virtual void Run() { test_->ExternalSyncIOBackground(entry_); } }; // This part of the test runs on the background thread. void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) { const int kSize1 = 17000; const int kSize2 = 25000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); base::strlcpy(buffer1->data(), "the data", kSize1); EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1, kSize1, NULL, false)); memset(buffer1->data(), 0, kSize1); EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1, kSize1, NULL)); EXPECT_STREQ("the data", buffer1->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2, kSize2, NULL, false)); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2, kSize2, NULL)); EXPECT_STREQ("big data goes here", buffer2->data()); EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2, kSize2, NULL)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2, kSize2, NULL)); EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2, kSize2, NULL)); EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1, kSize1, NULL)); EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1, kSize1, NULL, false)); EXPECT_EQ(37000, entry->GetDataSize(1)); // We need to delete the memory buffer on this thread. EXPECT_EQ(0, entry->WriteData(0, 0, NULL, 0, NULL, true)); EXPECT_EQ(0, entry->WriteData(1, 0, NULL, 0, NULL, true)); } void DiskCacheEntryTest::ExternalSyncIO() { disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); // The bulk of the test runs from within the task, on the cache thread. RunTaskForTest(new ExternalSyncIOTask(this, entry)); entry->Doom(); entry->Close(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, ExternalSyncIO) { SetDirectMode(); InitCache(); ExternalSyncIO(); } TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); ExternalSyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { SetMemoryOnlyMode(); InitCache(); ExternalSyncIO(); } void DiskCacheEntryTest::ExternalAsyncIO() { disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); // Let's verify that each IO goes to the right callback object. CallbackTest callback1(false); CallbackTest callback2(false); CallbackTest callback3(false); CallbackTest callback4(false); CallbackTest callback5(false); CallbackTest callback6(false); CallbackTest callback7(false); CallbackTest callback8(false); CallbackTest callback9(false); g_cache_tests_error = false; g_cache_tests_received = 0; int expected = 0; MessageLoopHelper helper; const int kSize1 = 17000; const int kSize2 = 25000; const int kSize3 = 25000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); scoped_refptr buffer3(new net::IOBuffer(kSize3)); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); CacheTestFillBuffer(buffer3->data(), kSize3, false); base::strlcpy(buffer1->data(), "the data", kSize1); int ret = entry->WriteData(0, 0, buffer1, kSize1, &callback1, false); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer2->data(), 0, kSize1); ret = entry->ReadData(0, 0, buffer2, kSize1, &callback2); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("the data", buffer1->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); ret = entry->WriteData(1, 10000, buffer2, kSize2, &callback3, false); EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer3->data(), 0, kSize3); ret = entry->ReadData(1, 10011, buffer3, kSize3, &callback4); EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("big data goes here", buffer3->data()); ret = entry->ReadData(1, 0, buffer2, kSize2, &callback5); EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); ret = entry->ReadData(1, 30000, buffer2, kSize2, &callback6); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2, kSize2, &callback7)); ret = entry->ReadData(1, 0, buffer1, kSize1, &callback8); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry->WriteData(1, 20000, buffer1, kSize1, &callback9, false); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_EQ(37000, entry->GetDataSize(1)); EXPECT_FALSE(g_cache_tests_error); EXPECT_EQ(expected, g_cache_tests_received); entry->Doom(); entry->Close(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { SetDirectMode(); InitCache(); ExternalAsyncIO(); } TEST_F(DiskCacheEntryTest, ExternalAsyncIONoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); ExternalAsyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { SetMemoryOnlyMode(); InitCache(); ExternalAsyncIO(); } TEST_F(DiskCacheEntryTest, RequestThrottling) { SetDirectMode(); InitCache(); disk_cache::Entry* entry = NULL; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); ASSERT_TRUE(NULL != entry); // Let's verify that each IO goes to the right callback object. CallbackTest cb(true); g_cache_tests_error = false; g_cache_tests_received = 0; MessageLoopHelper helper; const int kSize = 200; scoped_refptr buffer = new net::IOBuffer(kSize); CacheTestFillBuffer(buffer->data(), kSize, false); int expected = 0; // Start with no throttling. for (; expected < 10; expected++) { int ret = entry->WriteData(0, 0, buffer, kSize, &cb, false); EXPECT_EQ(net::ERR_IO_PENDING, ret); } EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); // And now with full throttling. cache_impl_->ThrottleRequestsForTest(true); for (; expected < 20; expected++) { int ret = entry->WriteData(0, 0, buffer, kSize, &cb, false); EXPECT_EQ(net::ERR_IO_PENDING, ret); } EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); for (; expected < 30; expected++) { int ret = entry->WriteData(0, 0, buffer, kSize, &cb, false); EXPECT_EQ(net::ERR_IO_PENDING, ret); } // We have 9 queued requests, lets dispatch them all at once. cache_impl_->ThrottleRequestsForTest(false); EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); cache_impl_->ThrottleRequestsForTest(true); for (; expected < 40; expected++) { int ret = entry->WriteData(0, 