// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is a simple application that stress-tests the crash recovery of the disk // cache. The main application starts a copy of itself on a loop, checking the // exit code of the child process. When the child dies in an unexpected way, // the main application quits. // The child application has two threads: one to exercise the cache in an // infinite loop, and another one to asynchronously kill the process. // A regular build should never crash. // To test that the disk cache doesn't generate critical errors with regular // application level crashes, edit stress_support.h. #include #include #include "base/at_exit.h" #include "base/bind.h" #include "base/command_line.h" #include "base/debug/debugger.h" #include "base/file_path.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/path_service.h" #include "base/process_util.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "base/threading/platform_thread.h" #include "base/threading/thread.h" #include "base/utf_string_conversions.h" #include "net/base/net_errors.h" #include "net/base/test_completion_callback.h" #include "net/base/io_buffer.h" #include "net/disk_cache/backend_impl.h" #include "net/disk_cache/disk_cache.h" #include "net/disk_cache/disk_cache_test_util.h" #include "net/disk_cache/stress_support.h" #include "net/disk_cache/trace.h" #if defined(OS_WIN) #include "base/logging_win.h" #endif using base::Time; const int kError = -1; const int kExpectedCrash = 100; // Starts a new process. int RunSlave(int iteration) { FilePath exe; PathService::Get(base::FILE_EXE, &exe); CommandLine cmdline(exe); cmdline.AppendArg(base::IntToString(iteration)); base::ProcessHandle handle; if (!base::LaunchProcess(cmdline, base::LaunchOptions(), &handle)) { printf("Unable to run test\n"); return kError; } int exit_code; if (!base::WaitForExitCode(handle, &exit_code)) { printf("Unable to get return code\n"); return kError; } return exit_code; } // Main loop for the master process. int MasterCode() { for (int i = 0; i < 100000; i++) { int ret = RunSlave(i); if (kExpectedCrash != ret) return ret; } printf("More than enough...\n"); return 0; } // ----------------------------------------------------------------------- std::string GenerateStressKey() { char key[20 * 1024]; size_t size = 50 + rand() % 20000; CacheTestFillBuffer(key, size, true); key[size - 1] = '\0'; return std::string(key); } // This thread will loop forever, adding and removing entries from the cache. // iteration is the current crash cycle, so the entries on the cache are marked // to know which instance of the application wrote them. void StressTheCache(int iteration) { int cache_size = 0x2000000; // 32MB. uint32 mask = 0xfff; // 4096 entries. FilePath path; PathService::Get(base::DIR_TEMP, &path); path = path.AppendASCII("cache_test_stress"); base::Thread cache_thread("CacheThread"); if (!cache_thread.StartWithOptions( base::Thread::Options(MessageLoop::TYPE_IO, 0))) return; disk_cache::BackendImpl* cache = new disk_cache::BackendImpl(path, mask, cache_thread.message_loop_proxy(), NULL); cache->SetMaxSize(cache_size); cache->SetFlags(disk_cache::kNoLoadProtection); net::TestCompletionCallback cb; int rv = cache->Init(cb.callback()); if (cb.GetResult(rv) != net::OK) { printf("Unable to initialize cache.