// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_DISK_CACHE_MEM_ENTRY_IMPL_H_ #define NET_DISK_CACHE_MEM_ENTRY_IMPL_H_ #include "base/hash_tables.h" #include "base/scoped_ptr.h" #include "net/disk_cache/disk_cache.h" #include "testing/gtest/include/gtest/gtest_prod.h" namespace disk_cache { class MemBackendImpl; // This class implements the Entry interface for the memory-only cache. An // object of this class represents a single entry on the cache. We use two // types of entries, parent and child to support sparse caching. // // A parent entry is non-sparse until a sparse method is invoked (i.e. // ReadSparseData, WriteSparseData, GetAvailableRange) when sparse information // is initialized. It then manages a list of child entries and delegates the // sparse API calls to the child entries. It creates and deletes child entries // and updates the list when needed. // // A child entry is used to carry partial cache content, non-sparse methods like // ReadData and WriteData cannot be applied to them. The lifetime of a child // entry is managed by the parent entry that created it except that the entry // can be evicted independently. A child entry does not have a key and it is not // registered in the backend's entry map. It is registered in the backend's // ranking list to enable eviction of a partial content. // // A sparse entry has a fixed maximum size and can be partially filled. There // can only be one continous filled region in a sparse entry, as illustrated by // the following example: // | xxx ooooo | // x = unfilled region // o = filled region // It is guranteed that there is at most one unfilled region and one filled // region, and the unfilled region (if there is one) is always before the filled // region. The book keeping for filled region in a sparse entry is done by using // the variable |child_first_pos_| (inclusive). class MemEntryImpl : public Entry { public: enum EntryType { kParentEntry, kChildEntry, }; explicit MemEntryImpl(MemBackendImpl* backend); // Entry interface. virtual void Doom(); virtual void Close(); virtual std::string GetKey() const; virtual base::Time GetLastUsed() const; virtual base::Time GetLastModified() const; virtual int32 GetDataSize(int index) const; virtual int ReadData(int index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback); virtual int WriteData(int index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback, bool truncate); virtual int ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback); virtual int WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len, net::CompletionCallback* completion_callback); virtual int GetAvailableRange(int64 offset, int len, int64* start, CompletionCallback* callback); virtual bool CouldBeSparse() const; virtual void CancelSparseIO() {} virtual int ReadyForSparseIO(net::CompletionCallback* completion_callback); // Performs the initialization of a EntryImpl that will be added to the // cache. bool CreateEntry(const std::string& key); // Permanently destroys this entry. void InternalDoom(); void Open(); bool InUse(); MemEntryImpl* next() const { return next_; } MemEntryImpl* prev() const { return prev_; } void set_next(MemEntryImpl* next) { next_ = next; } void set_prev(MemEntryImpl* prev) { prev_ = prev; } EntryType type() const { return parent_ ? kChildEntry : kParentEntry; } private: typedef base::hash_map EntryMap; enum { NUM_STREAMS = 3 }; ~MemEntryImpl(); // Old Entry interface. int GetAvailableRange(int64 offset, int len, int64* start); // Grows and cleans up the data buffer. void PrepareTarget(int index, int offset, int buf_len); // Updates ranking information. void UpdateRank(bool modified); // Initializes the children map and sparse info. This method is only called // on a parent entry. bool InitSparseInfo(); // Performs the initialization of a MemEntryImpl as a child entry. // |parent| is the pointer to the parent entry. |child_id| is the ID of // the new child. bool InitChildEntry(MemEntryImpl* parent, int child_id); // Returns an entry responsible for |offset|. The returned entry can be a // child entry or this entry itself if |offset| points to the first range. // If such entry does not exist and |create| is true, a new child entry is // created. MemEntryImpl* OpenChild(int64 offset, bool create); // Finds the first child located within the range [|offset|, |offset + len|). // Returns the number of bytes ahead of |offset| to reach the first available // bytes in the entry. The first child found is output to |child|. int FindNextChild(int64 offset, int len, MemEntryImpl** child); // Removes child indexed by |child_id| from the children map. void DetachChild(int child_id); std::string key_; std::vector data_[NUM_STREAMS]; // User data. int32 data_size_[NUM_STREAMS]; int ref_count_; int child_id_; // The ID of a child entry. int child_first_pos_; // The position of the first byte in a child // entry. MemEntryImpl* next_; // Pointers for the LRU list. MemEntryImpl* prev_; MemEntryImpl* parent_; // Pointer to the parent entry. scoped_ptr children_; base::Time last_modified_; // LRU information. base::Time last_used_; MemBackendImpl* backend_; // Back pointer to the cache. bool doomed_; // True if this entry was removed from the cache. DISALLOW_COPY_AND_ASSIGN(MemEntryImpl); }; } // namespace disk_cache #endif // NET_DISK_CACHE_MEM_ENTRY_IMPL_H_