// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/dns/async_host_resolver.h" #include "base/bind.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop.h" #include "base/stl_util.h" #include "net/base/host_cache.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/sys_addrinfo.h" #include "net/base/test_completion_callback.h" #include "net/dns/dns_query.h" #include "net/dns/dns_response.h" #include "net/dns/dns_test_util.h" #include "net/dns/dns_transaction.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace { const int kPortNum = 80; const size_t kMaxTransactions = 2; const size_t kMaxPendingRequests = 1; void VerifyAddressList(const std::vector& ip_addresses, int port, const AddressList& addrlist) { ASSERT_LT(0u, ip_addresses.size()); ASSERT_NE(static_cast(NULL), addrlist.head()); IPAddressNumber ip_number; const struct addrinfo* ainfo = addrlist.head(); for (std::vector::const_iterator i = ip_addresses.begin(); i != ip_addresses.end(); ++i, ainfo = ainfo->ai_next) { ASSERT_NE(static_cast(NULL), ainfo); EXPECT_EQ(sizeof(struct sockaddr_in), static_cast(ainfo->ai_addrlen)); const struct sockaddr* sa = ainfo->ai_addr; const struct sockaddr_in* sa_in = (const struct sockaddr_in*) sa; EXPECT_TRUE(htons(port) == sa_in->sin_port); EXPECT_STREQ(*i, NetAddressToString(sa, ainfo->ai_addrlen).c_str()); } ASSERT_EQ(static_cast(NULL), ainfo); } class MockTransactionFactory : public DnsTransactionFactory, public base::SupportsWeakPtr { public: // Using WeakPtr to support cancellation. All MockTransactions succeed unless // cancelled or MockTransactionFactory is destroyed. class MockTransaction : public DnsTransaction, public base::SupportsWeakPtr { public: MockTransaction(const std::string& hostname, uint16 qtype, const DnsTransactionFactory::CallbackType& callback, const base::WeakPtr& factory) : hostname_(hostname), qtype_(qtype), callback_(callback), started_(false), factory_(factory) { EXPECT_FALSE(started_); started_ = true; MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&MockTransaction::Finish, AsWeakPtr())); } virtual const std::string& GetHostname() const OVERRIDE { return hostname_; } virtual uint16 GetType() const OVERRIDE { return qtype_; } virtual int Start() OVERRIDE { return ERR_IO_PENDING; } private: void Finish() { if (!factory_) { callback_.Run(this, ERR_DNS_SERVER_FAILED, NULL); return; } callback_.Run(this, OK, factory_->responses_[Key(GetHostname(), GetType())]); } const std::string hostname_; const uint16 qtype_; DnsTransactionFactory::CallbackType callback_; bool started_; const base::WeakPtr factory_; }; typedef std::pair Key; MockTransactionFactory() : num_requests_(0) {} ~MockTransactionFactory() { STLDeleteValues(&responses_); } scoped_ptr CreateTransaction( const std::string& qname, uint16 qtype, const DnsTransactionFactory::CallbackType& callback, const BoundNetLog&) { ++num_requests_; return scoped_ptr( new MockTransaction(qname, qtype, callback, AsWeakPtr())); } void AddResponse(const std::string& name, uint8 type, DnsResponse* response) { responses_[MockTransactionFactory::Key(name, type)] = response; } int num_requests() const { return num_requests_; } private: int num_requests_; std::map responses_; }; } // namespace // The following fixture sets up an environment for four different lookups // with their data defined in dns_test_util.h. All tests make use of these // predefined variables instead of each defining their own, to avoid // boilerplate code in every test. Assuming every coming query is for a // distinct hostname, as |kMaxTransactions| is set to 2 and // |kMaxPendingRequests| is set to 1, first two queries start immediately // and the next one is sent to pending queue; as a result, the next query // should either fail itself or cause the pending query to fail depending // on its priority. class AsyncHostResolverTest : public testing::Test { public: AsyncHostResolverTest() : info0_(HostPortPair(kT0HostName, kPortNum)), info1_(HostPortPair(kT1HostName, kPortNum)), info2_(HostPortPair(kT2HostName, kPortNum)), info3_(HostPortPair(kT3HostName, kPortNum)), ip_addresses0_(kT0IpAddresses, kT0IpAddresses + arraysize(kT0IpAddresses)), ip_addresses1_(kT1IpAddresses, kT1IpAddresses + arraysize(kT1IpAddresses)), ip_addresses2_(kT2IpAddresses, kT2IpAddresses + arraysize(kT2IpAddresses)), ip_addresses3_(kT3IpAddresses, kT3IpAddresses + arraysize(kT3IpAddresses)) { // AF_INET only for now. info0_.set_address_family(ADDRESS_FAMILY_IPV4); info1_.set_address_family(ADDRESS_FAMILY_IPV4); info2_.set_address_family(ADDRESS_FAMILY_IPV4); info3_.set_address_family(ADDRESS_FAMILY_IPV4); client_ = new MockTransactionFactory(); client_->AddResponse(kT0HostName, kT0Qtype, new DnsResponse(reinterpret_cast(kT0ResponseDatagram), arraysize(kT0ResponseDatagram), arraysize(kT0QueryDatagram))); client_->AddResponse(kT1HostName, kT1Qtype, new DnsResponse(reinterpret_cast(kT1ResponseDatagram), arraysize(kT1ResponseDatagram), arraysize(kT1QueryDatagram))); client_->AddResponse(kT2HostName, kT2Qtype, new