0, buffer, kSize, &cb, false); EXPECT_EQ(net::ERR_IO_PENDING, ret); } // We can close the entry and keep receiving notifications. entry->Close(); EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); ASSERT_EQ(net::OK, OpenEntry("the first key", &entry)); for (; expected < 50; expected++) { int ret = entry->WriteData(0, 0, buffer, kSize, &cb, false); EXPECT_EQ(net::ERR_IO_PENDING, ret); } // ... and even close the cache. entry->Close(); delete cache_impl_; cache_ = cache_impl_ = NULL; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_FALSE(g_cache_tests_error); EXPECT_EQ(expected, g_cache_tests_received); } void DiskCacheEntryTest::StreamAccess() { disk_cache::Entry* entry = NULL; ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); ASSERT_TRUE(NULL != entry); const int kBufferSize = 1024; scoped_refptr buffer1(new net::IOBuffer(kBufferSize)); scoped_refptr buffer2(new net::IOBuffer(kBufferSize)); const int kNumStreams = 3; for (int i = 0; i < kNumStreams; i++) { CacheTestFillBuffer(buffer1->data(), kBufferSize, false); EXPECT_EQ(kBufferSize, WriteData(entry, i, 0, buffer1, kBufferSize, false)); memset(buffer2->data(), 0, kBufferSize); EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer2, kBufferSize)); EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kBufferSize)); } EXPECT_EQ(net::ERR_INVALID_ARGUMENT, ReadData(entry, kNumStreams, 0, buffer1, kBufferSize)); entry->Close(); } TEST_F(DiskCacheEntryTest, StreamAccess) { InitCache(); StreamAccess(); } TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { SetMemoryOnlyMode(); InitCache(); StreamAccess(); } void DiskCacheEntryTest::GetKey() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_EQ(key, entry->GetKey()) << "short key"; entry->Close(); int seed = static_cast(Time::Now().ToInternalValue()); srand(seed); char key_buffer[20000]; CacheTestFillBuffer(key_buffer, 3000, true); key_buffer[1000] = '\0'; key = key_buffer; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key"; entry->Close(); key_buffer[1000] = 'p'; key_buffer[3000] = '\0'; key = key_buffer; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_TRUE(key == entry->GetKey()) << "medium size key"; entry->Close(); CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); key_buffer[19999] = '\0'; key = key_buffer; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_TRUE(key == entry->GetKey()) << "long key"; entry->Close(); } TEST_F(DiskCacheEntryTest, GetKey) { InitCache(); GetKey(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { SetMemoryOnlyMode(); InitCache(); GetKey(); } void DiskCacheEntryTest::GetTimes() { std::string key("the first key"); disk_cache::Entry* entry; Time t1 = Time::Now(); ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_TRUE(entry->GetLastModified() >= t1); EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); PlatformThread::Sleep(20); Time t2 = Time::Now(); EXPECT_TRUE(t2 > t1); EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false)); if (type_ == net::APP_CACHE) { EXPECT_TRUE(entry->GetLastModified() < t2); } else { EXPECT_TRUE(entry->GetLastModified() >= t2); } EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); PlatformThread::Sleep(20); Time t3 = Time::Now(); EXPECT_TRUE(t3 > t2); const int kSize = 200; scoped_refptr buffer(new net::IOBuffer(kSize)); EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer, kSize)); if (type_ == net::APP_CACHE) { EXPECT_TRUE(entry->GetLastUsed() < t2); EXPECT_TRUE(entry->GetLastModified() < t2); } else { EXPECT_TRUE(entry->GetLastUsed() >= t3); EXPECT_TRUE(entry->GetLastModified() < t3); } entry->Close(); } TEST_F(DiskCacheEntryTest, GetTimes) { InitCache(); GetTimes(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) { SetMemoryOnlyMode(); InitCache(); GetTimes(); } TEST_F(DiskCacheEntryTest, AppCacheGetTimes) { SetCacheType(net::APP_CACHE); InitCache(); GetTimes(); } void DiskCacheEntryTest::GrowData() { std::string key1("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); const int kSize = 20000; scoped_refptr buffer1(new net::IOBuffer(kSize)); scoped_refptr buffer2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer1->data(), kSize, false); memset(buffer2->data(), 0, kSize); base::strlcpy(buffer1->data(), "the data", kSize); EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1, 10, false)); EXPECT_EQ(10, ReadData(entry, 0, 0, buffer2, 10)); EXPECT_STREQ("the data", buffer2->data()); EXPECT_EQ(10, entry->GetDataSize(0)); EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); EXPECT_EQ(2000, entry->GetDataSize(0)); EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, kSize, false)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); entry->Close(); memset(buffer2->data(), 0, kSize); std::string key2("Second key"); ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1, 10, false)); EXPECT_EQ(10, entry->GetDataSize(0)); entry->Close(); // Go from an internal address to a bigger block size. ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); EXPECT_EQ(2000, entry->GetDataSize(0)); EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); entry->Close(); memset(buffer2->data(), 0, kSize); // Go from an internal address to an external one. ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, kSize, false)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); entry->Close(); // Double check the size from disk. ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); EXPECT_EQ(20000, entry->GetDataSize(0)); // Now extend the entry without actual data. EXPECT_EQ(0, WriteData(entry, 0, 45500, buffer1, 0, false)); entry->Close(); // And check again from disk. ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); EXPECT_EQ(45500, entry->GetDataSize(0)); entry->Close(); } TEST_F(DiskCacheEntryTest, GrowData) { InitCache(); GrowData(); } TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); GrowData(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { SetMemoryOnlyMode(); InitCache(); GrowData(); } void DiskCacheEntryTest::TruncateData() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize1 = 20000; const int kSize2 = 20000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); // Simple truncation: EXPECT_EQ(200, WriteData(entry, 0, 0, buffer1, 200, false)); EXPECT_EQ(200, entry->GetDataSize(0)); EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1, 100, false)); EXPECT_EQ(200, entry->GetDataSize(0)); EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1, 100, true)); EXPECT_EQ(100, entry->GetDataSize(0)); EXPECT_EQ(0, WriteData(entry, 0, 50, buffer1, 0, true)); EXPECT_EQ(50, entry->GetDataSize(0)); EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1, 0, true)); EXPECT_EQ(0, entry->GetDataSize(0)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); // Go to an external file. EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, 20000, true)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, 20000)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); memset(buffer2->data(), 0, kSize2); // External file truncation EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1, 18000, false)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1, 18000, true)); EXPECT_EQ(18000, entry->GetDataSize(0)); EXPECT_EQ(0, WriteData(entry, 0, 17500, buffer1, 0, true)); EXPECT_EQ(17500, entry->GetDataSize(0)); // And back to an internal block. EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1, 600, true)); EXPECT_EQ(1600, entry->GetDataSize(0)); EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer2, 600)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); EXPECT_EQ(1000, ReadData(entry, 0, 0, buffer2, 1000)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) << "Preserves previous data"; // Go from external file to zero length. EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, 20000, true)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1, 0, true)); EXPECT_EQ(0, entry->GetDataSize(0)); entry->Close(); } TEST_F(DiskCacheEntryTest, TruncateData) { InitCache(); TruncateData(); } TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); TruncateData(); } TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { SetMemoryOnlyMode(); InitCache(); TruncateData(); } void DiskCacheEntryTest::ZeroLengthIO() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_EQ(0, ReadData(entry, 0, 0, NULL, 0)); EXPECT_EQ(0, WriteData(entry, 0, 0, NULL, 0, false)); // This write should extend the entry. EXPECT_EQ(0, WriteData(entry, 0, 1000, NULL, 0, false)); EXPECT_EQ(0, ReadData(entry, 0, 500, NULL, 0)); EXPECT_EQ(0, ReadData(entry, 0, 2000, NULL, 0)); EXPECT_EQ(1000, entry->GetDataSize(0)); EXPECT_EQ(0, WriteData(entry, 0, 100000, NULL, 0, true)); EXPECT_EQ(0, ReadData(entry, 0, 50000, NULL, 0)); EXPECT_EQ(100000, entry->GetDataSize(0)); // Lets verify the actual content. const int kSize = 20; const char zeros[kSize] = {}; scoped_refptr buffer(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer->data(), kSize, false); EXPECT_EQ(kSize, ReadData(entry, 0, 500, buffer, kSize)); EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); CacheTestFillBuffer(buffer->data(), kSize, false); EXPECT_EQ(kSize, ReadData(entry, 0, 5000, buffer, kSize)); EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); CacheTestFillBuffer(buffer->data(), kSize, false); EXPECT_EQ(kSize, ReadData(entry, 0, 50000, buffer, kSize)); EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); entry->Close(); } TEST_F(DiskCacheEntryTest, ZeroLengthIO) { InitCache(); ZeroLengthIO(); } TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); ZeroLengthIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { SetMemoryOnlyMode(); InitCache(); ZeroLengthIO(); } // Tests that we handle the content correctly when buffering. void DiskCacheEntryTest::Buffering() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 200; scoped_refptr buffer1(new net::IOBuffer(kSize)); scoped_refptr buffer2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer1->data(), kSize, true); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1, kSize, false)); entry->Close(); // Write a little more and read what we wrote before. ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1, kSize, false)); EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); // Now go to an external file. EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1, kSize, false)); entry->Close(); // Write something else and verify old data. ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1, kSize, false)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); // Extend the file some more. EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1, kSize, false)); entry->Close(); // And now make sure that we can deal with data in both places (ram/disk). ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1, kSize, false)); // We should not overwrite the data at 18000 with this. EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1, kSize, false)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1, kSize, false)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); // Extend the file again and read before without closing the entry. EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, false)); EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1, kSize, false)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); entry->Close(); } TEST_F(DiskCacheEntryTest, Buffering) { InitCache(); Buffering(); } TEST_F(DiskCacheEntryTest, BufferingNoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); Buffering(); } // Some extra tests to make sure that buffering works properly when changing // the entry size. void DiskCacheEntryTest::SizeChanges() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 200; const char zeros[kSize] = {}; scoped_refptr buffer1(new net::IOBuffer(kSize)); scoped_refptr buffer2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer1->data(), kSize, true); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1, kSize, true)); EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1, kSize, true)); EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1, kSize, true)); entry->Close(); // Extend the file and read between the old size and the new write. ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_EQ(23000 + kSize, entry->GetDataSize(1)); EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, true)); EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); EXPECT_EQ(kSize, ReadData(entry, 1, 24000, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize)); // Read at the end of the old file size. EXPECT_EQ(kSize, ReadData(entry, 1, 23000 + kSize - 35, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35)); // Read slightly before the last write. CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 24900, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); // Extend the entry a little more. EXPECT_EQ(kSize, WriteData(entry, 1, 26000, buffer1, kSize, true)); EXPECT_EQ(26000 + kSize, entry->GetDataSize(1)); CacheTestFillBuffer(buffer2->data(), kSize, true); EXPECT_EQ(kSize, ReadData(entry, 1, 25900, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); // And now reduce the size. EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, true)); EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); EXPECT_EQ(28, ReadData(entry, 1, 25000 + kSize - 28, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28)); // Reduce the size with a buffer that is not extending the size. EXPECT_EQ(kSize, WriteData(entry, 1, 24000, buffer1, kSize, false)); EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); EXPECT_EQ(kSize, WriteData(entry, 1, 24500, buffer1, kSize, true)); EXPECT_EQ(24500 + kSize, entry->GetDataSize(1)); EXPECT_EQ(kSize, ReadData(entry, 1, 23900, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); // And now reduce the size below the old size. EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1, kSize, true)); EXPECT_EQ(19000 + kSize, entry->GetDataSize(1)); EXPECT_EQ(kSize, ReadData(entry, 1, 18900, buffer2, kSize)); EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); // Verify that the actual file is truncated. entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_EQ(19000 + kSize, entry->GetDataSize(1)); entry->Close(); } TEST_F(DiskCacheEntryTest, SizeChanges) { InitCache(); SizeChanges(); } TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); SizeChanges(); } // Write more than the total cache capacity but to a single entry. |size| is the // amount of bytes to write each time. void DiskCacheEntryTest::ReuseEntry(int size) { std::string key1("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); entry->Close(); std::string key2("the second key"); ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); scoped_refptr buffer(new net::IOBuffer(size)); CacheTestFillBuffer(buffer->data(), size, false); for (int i = 0; i < 15; i++) { EXPECT_EQ(0, WriteData(entry, 0, 0, buffer, 0, true)); EXPECT_EQ(size, WriteData(entry, 0, 0, buffer, size, false)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); } entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry"; entry->Close(); } TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { SetDirectMode(); SetMaxSize(200 * 1024); InitCache(); ReuseEntry(20 * 1024); } TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { SetDirectMode(); SetMemoryOnlyMode(); SetMaxSize(200 * 1024); InitCache(); ReuseEntry(20 * 1024); } TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { SetDirectMode(); SetMaxSize(100 * 1024); InitCache(); ReuseEntry(10 * 1024); } TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { SetDirectMode(); SetMemoryOnlyMode(); SetMaxSize(100 * 1024); InitCache(); ReuseEntry(10 * 1024); } // Reading somewhere that was not written should return zeros. void DiskCacheEntryTest::InvalidData() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize1 = 20000; const int kSize2 = 20000; const int kSize3 = 20000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); scoped_refptr buffer3(new net::IOBuffer(kSize3)); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); // Simple data grow: EXPECT_EQ(200, WriteData(entry, 0, 400, buffer1, 200, false)); EXPECT_EQ(600, entry->GetDataSize(0)); EXPECT_EQ(100, ReadData(entry, 0, 300, buffer3, 100)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); // The entry is now on disk. Load it and extend it. EXPECT_EQ(200, WriteData(entry, 0, 800, buffer1, 200, false)); EXPECT_EQ(1000, entry->GetDataSize(0)); EXPECT_EQ(100, ReadData(entry, 0, 700, buffer3, 100)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); // This time using truncate. EXPECT_EQ(200, WriteData(entry, 0, 1800, buffer1, 200, true)); EXPECT_EQ(2000, entry->GetDataSize(0)); EXPECT_EQ(100, ReadData(entry, 0, 1500, buffer3, 100)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); // Go to an external file. EXPECT_EQ(200, WriteData(entry, 0, 19800, buffer1, 200, false)); EXPECT_EQ(20000, entry->GetDataSize(0)); EXPECT_EQ(4000, ReadData(entry, 0, 14000, buffer3, 4000)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); // And back to an internal block. EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1, 600, true)); EXPECT_EQ(1600, entry->GetDataSize(0)); EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer3, 600)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); // Extend it again. EXPECT_EQ(600, WriteData(entry, 0, 2000, buffer1, 600, false)); EXPECT_EQ(2600, entry->GetDataSize(0)); EXPECT_EQ(200, ReadData(entry, 