// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_cache_transaction.h" #include "build/build_config.h" #if defined(OS_POSIX) #include #endif #include #include "base/bind.h" #include "base/compiler_specific.h" #include "base/memory/ref_counted.h" #include "base/metrics/field_trial.h" #include "base/metrics/histogram.h" #include "base/rand_util.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "base/time.h" #include "net/base/cert_status_flags.h" #include "net/base/completion_callback.h" #include "net/base/io_buffer.h" #include "net/base/load_flags.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/ssl_cert_request_info.h" #include "net/base/ssl_config_service.h" #include "net/base/upload_data_stream.h" #include "net/disk_cache/disk_cache.h" #include "net/http/http_network_session.h" #include "net/http/http_request_info.h" #include "net/http/http_response_headers.h" #include "net/http/http_transaction_delegate.h" #include "net/http/http_transaction.h" #include "net/http/http_util.h" #include "net/http/partial_data.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { // From http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-21#section-6 // a "non-error response" is one with a 2xx (Successful) or 3xx // (Redirection) status code. bool NonErrorResponse(int status_code) { int status_code_range = status_code / 100; return status_code_range == 2 || status_code_range == 3; } } // namespace namespace net { struct HeaderNameAndValue { const char* name; const char* value; }; // If the request includes one of these request headers, then avoid caching // to avoid getting confused. static const HeaderNameAndValue kPassThroughHeaders[] = { { "if-unmodified-since", NULL }, // causes unexpected 412s { "if-match", NULL }, // causes unexpected 412s { "if-range", NULL }, { NULL, NULL } }; struct ValidationHeaderInfo { const char* request_header_name; const char* related_response_header_name; }; static const ValidationHeaderInfo kValidationHeaders[] = { { "if-modified-since", "last-modified" }, { "if-none-match", "etag" }, }; // If the request includes one of these request headers, then avoid reusing // our cached copy if any. static const HeaderNameAndValue kForceFetchHeaders[] = { { "cache-control", "no-cache" }, { "pragma", "no-cache" }, { NULL, NULL } }; // If the request includes one of these request headers, then force our // cached copy (if any) to be revalidated before reusing it. static const HeaderNameAndValue kForceValidateHeaders[] = { { "cache-control", "max-age=0" }, { NULL, NULL } }; static bool HeaderMatches(const HttpRequestHeaders& headers, const HeaderNameAndValue* search) { for (; search->name; ++search) { std::string header_value; if (!headers.GetHeader(search->name, &header_value)) continue; if (!search->value) return true; HttpUtil::ValuesIterator v(header_value.begin(), header_value.end(), ','); while (v.GetNext()) { if (LowerCaseEqualsASCII(v.value_begin(), v.value_end(), search->value)) return true; } } return false; } //----------------------------------------------------------------------------- HttpCache::Transaction::Transaction( HttpCache* cache, HttpTransactionDelegate* transaction_delegate, InfiniteCacheTransaction* infinite_cache_transaction) : next_state_(STATE_NONE), request_(NULL), cache_(cache->AsWeakPtr()), entry_(NULL), new_entry_(NULL), network_trans_(NULL), infinite_cache_transaction_(infinite_cache_transaction), new_response_(NULL), mode_(NONE), target_state_(STATE_NONE), reading_(false), invalid_range_(false), truncated_(false), is_sparse_(false), range_requested_(false), handling_206_(false), cache_pending_(false), done_reading_(false), vary_mismatch_(false), io_buf_len_(0), read_offset_(0), effective_load_flags_(0), write_len_(0), ALLOW_THIS_IN_INITIALIZER_LIST(weak_factory_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(io_callback_( base::Bind(&Transaction::OnIOComplete, weak_factory_.GetWeakPtr()))), transaction_pattern_(PATTERN_UNDEFINED), defer_cache_sensitivity_delay_(false), transaction_delegate_(transaction_delegate) { COMPILE_ASSERT(HttpCache::Transaction::kNumValidationHeaders == arraysize(kValidationHeaders), Invalid_number_of_validation_headers); base::StringToInt( base::FieldTrialList::FindFullName("CacheSensitivityAnalysis"), &sensitivity_analysis_percent_increase_); } HttpCache::Transaction::~Transaction() { // We may have to issue another IO, but we should never invoke the callback_ // after this point. callback_.Reset(); transaction_delegate_ = NULL; cache_io_start_ = base::TimeTicks(); deferred_cache_sensitivity_delay_ = base::TimeDelta(); if (cache_) { if (entry_) { bool cancel_request = reading_; if (cancel_request) { if (partial_.get()) { entry_->disk_entry->CancelSparseIO(); } else { cancel_request &= (response_.headers->response_code() == 200); } } cache_->DoneWithEntry(entry_, this, cancel_request); } else if (cache_pending_) { cache_->RemovePendingTransaction(this); } } // Cancel any outstanding callbacks before we drop our reference to the // HttpCache. This probably isn't strictly necessary, but might as well. weak_factory_.InvalidateWeakPtrs(); // We could still have a cache read or write in progress, so we just null the // cache_ pointer to signal that we are dead. See DoCacheReadCompleted. cache_.reset(); } int HttpCache::Transaction::WriteMetadata(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(buf); DCHECK_GT(buf_len, 0); DCHECK(!callback.is_null()); if (!cache_ || !entry_) return ERR_UNEXPECTED; // We don't need to track this operation for anything. // It could be possible to check if there is something already written and // avoid writing again (it should be the same, right?), but let's allow the // caller to "update" the contents with something new. return entry_->disk_entry->WriteData(kMetadataIndex, 0, buf, buf_len, callback, true); } bool HttpCache::Transaction::AddTruncatedFlag() { DCHECK(mode_ & WRITE || mode_ == NONE); // Don't set the flag for sparse entries. if (partial_.get() && !truncated_) return true; if (!CanResume(true)) return false; // We may have received the whole resource already. if (done_reading_) return true; if (infinite_cache_transaction_.get()) infinite_cache_transaction_->OnTruncatedResponse(); truncated_ = true; target_state_ = STATE_NONE; next_state_ = STATE_CACHE_WRITE_TRUNCATED_RESPONSE; DoLoop(OK); return true; } LoadState HttpCache::Transaction::GetWriterLoadState() const { if (network_trans_.get()) return network_trans_->GetLoadState(); if (entry_ || !request_) return LOAD_STATE_IDLE; return LOAD_STATE_WAITING_FOR_CACHE; } const BoundNetLog& HttpCache::Transaction::net_log() const { return net_log_; } int HttpCache::Transaction::Start(const HttpRequestInfo* request, const CompletionCallback& callback, const BoundNetLog& net_log) { DCHECK(request); DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); DCHECK(!reading_); DCHECK(!network_trans_.get()); DCHECK(!entry_); if (!cache_) return ERR_UNEXPECTED; SetRequest(net_log, request); if (infinite_cache_transaction_.get()) { if ((effective_load_flags_ & LOAD_BYPASS_CACHE) || (effective_load_flags_ & LOAD_ONLY_FROM_CACHE) || (effective_load_flags_ & LOAD_DISABLE_CACHE) || (effective_load_flags_ & LOAD_VALIDATE_CACHE) || (effective_load_flags_ & LOAD_PREFERRING_CACHE) || partial_.get()) { if (effective_load_flags_ & LOAD_PREFERRING_CACHE) infinite_cache_transaction_->OnBackForwardNavigation(); infinite_cache_transaction_.reset(); } else { infinite_cache_transaction_->OnRequestStart(request); } } // We have to wait until the backend is initialized so we start the SM. next_state_ = STATE_GET_BACKEND; int rv = DoLoop(OK); // Setting this here allows us to check for the existence of a callback_ to // determine if we are still inside Start. if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartIgnoringLastError( const