// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/basictypes.h" #include "base/platform_thread.h" #include "base/timer.h" #include "base/string_util.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/disk_cache_test_base.h" #include "net/disk_cache/disk_cache_test_util.h" #include "net/disk_cache/entry_impl.h" #include "testing/gtest/include/gtest/gtest.h" using base::Time; extern int g_cache_tests_max_id; extern volatile int g_cache_tests_received; extern volatile bool g_cache_tests_error; // Tests that can run with different types of caches. class DiskCacheEntryTest : public DiskCacheTestWithCache { protected: void InternalSyncIO(); void InternalAsyncIO(); void ExternalSyncIO(); void ExternalAsyncIO(); void StreamAccess(); void GetKey(); void GrowData(); void TruncateData(); void ZeroLengthIO(); void ReuseEntry(int size); void InvalidData(); void DoomEntry(); void DoomedEntry(); }; void DiskCacheEntryTest::InternalSyncIO() { disk_cache::Entry *entry1 = NULL; ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1)); ASSERT_TRUE(NULL != entry1); const int kSize1 = 10; scoped_refptr buffer1 = new net::IOBuffer(kSize1); CacheTestFillBuffer(buffer1->data(), kSize1, false); EXPECT_EQ(0, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); base::strlcpy(buffer1->data(), "the data", kSize1); EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false)); memset(buffer1->data(), 0, kSize1); EXPECT_EQ(10, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); EXPECT_STREQ("the data", buffer1->data()); const int kSize2 = 5000; const int kSize3 = 10000; scoped_refptr buffer2 = new net::IOBuffer(kSize2); scoped_refptr buffer3 = new net::IOBuffer(kSize3); memset(buffer3->data(), 0, kSize3); CacheTestFillBuffer(buffer2->data(), kSize2, false); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); EXPECT_EQ(5000, entry1->WriteData(1, 1500, buffer2, kSize2, NULL, false)); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(4989, entry1->ReadData(1, 1511, buffer2, kSize2, NULL)); EXPECT_STREQ("big data goes here", buffer2->data()); EXPECT_EQ(5000, entry1->ReadData(1, 0, buffer2, kSize2, NULL)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); EXPECT_EQ(1500, entry1->ReadData(1, 5000, buffer2, kSize2, NULL)); EXPECT_EQ(0, entry1->ReadData(1, 6500, buffer2, kSize2, NULL)); EXPECT_EQ(6500, entry1->ReadData(1, 0, buffer3, kSize3, NULL)); EXPECT_EQ(8192, entry1->WriteData(1, 0, buffer3, 8192, NULL, false)); EXPECT_EQ(8192, entry1->ReadData(1, 0, buffer3, kSize3, NULL)); EXPECT_EQ(8192, entry1->GetDataSize(1)); entry1->Doom(); entry1->Close(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, InternalSyncIO) { InitCache(); InternalSyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { SetMemoryOnlyMode(); InitCache(); InternalSyncIO(); } void DiskCacheEntryTest::InternalAsyncIO() { disk_cache::Entry *entry1 = NULL; ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1)); ASSERT_TRUE(NULL != entry1); // Let's verify that each IO goes to the right callback object. CallbackTest callback1(1, false); CallbackTest callback2(2, false); CallbackTest callback3(3, false); CallbackTest callback4(4, false); CallbackTest callback5(5, false); CallbackTest callback6(6, false); CallbackTest callback7(7, false); CallbackTest callback8(8, false); CallbackTest callback9(9, false); CallbackTest callback10(10, false); CallbackTest callback11(11, false); CallbackTest callback12(12, false); CallbackTest callback13(13, false); g_cache_tests_error = false; g_cache_tests_max_id = 0; g_cache_tests_received = 0; MessageLoopHelper helper; const int kSize1 = 10; const int kSize2 = 5000; const int kSize3 = 10000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); scoped_refptr buffer3 = new net::IOBuffer(kSize3); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); CacheTestFillBuffer(buffer3->data(), kSize3, false); EXPECT_EQ(0, entry1->ReadData(0, 0, buffer1, kSize1, &callback1)); base::strlcpy(buffer1->data(), "the data", kSize1); int expected = 0; int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback2, false); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; memset(buffer2->data(), 0, kSize1); ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback3); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 3; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("the data", buffer2->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); ret = entry1->WriteData(1, 1500, buffer2, kSize2, &callback4, false); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; memset(buffer3->data(), 0, kSize2); ret = entry1->ReadData(1, 1511, buffer3, kSize2, &callback5); EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 5; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("big