0, 1800, buffer3, 200)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); // And again (with truncation flag). EXPECT_EQ(600, WriteData(entry, 0, 3000, buffer1, 600, true)); EXPECT_EQ(3600, entry->GetDataSize(0)); EXPECT_EQ(200, ReadData(entry, 0, 2800, buffer3, 200)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); entry->Close(); } TEST_F(DiskCacheEntryTest, InvalidData) { InitCache(); InvalidData(); } TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) { SetDirectMode(); InitCache(); cache_impl_->SetFlags(disk_cache::kNoBuffering); InvalidData(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { SetMemoryOnlyMode(); InitCache(); InvalidData(); } // Tests that the cache preserves the buffer of an IO operation. TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) { InitCache(); std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 200; scoped_refptr buffer(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer->data(), kSize, false); TestCompletionCallback cb; EXPECT_EQ(net::ERR_IO_PENDING, entry->WriteData(0, 0, buffer, kSize, &cb, false)); // Release our reference to the buffer. buffer = NULL; EXPECT_EQ(kSize, cb.WaitForResult()); // And now test with a Read(). buffer = new net::IOBuffer(kSize); CacheTestFillBuffer(buffer->data(), kSize, false); EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadData(0, 0, buffer, kSize, &cb)); buffer = NULL; EXPECT_EQ(kSize, cb.WaitForResult()); entry->Close(); } void DiskCacheEntryTest::DoomNormalEntry() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); entry->Doom(); entry->Close(); const int kSize = 20000; scoped_refptr buffer(new net::IOBuffer(kSize)); CacheTestFillBuffer(buffer->data(), kSize, true); buffer->data()[19999] = '\0'; key = buffer->data(); ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer, kSize, false)); EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer, kSize, false)); entry->Doom(); entry->Close(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, DoomEntry) { SetDirectMode(); InitCache(); DoomNormalEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { SetMemoryOnlyMode(); InitCache(); DoomNormalEntry(); } // Verify that basic operations work as expected with doomed entries. void DiskCacheEntryTest::DoomedEntry() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); entry->Doom(); FlushQueueForTest(); EXPECT_EQ(0, cache_->GetEntryCount()); Time initial = Time::Now(); PlatformThread::Sleep(20); const int kSize1 = 2000; const int kSize2 = 2000; scoped_refptr buffer1(new net::IOBuffer(kSize1)); scoped_refptr buffer2(new net::IOBuffer(kSize2)); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); EXPECT_EQ(key, entry->GetKey()); EXPECT_TRUE(initial < entry->GetLastModified()); EXPECT_TRUE(initial < entry->GetLastUsed()); entry->Close(); } TEST_F(DiskCacheEntryTest, DoomedEntry) { SetDirectMode(); InitCache(); DoomedEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { SetMemoryOnlyMode(); InitCache(); DoomedEntry(); } // Test that child entries in a memory cache backend are not visible from // enumerations. TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) { SetMemoryOnlyMode(); InitCache(); const int kSize = 4096; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); std::string key("the first key"); disk_cache::Entry* parent_entry; ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry)); // Writes to the parent entry. EXPECT_EQ(kSize, parent_entry->WriteSparseData(0, buf, kSize, NULL)); // This write creates a child entry and writes to it. EXPECT_EQ(kSize, parent_entry->WriteSparseData(8192, buf, kSize, NULL)); parent_entry->Close(); // Perform the enumerations. void* iter = NULL; disk_cache::Entry* entry = NULL; int count = 0; while (OpenNextEntry(&iter, &entry) == net::OK) { ASSERT_TRUE(entry != NULL); ++count; disk_cache::MemEntryImpl* mem_entry = reinterpret_cast(entry); EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type()); mem_entry->Close(); } EXPECT_EQ(1, count); } // Writes |buf_1| to offset and reads it back as |buf_2|. void VerifySparseIO(disk_cache::Entry* entry, int64 offset, net::IOBuffer* buf_1, int size, net::IOBuffer* buf_2) { TestCompletionCallback cb; memset(buf_2->data(), 0, size); int ret = entry->ReadSparseData(offset, buf_2, size, &cb); EXPECT_EQ(0, cb.GetResult(ret)); ret = entry->WriteSparseData(offset, buf_1, size, &cb); EXPECT_EQ(size, cb.GetResult(ret)); ret = entry->ReadSparseData(offset, buf_2, size, &cb); EXPECT_EQ(size, cb.GetResult(ret)); EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size)); } // Reads |size| bytes from |entry| at |offset| and verifies that they are the // same as the content of the provided |buffer|. void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer, int size) { TestCompletionCallback cb; scoped_refptr buf_1(new net::IOBuffer(size)); memset(buf_1->data(), 0, size); int ret = entry->ReadSparseData(offset, buf_1, size, &cb); EXPECT_EQ(size, cb.GetResult(ret)); EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size)); } void DiskCacheEntryTest::BasicSparseIO() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 2048; scoped_refptr buf_1(new net::IOBuffer(kSize)); scoped_refptr buf_2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf_1->data(), kSize, false); // Write at offset 0. VerifySparseIO(entry, 0, buf_1, kSize, buf_2); // Write at offset 0x400000 (4 MB). VerifySparseIO(entry, 0x400000, buf_1, kSize, buf_2); // Write at offset 0x800000000 (32 GB). VerifySparseIO(entry, 0x800000000LL, buf_1, kSize, buf_2); entry->Close(); // Check everything again. ASSERT_EQ(net::OK, OpenEntry(key, &entry)); VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize); VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize); entry->Close(); } TEST_F(DiskCacheEntryTest, BasicSparseIO) { InitCache(); BasicSparseIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) { SetMemoryOnlyMode(); InitCache(); BasicSparseIO(); } void