\n"); return; } printf("Iteration %d, initial entries: %d\n", iteration, cache->GetEntryCount()); int seed = static_cast(Time::Now().ToInternalValue()); srand(seed); // kNumKeys is meant to be enough to have about 3x or 4x iterations before // the process crashes. #ifdef NDEBUG const int kNumKeys = 4000; #else const int kNumKeys = 1200; #endif const int kNumEntries = 30; std::string keys[kNumKeys]; disk_cache::Entry* entries[kNumEntries] = {0}; for (int i = 0; i < kNumKeys; i++) { keys[i] = GenerateStressKey(); } const int kSize = 20000; scoped_refptr buffer(new net::IOBuffer(kSize)); memset(buffer->data(), 'k', kSize); for (int i = 0;; i++) { int slot = rand() % kNumEntries; int key = rand() % kNumKeys; bool truncate = (rand() % 2 == 0); int size = kSize - (rand() % 20) * kSize / 20; if (entries[slot]) entries[slot]->Close(); net::TestCompletionCallback cb; rv = cache->OpenEntry(keys[key], &entries[slot], cb.callback()); if (cb.GetResult(rv) != net::OK) { rv = cache->CreateEntry(keys[key], &entries[slot], cb.callback()); CHECK_EQ(net::OK, cb.GetResult(rv)); } base::snprintf(buffer->data(), kSize, "i: %d iter: %d, size: %d, truncate: %d ", i, iteration, size, truncate ? 1 : 0); rv = entries[slot]->WriteData(0, 0, buffer, size, cb.callback(), truncate); CHECK_EQ(size, cb.GetResult(rv)); if (rand() % 100 > 80) { key = rand() % kNumKeys; net::TestCompletionCallback cb2; rv = cache->DoomEntry(keys[key], cb2.callback()); cb2.GetResult(rv); } if (!(i % 100)) printf("Entries: %d \r", i); } } // We want to prevent the timer thread from killing the process while we are // waiting for the debugger to attach. bool g_crashing = false; // RunSoon() and CrashCallback() reference each other, unfortunately. void RunSoon(MessageLoop* target_loop); void CrashCallback() { // Keep trying to run. RunSoon(MessageLoop::current()); if (g_crashing) return; if (rand() % 100 > 30) { printf("sweet death...\n"); #if defined(OS_WIN) // Windows does more work on _exit() that we would like, so we use Kill. base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false); #elif defined(OS_POSIX) // On POSIX, _exit() will terminate the process with minimal cleanup, // and it is cleaner than killing. _exit(kExpectedCrash); #endif } } void RunSoon(MessageLoop* target_loop) { const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10); target_loop->PostDelayedTask( FROM_HERE, base::Bind(&CrashCallback), kTaskDelay); } // We leak everything here :) bool StartCrashThread() { base::Thread* thread = new base::Thread("party_crasher"); if (!thread->Start()) return false; RunSoon(thread->message_loop()); return true; } void CrashHandler(const std::string& str) { g_crashing = true; base::debug::BreakDebugger(); } bool MessageHandler(int severity, const char* file, int line, size_t message_start, const std::string& str) { const size_t kMaxMessageLen = 48; char message[kMaxMessageLen]; size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1); memcpy(message, str.c_str() + message_start, len); message[len] = '\0'; #if !defined(DISK_CACHE_TRACE_TO_LOG) disk_cache::Trace("%s", message); #endif return false; } // ----------------------------------------------------------------------- #if defined(OS_WIN) // {B9A153D4-31C3-48e4-9ABF-D54383F14A0D} const GUID kStressCacheTraceProviderName = { 0xb9a153d4, 0x31c3, 0x48e4, { 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } }; #endif int main(int argc, const char* argv[]) { // Setup an AtExitManager so Singleton objects will be destructed. base::AtExitManager at_exit_manager; if (argc < 2) return MasterCode(); logging::SetLogAssertHandler(CrashHandler); logging::SetLogMessageHandler(MessageHandler); #if defined(OS_WIN) logging::LogEventProvider::Initialize(kStressCacheTraceProviderName); #else CommandLine::Init(argc, argv); logging::InitLogging(NULL, logging::LOG_ONLY_TO_SYSTEM_DEBUG_LOG, logging::LOCK_LOG_FILE, logging::DELETE_OLD_LOG_FILE, logging::DISABLE_DCHECK_FOR_NON_OFFICIAL_RELEASE_BUILDS); #endif // Some time for the memory manager to flush stuff. base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3)); MessageLoop message_loop(MessageLoop::TYPE_IO); char* end; long int iteration = strtol(argv[1], &end, 0); if (!StartCrashThread()) { printf("failed to start thread\n"); return kError; } StressTheCache(iteration); return 0; }