DnsResponse(reinterpret_cast(kT2ResponseDatagram), arraysize(kT2ResponseDatagram), arraysize(kT2QueryDatagram))); client_->AddResponse(kT3HostName, kT3Qtype, new DnsResponse(reinterpret_cast(kT3ResponseDatagram), arraysize(kT3ResponseDatagram), arraysize(kT3QueryDatagram))); resolver_.reset( new AsyncHostResolver(kMaxTransactions, kMaxPendingRequests, HostCache::CreateDefaultCache(), scoped_ptr(client_), NULL)); } protected: AddressList addrlist0_, addrlist1_, addrlist2_, addrlist3_; HostResolver::RequestInfo info0_, info1_, info2_, info3_; std::vector ip_addresses0_, ip_addresses1_, ip_addresses2_, ip_addresses3_; scoped_ptr resolver_; MockTransactionFactory* client_; // Owned by the AsyncHostResolver. TestCompletionCallback callback0_, callback1_, callback2_, callback3_; }; TEST_F(AsyncHostResolverTest, EmptyHostLookup) { info0_.set_host_port_pair(HostPortPair("", kPortNum)); int rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv); } TEST_F(AsyncHostResolverTest, IPv4LiteralLookup) { const char* kIPLiteral = "192.168.1.2"; info0_.set_host_port_pair(HostPortPair(kIPLiteral, kPortNum)); info0_.set_host_resolver_flags(HOST_RESOLVER_CANONNAME); int rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(OK, rv); std::vector ip_addresses(1, kIPLiteral); VerifyAddressList(ip_addresses, kPortNum, addrlist0_); EXPECT_STREQ(kIPLiteral, addrlist0_.head()->ai_canonname); } TEST_F(AsyncHostResolverTest, IPv6LiteralLookup) { info0_.set_host_port_pair(HostPortPair("2001:db8:0::42", kPortNum)); int rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); // When support for IPv6 is added, this should succeed. EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv); } TEST_F(AsyncHostResolverTest, CachedLookup) { int rv = resolver_->ResolveFromCache(info0_, &addrlist0_, BoundNetLog()); EXPECT_EQ(ERR_DNS_CACHE_MISS, rv); // Cache the result of |info0_| lookup. rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); rv = callback0_.WaitForResult(); EXPECT_EQ(OK, rv); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); // Now lookup |info0_| from cache only, store results in |addrlist1_|, // should succeed synchronously. rv = resolver_->ResolveFromCache(info0_, &addrlist1_, BoundNetLog()); EXPECT_EQ(OK, rv); VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_); } // TODO(szym): This tests DnsTransaction not AsyncHostResolver. Remove or move // to dns_transaction_unittest.cc TEST_F(AsyncHostResolverTest, DISABLED_InvalidHostNameLookup) { const std::string kHostName1(64, 'a'); info0_.set_host_port_pair(HostPortPair(kHostName1, kPortNum)); int rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_INVALID_ARGUMENT, rv); const std::string kHostName2(4097, 'b'); info0_.set_host_port_pair(HostPortPair(kHostName2, kPortNum)); rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_INVALID_ARGUMENT, rv); } TEST_F(AsyncHostResolverTest, Lookup) { int rv = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); rv = callback0_.WaitForResult(); EXPECT_EQ(OK, rv); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); } TEST_F(AsyncHostResolverTest, ConcurrentLookup) { int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv2); rv0 = callback0_.WaitForResult(); EXPECT_EQ(OK, rv0); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_); rv2 = callback2_.WaitForResult(); EXPECT_EQ(OK, rv2); VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_); EXPECT_EQ(3, client_->num_requests()); } TEST_F(AsyncHostResolverTest, SameHostLookupsConsumeSingleTransaction) { // We pass the info0_ to all requests. int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info0_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); int rv2 = resolver_->Resolve(info0_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv2); rv0 = callback0_.WaitForResult(); EXPECT_EQ(OK, rv0); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_); rv2 = callback2_.WaitForResult(); EXPECT_EQ(OK, rv2); VerifyAddressList(ip_addresses0_, kPortNum, addrlist2_); // Although we have three lookups, a single UDP socket was used. EXPECT_EQ(1, client_->num_requests()); } TEST_F(AsyncHostResolverTest, CancelLookup) { HostResolver::RequestHandle req0 = NULL, req2 = NULL; int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), &req0, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), &req2, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv2); resolver_->CancelRequest(req0); resolver_->CancelRequest(req2); MessageLoop::current()->RunAllPending(); EXPECT_FALSE(callback0_.have_result()); EXPECT_FALSE(callback2_.have_result()); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_); } // Tests the following scenario: start two resolutions for the same host, // cancel one of them, make sure that the other one completes. TEST_F(AsyncHostResolverTest, CancelSameHostLookup) { HostResolver::RequestHandle req0 = NULL; // Pass the info0_ to both