DiskCacheEntryTest::HugeSparseIO() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // Write 1.2 MB so that we cover multiple entries. const int kSize = 1200 * 1024; scoped_refptr buf_1(new net::IOBuffer(kSize)); scoped_refptr buf_2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf_1->data(), kSize, false); // Write at offset 0x20F0000 (33 MB - 64 KB). VerifySparseIO(entry, 0x20F0000, buf_1, kSize, buf_2); entry->Close(); // Check it again. ASSERT_EQ(net::OK, OpenEntry(key, &entry)); VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize); entry->Close(); } TEST_F(DiskCacheEntryTest, HugeSparseIO) { InitCache(); HugeSparseIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) { SetMemoryOnlyMode(); InitCache(); HugeSparseIO(); } void DiskCacheEntryTest::GetAvailableRange() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 16 * 1024; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB). EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf, kSize)); EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf, kSize)); // We stop at the first empty block. int64 start; TestCompletionCallback cb; int rv = entry->GetAvailableRange(0x20F0000, kSize * 2, &start, &cb); EXPECT_EQ(kSize, cb.GetResult(rv)); EXPECT_EQ(0x20F0000, start); start = 0; rv = entry->GetAvailableRange(0, kSize, &start, &cb); EXPECT_EQ(0, cb.GetResult(rv)); rv = entry->GetAvailableRange(0x20F0000 - kSize, kSize, &start, &cb); EXPECT_EQ(0, cb.GetResult(rv)); rv = entry->GetAvailableRange(0, 0x2100000, &start, &cb); EXPECT_EQ(kSize, cb.GetResult(rv)); EXPECT_EQ(0x20F0000, start); // We should be able to Read based on the results of GetAvailableRange. start = -1; rv = entry->GetAvailableRange(0x2100000, kSize, &start, &cb); EXPECT_EQ(0, cb.GetResult(rv)); rv = entry->ReadSparseData(start, buf, kSize, &cb); EXPECT_EQ(0, cb.GetResult(rv)); start = 0; rv = entry->GetAvailableRange(0x20F2000, kSize, &start, &cb); EXPECT_EQ(0x2000, cb.GetResult(rv)); EXPECT_EQ(0x20F2000, start); EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf, kSize)); // Make sure that we respect the |len| argument. start = 0; rv = entry->GetAvailableRange(0x20F0001 - kSize, kSize, &start, &cb); EXPECT_EQ(1, cb.GetResult(rv)); EXPECT_EQ(0x20F0000, start); entry->Close(); } TEST_F(DiskCacheEntryTest, GetAvailableRange) { InitCache(); GetAvailableRange(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) { SetMemoryOnlyMode(); InitCache(); GetAvailableRange(); } void DiskCacheEntryTest::CouldBeSparse() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 16 * 1024; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); // Write at offset 0x20F0000 (33 MB - 64 KB). EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf, kSize)); EXPECT_TRUE(entry->CouldBeSparse()); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_TRUE(entry->CouldBeSparse()); entry->Close(); // Now verify a regular entry. key.assign("another key"); ASSERT_EQ(net::OK, CreateEntry(key, &entry)); EXPECT_FALSE(entry->CouldBeSparse()); EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf, kSize, false)); EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf, kSize, false)); EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf, kSize, false)); EXPECT_FALSE(entry->CouldBeSparse()); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); EXPECT_FALSE(entry->CouldBeSparse()); entry->Close(); } TEST_F(DiskCacheEntryTest, CouldBeSparse) { InitCache(); CouldBeSparse(); } TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) { SetMemoryOnlyMode(); InitCache(); CouldBeSparse(); } TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) { SetMemoryOnlyMode(); InitCache(); const int kSize = 8192; scoped_refptr buf_1(new net::IOBuffer(kSize)); scoped_refptr buf_2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf_1->data(), kSize, false); std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // This loop writes back to back starting from offset 0 and 9000. for (int i = 0; i < kSize; i += 1024) { scoped_refptr buf_3( new net::WrappedIOBuffer(buf_1->data() + i)); VerifySparseIO(entry, i, buf_3, 1024, buf_2); VerifySparseIO(entry, 9000 + i, buf_3, 1024, buf_2); } // Make sure we have data written. VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize); // This tests a large write that spans 3 entries from a misaligned offset. VerifySparseIO(entry, 20481, buf_1, 8192, buf_2); entry->Close(); } TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) { SetMemoryOnlyMode(); InitCache(); const int kSize = 8192; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); disk_cache::Entry* entry; std::string key("the first key"); ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // Writes in the middle of an entry. EXPECT_EQ(1024, entry->WriteSparseData(0, buf, 1024, NULL)); EXPECT_EQ(1024, entry->WriteSparseData(5120, buf, 1024, NULL)); EXPECT_EQ(1024, entry->WriteSparseData(10000, buf, 1024, NULL)); // Writes in the middle of an entry and spans 2 child entries. EXPECT_EQ(8192, entry->WriteSparseData(50000, buf, 8192, NULL)); int64 start; TestCompletionCallback cb; // Test that we stop at a discontinuous child at the second block. int rv = entry->GetAvailableRange(0, 10000, &start, &cb); EXPECT_EQ(1024, cb.GetResult(rv)); EXPECT_EQ(0, start); // Test that number of bytes is reported correctly when we start from the // middle of a filled region. rv = entry->GetAvailableRange(512, 10000, &start, &cb); EXPECT_EQ(512, cb.GetResult(rv)); EXPECT_EQ(512, start); // Test that we found bytes in the child of next block. rv = entry->GetAvailableRange(1024, 10000, &start, &cb); EXPECT_EQ(1024, cb.GetResult(rv)); EXPECT_EQ(5120, start); // Test that