// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is a simple application that stress-tests the crash recovery of the disk // cache. The main application starts a copy of itself on a loop, checking the // exit code of the child process. When the child dies in an unexpected way, // the main application quits. // The child application has two threads: one to exercise the cache in an // infinite loop, and another one to asynchronously kill the process. #include #include #include "base/at_exit.h" #include "base/command_line.h" #include "base/debug_util.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/path_service.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "base/string_util.h" #include "base/thread.h" #include "net/base/io_buffer.h" #include "net/disk_cache/disk_cache.h" #include "net/disk_cache/disk_cache_test_util.h" using base::Time; const int kError = -1; const int kExpectedCrash = 100; // Starts a new process. int RunSlave(int iteration) { std::wstring exe; PathService::Get(base::FILE_EXE, &exe); CommandLine cmdline(exe); cmdline.AppendLooseValue(ASCIIToWide(IntToString(iteration))); base::ProcessHandle handle; if (!base::LaunchApp(cmdline, false, false, &handle)) { printf("Unable to run test\n"); return kError; } int exit_code; if (!base::WaitForExitCode(handle, &exit_code)) { printf("Unable to get return code\n"); return kError; } return exit_code; } // Main loop for the master process. int MasterCode() { for (int i = 0; i < 100000; i++) { int ret = RunSlave(i); if (kExpectedCrash != ret) return ret; } printf("More than enough...\n"); return 0; } // ----------------------------------------------------------------------- // This thread will loop forever, adding and removing entries from the cache. // iteration is the current crash cycle, so the entries on the cache are marked // to know which instance of the application wrote them. void StressTheCache(int iteration) { int cache_size = 0x800000; // 8MB std::wstring path = GetCachePath(); path.append(L"_stress"); disk_cache::Backend* cache = disk_cache::CreateCacheBackend(path, false, cache_size); if (NULL == cache) { printf("Unable to initialize cache.\n"); return; } printf("Iteration %d, initial entries: %d\n", iteration, cache->GetEntryCount()); int seed = static_cast(Time::Now().ToInternalValue()); srand(seed); const int kNumKeys = 5000; const int kNumEntries = 30; std::string keys[kNumKeys]; disk_cache::Entry* entries[kNumEntries] = {0}; for (int i = 0; i < kNumKeys; i++) { keys[i] = GenerateKey(true); } const int kSize = 4000; scoped_refptr buffer = new net::IOBuffer(kSize); memset(buffer->data(), 'k', kSize); for (int i = 0;; i++) { int slot = rand() % kNumEntries; int key = rand() % kNumKeys; if (entries[slot]) entries[slot]->Close(); if (!cache->OpenEntry(keys[key], &entries[slot])) CHECK(cache->CreateEntry(keys[key], &entries[slot])); base::snprintf(buffer->data(), kSize, "%d %d", iteration, i); CHECK(kSize == entries[slot]->WriteData(0, 0, buffer, kSize, NULL, false)); if (rand() % 100 > 80) { key = rand() % kNumKeys; cache->DoomEntry(keys[key]); } if (!(i % 100)) printf("Entries: %d \r", i); } } // We want to prevent the timer thread from killing the process while we are // waiting for the debugger to attach. bool g_crashing = false; class CrashTask : public Task { public: CrashTask() {} ~CrashTask() {} virtual void Run() { // Keep trying to run. RunSoon(MessageLoop::current()); if (g_crashing) return; if (rand() % 100 > 1) { printf("sweet death...\n"); #if defined(OS_WIN) // Windows does more work on _exit() that we would like, so we use Kill. base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false); #elif defined(OS_POSIX) // On POSIX, _exit() will terminate the process with minimal cleanup, // and it is cleaner than killing. _exit(kExpectedCrash); #endif } } static void RunSoon(MessageLoop* target_loop) { int task_delay = 10000; // 10 seconds CrashTask* task = new CrashTask(); target_loop->PostDelayedTask(FROM_HERE, task, task_delay); } }; // We leak everything here :) bool StartCrashThread() { base::Thread* thread = new base::Thread("party_crasher"); if (!thread->Start()) return false; CrashTask::RunSoon(thread->message_loop()); return true; } void CrashHandler(const std::string& str) { g_crashing = true; DebugUtil::BreakDebugger(); } // ----------------------------------------------------------------------- int main(int argc, const char* argv[]) { // Setup an AtExitManager so Singleton objects will be destructed. base::AtExitManager at_exit_manager; if (argc < 2) return MasterCode(); logging::SetLogAssertHandler(CrashHandler); // Some time for the memory manager to flush stuff. PlatformThread::Sleep(3000); MessageLoop message_loop(MessageLoop::TYPE_IO); char* end; long int iteration = strtol(argv[1], &end, 0); if (!StartCrashThread()) { printf("failed to start thread\n"); return kError; } StressTheCache(iteration); return 0; }