requests. int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), &req0, BoundNetLog()); int rv1 = resolver_->Resolve(info0_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); resolver_->CancelRequest(req0); MessageLoop::current()->RunAllPending(); EXPECT_FALSE(callback0_.have_result()); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_); EXPECT_EQ(1, client_->num_requests()); } // Test that a queued lookup completes. TEST_F(AsyncHostResolverTest, QueuedLookup) { // kMaxTransactions is 2, thus the following requests consume all // available transactions. int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); // The following request will end up in queue. int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv2); EXPECT_EQ(1u, static_cast(resolver_.get())->GetNumPending()); // Make sure all requests complete. rv0 = callback0_.WaitForResult(); EXPECT_EQ(OK, rv0); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_); rv2 = callback2_.WaitForResult(); EXPECT_EQ(OK, rv2); VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_); } // Test that cancelling a queued lookup works. TEST_F(AsyncHostResolverTest, CancelPendingLookup) { // kMaxTransactions is 2, thus the following requests consume all // available transactions. int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); // The following request will end up in queue. HostResolver::RequestHandle req2 = NULL; int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), &req2, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv2); EXPECT_EQ(1u, static_cast(resolver_.get())->GetNumPending()); resolver_->CancelRequest(req2); // Make sure first two requests complete while the cancelled one doesn't. MessageLoop::current()->RunAllPending(); EXPECT_FALSE(callback2_.have_result()); rv0 = callback0_.WaitForResult(); EXPECT_EQ(OK, rv0); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_); } TEST_F(AsyncHostResolverTest, ResolverDestructionCancelsLookups) { int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); // This one is queued. int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); EXPECT_EQ(1u, static_cast(resolver_.get())->GetNumPending()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv2); resolver_.reset(); MessageLoop::current()->RunAllPending(); EXPECT_FALSE(callback0_.have_result()); EXPECT_FALSE(callback1_.have_result()); EXPECT_FALSE(callback2_.have_result()); } // Test that when the number of pending lookups is at max, a new lookup // with a priority lower than all of those in the queue fails. TEST_F(AsyncHostResolverTest, OverflowQueueWithLowPriorityLookup) { int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); // This one is queued and fills up the queue since its size is 1. int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); EXPECT_EQ(1u, static_cast(resolver_.get())->GetNumPending()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv2); // This one fails. info3_.set_priority(LOWEST); int rv3 = resolver_->Resolve(info3_, &addrlist3_, callback3_.callback(), NULL, BoundNetLog()); EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, rv3); MessageLoop::current()->RunAllPending(); EXPECT_FALSE(callback3_.have_result()); } // Test that when the number of pending lookups is at max, a new lookup // with a priority higher than any of those in the queue succeeds and // causes the lowest priority lookup in the queue to fail. TEST_F(AsyncHostResolverTest, OverflowQueueWithHighPriorityLookup) { int rv0 = resolver_->Resolve(info0_, &addrlist0_, callback0_.callback(), NULL, BoundNetLog()); int rv1 = resolver_->Resolve(info1_, &addrlist1_, callback1_.callback(), NULL, BoundNetLog()); // Next lookup is queued. Since this will be ejected from the queue and // will not consume a socket from our factory, we are not passing it // predefined members. HostResolver::RequestInfo info(HostPortPair("cnn.com", 80)); info.set_address_family(ADDRESS_FAMILY_IPV4); AddressList addrlist_fail; TestCompletionCallback callback_fail; int rv_fail = resolver_->Resolve(info, &addrlist_fail, callback_fail.callback(), NULL, BoundNetLog()); EXPECT_EQ(1u, static_cast(resolver_.get())->GetNumPending()); EXPECT_EQ(ERR_IO_PENDING, rv0); EXPECT_EQ(ERR_IO_PENDING, rv1); EXPECT_EQ(ERR_IO_PENDING, rv_fail); // Lookup 2 causes the above to fail, but itself should succeed. info2_.set_priority(HIGHEST); int rv2 = resolver_->Resolve(info2_, &addrlist2_, callback2_.callback(), NULL, BoundNetLog()); rv0 = callback0_.WaitForResult(); EXPECT_EQ(OK, rv0); VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_); rv1 = callback1_.WaitForResult(); EXPECT_EQ(OK, rv1); VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_); rv_fail = callback_fail.WaitForResult(); EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, rv_fail); EXPECT_EQ(static_cast(NULL), addrlist_fail.head()); rv2 = callback2_.WaitForResult(); EXPECT_EQ(OK, rv2); VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_); } } // namespace net