the desired length is respected. It starts within a filled // region. rv = entry->GetAvailableRange(5500, 512, &start, &cb); EXPECT_EQ(512, cb.GetResult(rv)); EXPECT_EQ(5500, start); // Test that the desired length is respected. It starts before a filled // region. rv = entry->GetAvailableRange(5000, 620, &start, &cb); EXPECT_EQ(500, cb.GetResult(rv)); EXPECT_EQ(5120, start); // Test that multiple blocks are scanned. rv = entry->GetAvailableRange(40000, 20000, &start, &cb); EXPECT_EQ(8192, cb.GetResult(rv)); EXPECT_EQ(50000, start); entry->Close(); } void DiskCacheEntryTest::UpdateSparseEntry() { std::string key("the first key"); disk_cache::Entry* entry1; ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); const int kSize = 2048; scoped_refptr buf_1(new net::IOBuffer(kSize)); scoped_refptr buf_2(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf_1->data(), kSize, false); // Write at offset 0. VerifySparseIO(entry1, 0, buf_1, kSize, buf_2); entry1->Close(); // Write at offset 2048. ASSERT_EQ(net::OK, OpenEntry(key, &entry1)); VerifySparseIO(entry1, 2048, buf_1, kSize, buf_2); disk_cache::Entry* entry2; ASSERT_EQ(net::OK, CreateEntry("the second key", &entry2)); entry1->Close(); entry2->Close(); FlushQueueForTest(); if (memory_only_) EXPECT_EQ(2, cache_->GetEntryCount()); else EXPECT_EQ(3, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, UpdateSparseEntry) { SetDirectMode(); SetCacheType(net::MEDIA_CACHE); InitCache(); UpdateSparseEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) { SetMemoryOnlyMode(); SetCacheType(net::MEDIA_CACHE); InitCache(); UpdateSparseEntry(); } void DiskCacheEntryTest::DoomSparseEntry() { std::string key1("the first key"); std::string key2("the second key"); disk_cache::Entry *entry1, *entry2; ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); ASSERT_EQ(net::OK, CreateEntry(key2, &entry2)); const int kSize = 4 * 1024; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); int64 offset = 1024; // Write to a bunch of ranges. for (int i = 0; i < 12; i++) { EXPECT_EQ(kSize, entry1->WriteSparseData(offset, buf, kSize, NULL)); // Keep the second map under the default size. if (i < 9) EXPECT_EQ(kSize, entry2->WriteSparseData(offset, buf, kSize, NULL)); offset *= 4; } if (memory_only_) EXPECT_EQ(2, cache_->GetEntryCount()); else EXPECT_EQ(15, cache_->GetEntryCount()); // Doom the first entry while it's still open. entry1->Doom(); entry1->Close(); entry2->Close(); // Doom the second entry after it's fully saved. EXPECT_EQ(net::OK, DoomEntry(key2)); // Make sure we do all needed work. This may fail for entry2 if between Close // and DoomEntry the system decides to remove all traces of the file from the // system cache so we don't see that there is pending IO. MessageLoop::current()->RunAllPending(); if (memory_only_) { EXPECT_EQ(0, cache_->GetEntryCount()); } else { if (5 == cache_->GetEntryCount()) { // Most likely we are waiting for the result of reading the sparse info // (it's always async on Posix so it is easy to miss). Unfortunately we // don't have any signal to watch for so we can only wait. PlatformThread::Sleep(500); MessageLoop::current()->RunAllPending(); } EXPECT_EQ(0, cache_->GetEntryCount()); } } TEST_F(DiskCacheEntryTest, DoomSparseEntry) { SetDirectMode(); UseCurrentThread(); InitCache(); DoomSparseEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) { SetMemoryOnlyMode(); InitCache(); DoomSparseEntry(); } // A CompletionCallback that deletes the cache from within the callback. The way // a TestCompletionCallback works means that all tasks (even new ones) are // executed by the message loop before returning to the caller so the only way // to simulate a race is to execute what we want on the callback. class SparseTestCompletionCallback : public TestCompletionCallback { public: explicit SparseTestCompletionCallback(disk_cache::Backend* cache) : cache_(cache) {} virtual void RunWithParams(const Tuple1& params) { delete cache_; TestCompletionCallback::RunWithParams(params); } private: disk_cache::Backend* cache_; DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback); }; // Tests that we don't crash when the backend is deleted while we are working // deleting the sub-entries of a sparse entry. TEST_F(DiskCacheEntryTest, DoomSparseEntry2) { SetDirectMode(); UseCurrentThread(); InitCache(); std::string key("the key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 4 * 1024; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); int64 offset = 1024; // Write to a bunch of ranges. for (int i = 0; i < 12; i++) { EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf, kSize, NULL)); offset *= 4; } EXPECT_EQ(9, cache_->GetEntryCount()); entry->Close(); SparseTestCompletionCallback cb(cache_); int rv = cache_->DoomEntry(key, &cb); EXPECT_EQ(net::ERR_IO_PENDING, rv); EXPECT_EQ(net::OK, cb.WaitForResult()); // TearDown will attempt to delete the cache_. cache_ = NULL; } void DiskCacheEntryTest::PartialSparseEntry() { std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // We should be able to deal with IO that is not aligned to the block size // of a sparse entry, at least to write a big range without leaving holes. const int kSize = 4 * 1024; const int kSmallSize = 128; scoped_refptr buf1(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf1->data(), kSize, false); // The first write is just to extend the entry. The third write occupies // a 1KB block partially, it may not be written internally depending on the // implementation. EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1, kSize)); EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1, kSize)); EXPECT_EQ(kSmallSize, WriteSparseData(entry, 1080321, buf1, kSmallSize)); entry->Close(); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); scoped_refptr buf2(new