data goes here", buffer3->data()); ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback6); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; memset(buffer3->data(), 0, kSize3); g_cache_tests_max_id = 6; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); ret = entry1->ReadData(1, 5000, buffer2, kSize2, &callback7); EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(0, entry1->ReadData(1, 6500, buffer2, kSize2, &callback8)); ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback9); EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry1->WriteData(1, 0, buffer3, 8192, &callback10, false); EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback11); EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(8192, entry1->GetDataSize(1)); ret = entry1->ReadData(0, 0, buffer1, kSize1, &callback12); EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback13); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 13; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_FALSE(g_cache_tests_error); EXPECT_EQ(expected, g_cache_tests_received); entry1->Doom(); entry1->Close(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, InternalAsyncIO) { InitCache(); InternalAsyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { SetMemoryOnlyMode(); InitCache(); InternalAsyncIO(); } void DiskCacheEntryTest::ExternalSyncIO() { disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1)); const int kSize1 = 17000; const int kSize2 = 25000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); base::strlcpy(buffer1->data(), "the data", kSize1); EXPECT_EQ(17000, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false)); memset(buffer1->data(), 0, kSize1); EXPECT_EQ(17000, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); EXPECT_STREQ("the data", buffer1->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); EXPECT_EQ(25000, entry1->WriteData(1, 10000, buffer2, kSize2, NULL, false)); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(24989, entry1->ReadData(1, 10011, buffer2, kSize2, NULL)); EXPECT_STREQ("big data goes here", buffer2->data()); EXPECT_EQ(25000, entry1->ReadData(1, 0, buffer2, kSize2, NULL)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); EXPECT_EQ(5000, entry1->ReadData(1, 30000, buffer2, kSize2, NULL)); EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, NULL)); EXPECT_EQ(17000, entry1->ReadData(1, 0, buffer1, kSize1, NULL)); EXPECT_EQ(17000, entry1->WriteData(1, 20000, buffer1, kSize1, NULL, false)); EXPECT_EQ(37000, entry1->GetDataSize(1)); entry1->Doom(); entry1->Close(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, ExternalSyncIO) { InitCache(); ExternalSyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { SetMemoryOnlyMode(); InitCache(); ExternalSyncIO(); } void DiskCacheEntryTest::ExternalAsyncIO() { disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1)); // Let's verify that each IO goes to the right callback object. CallbackTest callback1(1, false); CallbackTest callback2(2, false); CallbackTest callback3(3, false); CallbackTest callback4(4, false); CallbackTest callback5(5, false); CallbackTest callback6(6, false); CallbackTest callback7(7, false); CallbackTest callback8(8, false); CallbackTest callback9(9, false); g_cache_tests_error = false; g_cache_tests_max_id = 0; g_cache_tests_received = 0; int expected = 0; MessageLoopHelper helper; const int kSize1 = 17000; const int kSize2 = 25000; const int kSize3 = 25000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); scoped_refptr buffer3 = new net::IOBuffer(kSize3); CacheTestFillBuffer(buffer1->data(), kSize1, false); CacheTestFillBuffer(buffer2->data(), kSize2, false); CacheTestFillBuffer(buffer3->data(), kSize3, false); base::strlcpy(buffer1->data(), "the data", kSize1); int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback1, false); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 1; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer2->data(), 0, kSize1); ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback2); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 2; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("the data", buffer1->data()); base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); ret = entry1->WriteData(1, 10000, buffer2, kSize2, &callback3, false); EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 3; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); memset(buffer3->data(), 0, kSize3); ret = entry1->ReadData(1, 10011, buffer3, kSize3, &callback4); EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 4; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_STREQ("big data goes here", buffer3->data()); ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback5); EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; g_cache_tests_max_id = 5; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); ret = entry1->ReadData(1, 30000, buffer2, kSize2, &callback6); EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, &callback7)); ret = entry1->ReadData(1, 0, buffer1, kSize1, &callback8); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; ret = entry1->WriteData(1, 20000, buffer1, kSize1, &callback9, false); EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); if (net::ERR_IO_PENDING == ret) expected++; EXPECT_EQ(37000, entry1->GetDataSize(1)); g_cache_tests_max_id = 9; EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); EXPECT_FALSE(g_cache_tests_error); EXPECT_EQ(expected, g_cache_tests_received); entry1->Doom(); entry1->Close(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { InitCache(); ExternalAsyncIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { SetMemoryOnlyMode(); InitCache(); ExternalAsyncIO(); } void DiskCacheEntryTest::StreamAccess() { disk_cache::Entry *entry = NULL; ASSERT_TRUE(cache_->CreateEntry("the first key", &entry)); ASSERT_TRUE(NULL != entry); const int kBufferSize = 1024; scoped_refptr buffer1 = new net::IOBuffer(kBufferSize); scoped_refptr buffer2 = new net::IOBuffer(kBufferSize); const int kNumStreams = 3; for (int i = 0; i < kNumStreams; i++) { CacheTestFillBuffer(buffer1->data(), kBufferSize, false); EXPECT_EQ(kBufferSize, entry->WriteData(i, 0, buffer1, kBufferSize, NULL, false)); memset(buffer2->data(), 0, kBufferSize); EXPECT_EQ(kBufferSize, entry->ReadData(i, 0, buffer2, kBufferSize, NULL)); EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kBufferSize)); } EXPECT_EQ(net::ERR_INVALID_ARGUMENT, entry->ReadData(kNumStreams, 0, buffer1, kBufferSize, NULL)); entry->Close(); } TEST_F(DiskCacheEntryTest, StreamAccess) { InitCache(); StreamAccess(); } TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { SetMemoryOnlyMode(); InitCache(); StreamAccess(); } void DiskCacheEntryTest::GetKey() { std::string key1("the first key"); disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_EQ(key1, entry1->GetKey()) << "short key"; entry1->Close(); int seed = static_cast(Time::Now().ToInternalValue()); srand(seed); char key_buffer[20000]; CacheTestFillBuffer(key_buffer, 3000, true); key_buffer[1000] = '\0'; key1 = key_buffer; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_TRUE(key1 == entry1->GetKey()) << "1000 bytes key"; entry1->Close(); key_buffer[1000] = 'p'; key_buffer[3000] = '\0'; key1 = key_buffer; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_TRUE(key1 == entry1->GetKey()) << "medium size key"; entry1->Close(); CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); key_buffer[19999] = '\0'; key1 = key_buffer; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_TRUE(key1 == entry1->GetKey()) << "long key"; entry1->Close(); } TEST_F(DiskCacheEntryTest, GetKey) { InitCache(); GetKey(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { SetMemoryOnlyMode(); InitCache(); GetKey(); } void DiskCacheEntryTest::GrowData() { std::string key1("the first key"); disk_cache::Entry *entry1, *entry2; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); const int kSize = 20000; scoped_refptr buffer1 = new net::IOBuffer(kSize); scoped_refptr buffer2 = new net::IOBuffer(kSize); CacheTestFillBuffer(buffer1->data(), kSize, false); memset(buffer2->data(), 0, kSize); base::strlcpy(buffer1->data(), "the data", kSize); EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, 10, NULL, false)); EXPECT_EQ(10, entry1->ReadData(0, 0, buffer2, 10, NULL)); EXPECT_STREQ("the data", buffer2->data()); EXPECT_EQ(10, entry1->GetDataSize(0)); EXPECT_EQ(2000, entry1->WriteData(0, 0, buffer1, 2000, NULL, false)); EXPECT_EQ(2000, entry1->GetDataSize(0)); EXPECT_EQ(2000, entry1->ReadData(0, 0, buffer2, 2000, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, kSize, NULL, false)); EXPECT_EQ(20000, entry1->GetDataSize(0)); EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, kSize, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); entry1->Close(); memset(buffer2->data(), 0, kSize); ASSERT_TRUE(cache_->CreateEntry("Second key", &entry2)); EXPECT_EQ(10, entry2->WriteData(0, 0, buffer1, 10, NULL, false)); EXPECT_EQ(10, entry2->GetDataSize(0)); entry2->Close(); // Go from an internal address to a bigger block size. ASSERT_TRUE(cache_->OpenEntry("Second key", &entry2)); EXPECT_EQ(2000, entry2->WriteData(0, 0, buffer1, 2000, NULL, false)); EXPECT_EQ(2000, entry2->GetDataSize(0)); EXPECT_EQ(2000, entry2->ReadData(0, 0, buffer2, 2000, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); entry2->Close(); memset(buffer2->data(), 0, kSize); // Go from an internal address to an external