net::IOBuffer(kSize)); memset(buf2->data(), 0, kSize); EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2, kSize)); EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2, kSize)); EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); EXPECT_EQ(0, ReadSparseData(entry, 0, buf2, kSize)); // This read should not change anything. EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2, kSize)); EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2, kSize)); EXPECT_EQ(0, ReadSparseData(entry, 99, buf2, kSize)); int rv; int64 start; TestCompletionCallback cb; if (memory_only_) { rv = entry->GetAvailableRange(0, 600, &start, &cb); EXPECT_EQ(100, cb.GetResult(rv)); EXPECT_EQ(500, start); } else { rv = entry->GetAvailableRange(0, 2048, &start, &cb); EXPECT_EQ(1024, cb.GetResult(rv)); EXPECT_EQ(1024, start); } rv = entry->GetAvailableRange(kSize, kSize, &start, &cb); EXPECT_EQ(500, cb.GetResult(rv)); EXPECT_EQ(kSize, start); rv = entry->GetAvailableRange(20 * 1024, 10000, &start, &cb); EXPECT_EQ(3616, cb.GetResult(rv)); EXPECT_EQ(20 * 1024, start); // 1. Query before a filled 1KB block. // 2. Query within a filled 1KB block. // 3. Query beyond a filled 1KB block. if (memory_only_) { rv = entry->GetAvailableRange(19400, kSize, &start, &cb); EXPECT_EQ(3496, cb.GetResult(rv)); EXPECT_EQ(20000, start); } else { rv = entry->GetAvailableRange(19400, kSize, &start, &cb); EXPECT_EQ(3016, cb.GetResult(rv)); EXPECT_EQ(20480, start); } rv = entry->GetAvailableRange(3073, kSize, &start, &cb); EXPECT_EQ(1523, cb.GetResult(rv)); EXPECT_EQ(3073, start); rv = entry->GetAvailableRange(4600, kSize, &start, &cb); EXPECT_EQ(0, cb.GetResult(rv)); EXPECT_EQ(4600, start); // Now make another write and verify that there is no hole in between. EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1, kSize)); rv = entry->GetAvailableRange(1024, 10000, &start, &cb); EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv)); EXPECT_EQ(1024, start); EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2, kSize)); EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500)); entry->Close(); } TEST_F(DiskCacheEntryTest, PartialSparseEntry) { InitCache(); PartialSparseEntry(); } TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) { SetMemoryOnlyMode(); InitCache(); PartialSparseEntry(); } // Tests that corrupt sparse children are removed automatically. TEST_F(DiskCacheEntryTest, CleanupSparseEntry) { InitCache(); std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 4 * 1024; scoped_refptr buf1(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf1->data(), kSize, false); const int k1Meg = 1024 * 1024; EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1, kSize)); EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1, kSize)); EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1, kSize)); entry->Close(); EXPECT_EQ(4, cache_->GetEntryCount()); void* iter = NULL; int count = 0; std::string child_key[2]; while (OpenNextEntry(&iter, &entry) == net::OK) { ASSERT_TRUE(entry != NULL); // Writing to an entry will alter the LRU list and invalidate the iterator. if (entry->GetKey() != key && count < 2) child_key[count++] = entry->GetKey(); entry->Close(); } for (int i = 0; i < 2; i++) { ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry)); // Overwrite the header's magic and signature. EXPECT_EQ(12, WriteData(entry, 2, 0, buf1, 12, false)); entry->Close(); } EXPECT_EQ(4, cache_->GetEntryCount()); ASSERT_EQ(net::OK, OpenEntry(key, &entry)); // Two children should be gone. One while reading and one while writing. EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1, kSize)); EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1, kSize)); EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1, kSize)); // We never touched this one. EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1, kSize)); entry->Close(); // We re-created one of the corrupt children. EXPECT_EQ(3, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, CancelSparseIO) { UseCurrentThread(); InitCache(); std::string key("the first key"); disk_cache::Entry* entry; ASSERT_EQ(net::OK, CreateEntry(key, &entry)); const int kSize = 40 * 1024; scoped_refptr buf(new net::IOBuffer(kSize)); CacheTestFillBuffer(buf->data(), kSize, false); // This will open and write two "real" entries. TestCompletionCallback cb1, cb2, cb3, cb4, cb5; int rv = entry->WriteSparseData(1024 * 1024 - 4096, buf, kSize, &cb1); EXPECT_EQ(net::ERR_IO_PENDING, rv); int64 offset = 0; rv = entry->GetAvailableRange(offset, kSize, &offset, &cb5); rv = cb5.GetResult(rv); if (!cb1.have_result()) { // We may or may not have finished writing to the entry. If we have not, // we cannot start another operation at this time. EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv); } // We cancel the pending operation, and register multiple notifications. entry->CancelSparseIO(); EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb2)); EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb3)); entry->CancelSparseIO(); // Should be a no op at this point. EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb4)); if (!cb1.have_result()) { EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, entry->ReadSparseData(offset, buf, kSize, NULL)); EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, entry->WriteSparseData(offset, buf, kSize, NULL)); } // Now see if we receive all notifications. Note that we should not be able // to write everything (unless the timing of the system is really weird). rv = cb1.WaitForResult(); EXPECT_TRUE(rv == 4096 || rv == kSize); EXPECT_EQ(net::OK, cb2.WaitForResult()); EXPECT_EQ(net::OK, cb3.WaitForResult()); EXPECT_EQ(net::OK, cb4.WaitForResult()); rv = entry->GetAvailableRange(offset, kSize, &offset, &cb5); EXPECT_EQ(0, cb5.GetResult(rv)); entry->Close(); }