one. ASSERT_TRUE(cache_->OpenEntry("Second key", &entry2)); EXPECT_EQ(20000, entry2->WriteData(0, 0, buffer1, kSize, NULL, false)); EXPECT_EQ(20000, entry2->GetDataSize(0)); EXPECT_EQ(20000, entry2->ReadData(0, 0, buffer2, kSize, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); entry2->Close(); } TEST_F(DiskCacheEntryTest, GrowData) { InitCache(); GrowData(); } TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { SetMemoryOnlyMode(); InitCache(); GrowData(); } void DiskCacheEntryTest::TruncateData() { std::string key1("the first key"); disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); const int kSize1 = 20000; const int kSize2 = 20000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); // Simple truncation: EXPECT_EQ(200, entry1->WriteData(0, 0, buffer1, 200, NULL, false)); EXPECT_EQ(200, entry1->GetDataSize(0)); EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, false)); EXPECT_EQ(200, entry1->GetDataSize(0)); EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, true)); EXPECT_EQ(100, entry1->GetDataSize(0)); EXPECT_EQ(0, entry1->WriteData(0, 50, buffer1, 0, NULL, true)); EXPECT_EQ(50, entry1->GetDataSize(0)); EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true)); EXPECT_EQ(0, entry1->GetDataSize(0)); entry1->Close(); ASSERT_TRUE(cache_->OpenEntry(key1, &entry1)); // Go to an external file. EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true)); EXPECT_EQ(20000, entry1->GetDataSize(0)); EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, 20000, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); memset(buffer2->data(), 0, kSize2); // External file truncation EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, false)); EXPECT_EQ(20000, entry1->GetDataSize(0)); EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, true)); EXPECT_EQ(18000, entry1->GetDataSize(0)); EXPECT_EQ(0, entry1->WriteData(0, 17500, buffer1, 0, NULL, true)); EXPECT_EQ(17500, entry1->GetDataSize(0)); // And back to an internal block. EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true)); EXPECT_EQ(1600, entry1->GetDataSize(0)); EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer2, 600, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); EXPECT_EQ(1000, entry1->ReadData(0, 0, buffer2, 1000, NULL)); EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) << "Preserves previous data"; // Go from external file to zero length. EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true)); EXPECT_EQ(20000, entry1->GetDataSize(0)); EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true)); EXPECT_EQ(0, entry1->GetDataSize(0)); entry1->Close(); } TEST_F(DiskCacheEntryTest, TruncateData) { InitCache(); TruncateData(); // We generate asynchronous IO that is not really tracked until completion // so we just wait here before running the next test. MessageLoopHelper helper; helper.WaitUntilCacheIoFinished(1); } TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { SetMemoryOnlyMode(); InitCache(); TruncateData(); } void DiskCacheEntryTest::ZeroLengthIO() { std::string key1("the first key"); disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_EQ(0, entry1->ReadData(0, 0, NULL, 0, NULL)); EXPECT_EQ(0, entry1->WriteData(0, 0, NULL, 0, NULL, false)); // This write should extend the entry. EXPECT_EQ(0, entry1->WriteData(0, 1000, NULL, 0, NULL, false)); EXPECT_EQ(0, entry1->ReadData(0, 500, NULL, 0, NULL)); EXPECT_EQ(0, entry1->ReadData(0, 2000, NULL, 0, NULL)); EXPECT_EQ(1000, entry1->GetDataSize(0)); entry1->Close(); } TEST_F(DiskCacheEntryTest, ZeroLengthIO) { InitCache(); ZeroLengthIO(); } TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { SetMemoryOnlyMode(); InitCache(); ZeroLengthIO(); } // Write more than the total cache capacity but to a single entry. |size| is the // amount of bytes to write each time. void DiskCacheEntryTest::ReuseEntry(int size) { std::string key1("the first key"); disk_cache::Entry *entry; ASSERT_TRUE(cache_->CreateEntry(key1, &entry)); entry->Close(); std::string key2("the second key"); ASSERT_TRUE(cache_->CreateEntry(key2, &entry)); scoped_refptr buffer = new net::IOBuffer(size); CacheTestFillBuffer(buffer->data(), size, false); for (int i = 0; i < 15; i++) { EXPECT_EQ(0, entry->WriteData(0, 0, buffer, 0, NULL, true)); EXPECT_EQ(size, entry->WriteData(0, 0, buffer, size, NULL, false)); entry->Close(); ASSERT_TRUE(cache_->OpenEntry(key2, &entry)); } entry->Close(); ASSERT_TRUE(cache_->OpenEntry(key1, &entry)) << "have not evicted this entry"; entry->Close(); } TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { SetDirectMode(); SetMaxSize(200 * 1024); InitCache(); ReuseEntry(20 * 1024); } TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { SetDirectMode(); SetMemoryOnlyMode(); SetMaxSize(200 * 1024); InitCache(); ReuseEntry(20 * 1024); } TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { SetDirectMode(); SetMaxSize(100 * 1024); InitCache(); ReuseEntry(10 * 1024); } TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { SetDirectMode(); SetMemoryOnlyMode(); SetMaxSize(100 * 1024); InitCache(); ReuseEntry(10 * 1024); } // Reading somewhere that was not written should return zeros. void DiskCacheEntryTest::InvalidData() { std::string key1("the first key"); disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); const int kSize1 = 20000; const int kSize2 = 20000; const int kSize3 = 20000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); scoped_refptr buffer3 = new net::IOBuffer(kSize3); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); // Simple data grow: EXPECT_EQ(200, entry1->WriteData(0, 400, buffer1, 200, NULL, false)); EXPECT_EQ(600, entry1->GetDataSize(0)); EXPECT_EQ(100, entry1->ReadData(0, 300, buffer3, 100, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); entry1->Close(); ASSERT_TRUE(cache_->OpenEntry(key1, &entry1)); // The entry is now on disk. Load it and extend it. EXPECT_EQ(200, entry1->WriteData(0, 800, buffer1, 200, NULL, false)); EXPECT_EQ(1000, entry1->GetDataSize(0)); EXPECT_EQ(100, entry1->ReadData(0, 700, buffer3, 100, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); entry1->Close(); ASSERT_TRUE(cache_->OpenEntry(key1, &entry1)); // This time using truncate. EXPECT_EQ(200, entry1->WriteData(0, 1800, buffer1, 200, NULL, true)); EXPECT_EQ(2000, entry1->GetDataSize(0)); EXPECT_EQ(100, entry1->ReadData(0, 1500, buffer3, 100, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); // Go to an external file. EXPECT_EQ(200, entry1->WriteData(0, 19800, buffer1, 200, NULL, false)); EXPECT_EQ(20000, entry1->GetDataSize(0)); EXPECT_EQ(4000, entry1->ReadData(0, 14000, buffer3, 4000, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); // And back to an internal block. EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true)); EXPECT_EQ(1600, entry1->GetDataSize(0)); EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer3, 600, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); // Extend it again. EXPECT_EQ(600, entry1->WriteData(0, 2000, buffer1, 600, NULL, false)); EXPECT_EQ(2600, entry1->GetDataSize(0)); EXPECT_EQ(200, entry1->ReadData(0, 1800, buffer3, 200, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); // And again (with truncation flag). EXPECT_EQ(600, entry1->WriteData(0, 3000, buffer1, 600, NULL, true)); EXPECT_EQ(3600, entry1->GetDataSize(0)); EXPECT_EQ(200, entry1->ReadData(0, 2800, buffer3, 200, NULL)); EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); entry1->Close(); } TEST_F(DiskCacheEntryTest, InvalidData) { InitCache(); InvalidData(); } TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { SetMemoryOnlyMode(); InitCache(); InvalidData(); } void DiskCacheEntryTest::DoomEntry() { std::string key1("the first key"); disk_cache::Entry *entry1; ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); entry1->Doom(); entry1->Close(); const int kSize = 20000; scoped_refptr buffer = new net::IOBuffer(kSize); CacheTestFillBuffer(buffer->data(), kSize, true); buffer->data()[19999] = '\0'; key1 = buffer->data(); ASSERT_TRUE(cache_->CreateEntry(key1, &entry1)); EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer, kSize, NULL, false)); EXPECT_EQ(20000, entry1->WriteData(1, 0, buffer, kSize, NULL, false)); entry1->Doom(); entry1->Close(); EXPECT_EQ(0, cache_->GetEntryCount()); } TEST_F(DiskCacheEntryTest, DoomEntry) { InitCache(); DoomEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { SetMemoryOnlyMode(); InitCache(); DoomEntry(); } // Verify that basic operations work as expected with doomed entries. void DiskCacheEntryTest::DoomedEntry() { std::string key("the first key"); disk_cache::Entry *entry; ASSERT_TRUE(cache_->CreateEntry(key, &entry)); entry->Doom(); EXPECT_EQ(0, cache_->GetEntryCount()); Time initial = Time::Now(); PlatformThread::Sleep(20); const int kSize1 = 2000; const int kSize2 = 2000; scoped_refptr buffer1 = new net::IOBuffer(kSize1); scoped_refptr buffer2 = new net::IOBuffer(kSize2); CacheTestFillBuffer(buffer1->data(), kSize1, false); memset(buffer2->data(), 0, kSize2); EXPECT_EQ(2000, entry->WriteData(0, 0, buffer1, 2000, NULL, false)); EXPECT_EQ(2000, entry->ReadData(0, 0, buffer2, 2000, NULL)); EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); EXPECT_TRUE(initial < entry->GetLastModified()); EXPECT_TRUE(initial < entry->GetLastUsed()); entry->Close(); } TEST_F(DiskCacheEntryTest, DoomedEntry) { InitCache(); DoomEntry(); } TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { SetMemoryOnlyMode(); InitCache(); DoomEntry(); }