CompletionCallback& callback) { DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_) return ERR_UNEXPECTED; int rv = RestartNetworkRequest(); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartWithCertificate( X509Certificate* client_cert, const CompletionCallback& callback) { DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_) return ERR_UNEXPECTED; int rv = RestartNetworkRequestWithCertificate(client_cert); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartWithAuth( const AuthCredentials& credentials, const CompletionCallback& callback) { DCHECK(auth_response_.headers); DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_) return ERR_UNEXPECTED; // Clear the intermediate response since we are going to start over. auth_response_ = HttpResponseInfo(); int rv = RestartNetworkRequestWithAuth(credentials); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } bool HttpCache::Transaction::IsReadyToRestartForAuth() { if (!network_trans_.get()) return false; return network_trans_->IsReadyToRestartForAuth(); } int HttpCache::Transaction::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(buf); DCHECK_GT(buf_len, 0); DCHECK(!callback.is_null()); DCHECK(callback_.is_null()); if (!cache_) return ERR_UNEXPECTED; // If we have an intermediate auth response at this point, then it means the // user wishes to read the network response (the error page). If there is a // previous response in the cache then we should leave it intact. if (auth_response_.headers && mode_ != NONE) { UpdateTransactionPattern(PATTERN_NOT_COVERED); DCHECK(mode_ & WRITE); DoneWritingToEntry(mode_ == READ_WRITE); mode_ = NONE; } reading_ = true; int rv; switch (mode_) { case READ_WRITE: DCHECK(partial_.get()); if (!network_trans_.get()) { // We are just reading from the cache, but we may be writing later. rv = ReadFromEntry(buf, buf_len); break; } case NONE: case WRITE: DCHECK(network_trans_.get()); rv = ReadFromNetwork(buf, buf_len); break; case READ: rv = ReadFromEntry(buf, buf_len); break; default: NOTREACHED(); rv = ERR_FAILED; } if (rv == ERR_IO_PENDING) { DCHECK(callback_.is_null()); callback_ = callback; } return rv; } void HttpCache::Transaction::StopCaching() { // We really don't know where we are now. Hopefully there is no operation in // progress, but nothing really prevents this method to be called after we // returned ERR_IO_PENDING. We cannot attempt to truncate the entry at this // point because we need the state machine for that (and even if we are really // free, that would be an asynchronous operation). In other words, keep the // entry how it is (it will be marked as truncated at destruction), and let // the next piece of code that executes know that we are now reading directly // from the net. if (cache_ && entry_ && (mode_ & WRITE) && network_trans_.get() && !is_sparse_ && !range_requested_) { mode_ = NONE; } } void HttpCache::Transaction::DoneReading() { if (cache_ && entry_) { DCHECK(reading_); DCHECK_NE(mode_, UPDATE); if (mode_ & WRITE) DoneWritingToEntry(true); } } const HttpResponseInfo* HttpCache::Transaction::GetResponseInfo() const { // Null headers means we encountered an error or haven't a response yet if (auth_response_.headers) return &auth_response_; return (response_.headers || response_.ssl_info.cert || response_.cert_request_info) ? &response_ : NULL; } LoadState HttpCache::Transaction::GetLoadState() const { LoadState state = GetWriterLoadState(); if (state != LOAD_STATE_WAITING_FOR_CACHE) return state; if (cache_) return cache_->GetLoadStateForPendingTransaction(this); return LOAD_STATE_IDLE; } UploadProgress HttpCache::Transaction::GetUploadProgress() const { if (network_trans_.get()) return network_trans_->GetUploadProgress(); return final_upload_progress_; } bool HttpCache::Transaction::GetLoadTimingInfo( LoadTimingInfo* load_timing_info) const { if (network_trans_) return network_trans_->GetLoadTimingInfo(load_timing_info); // Don't modify |load_timing_info| when reading from the cache instead of the // network. return false; } //----------------------------------------------------------------------------- void HttpCache::Transaction::DoCallback(int rv) { DCHECK(rv != ERR_IO_PENDING); DCHECK(!callback_.is_null()); read_buf_ = NULL; // Release the buffer before invoking the callback. // Since Run may result in Read being called, clear callback_ up front. CompletionCallback c = callback_; callback_.Reset(); c.Run(rv); } int HttpCache::Transaction::HandleResult(int rv) { DCHECK(rv != ERR_IO_PENDING); if (!callback_.is_null()) DoCallback(rv); return rv; } // A few common patterns: (Foo* means Foo -> FooComplete) // // Not-cached entry: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> CreateEntry* -> AddToEntry* -> // SendRequest* -> SuccessfulSendRequest -> OverwriteCachedResponse -> // CacheWriteResponse* -> TruncateCachedData* -> TruncateCachedMetadata* -> // PartialHeadersReceived // // Read(): // NetworkRead* -> CacheWriteData* // // Cached entry, no validation: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> BeginPartialCacheValidation() -> BeginCacheValidation() // // Read(): // CacheReadData* // // Cached entry, validation (304): // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> BeginPartialCacheValidation() -> BeginCacheValidation() -> // SendRequest* -> SuccessfulSendRequest -> UpdateCachedResponse -> // CacheWriteResponse* -> UpdateCachedResponseComplete -> // OverwriteCachedResponse -> PartialHeadersReceived // // Read(): // CacheReadData* // // Cached entry, validation and replace (200): // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> BeginPartialCacheValidation() -> BeginCacheValidation() -> // SendRequest* -> SuccessfulSendRequest -> OverwriteCachedResponse -> // CacheWriteResponse* -> DoTruncateCachedData* -> TruncateCachedMetadata* -> // PartialHeadersReceived // // Read(): // NetworkRead* -> CacheWriteData* // // Sparse entry, partially cached, byte range request: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> BeginPartialCacheValidation() -> CacheQueryData* -> // ValidateEntryHeadersAndContinue() -> StartPartialCacheValidation -> // CompletePartialCacheValidation -> BeginCacheValidation() -> SendRequest* -> // SuccessfulSendRequest -> UpdateCachedResponse -> CacheWriteResponse* -> // UpdateCachedResponseComplete -> OverwriteCachedResponse -> // PartialHeadersReceived // // Read() 1: // NetworkRead* -> CacheWriteData* // // Read() 2: // NetworkRead* -> CacheWriteData* -> StartPartialCacheValidation -> // CompletePartialCacheValidation -> CacheReadData* -> // // Read() 3: // CacheReadData* -> StartPartialCacheValidation -> // CompletePartialCacheValidation -> BeginCacheValidation() -> SendRequest* -> // SuccessfulSendRequest -> UpdateCachedResponse* -> OverwriteCachedResponse // -> PartialHeadersReceived -> NetworkRead* -> CacheWriteData* // int HttpCache::Transaction::DoLoop(int result) { DCHECK(next_state_ != STATE_NONE); int rv = result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_GET_BACKEND: DCHECK_EQ(OK, rv); rv = DoGetBackend(); break; case STATE_GET_BACKEND_COMPLETE: rv = DoGetBackendComplete(rv); break; case STATE_SEND_REQUEST: DCHECK_EQ(OK, rv); rv = DoSendRequest(); break; case STATE_SEND_REQUEST_COMPLETE: rv = DoSendRequestComplete(rv); break; case STATE_SUCCESSFUL_SEND_REQUEST: DCHECK_EQ(OK, rv); rv = DoSuccessfulSendRequest(); break; case STATE_NETWORK_READ: DCHECK_EQ(OK, rv); rv = DoNetworkRead(); break; case STATE_NETWORK_READ_COMPLETE: rv = DoNetworkReadComplete(rv); break; case STATE_INIT_ENTRY: DCHECK_EQ(OK, rv); rv = DoInitEntry(); break; case STATE_OPEN_ENTRY: DCHECK_EQ(OK, rv); rv = DoOpenEntry(); break; case STATE_OPEN_ENTRY_COMPLETE: rv = DoOpenEntryComplete(rv); break; case STATE_CREATE_ENTRY: DCHECK_EQ(OK, rv); rv = DoCreateEntry(); break; case STATE_CREATE_ENTRY_COMPLETE: rv = DoCreateEntryComplete(rv); break; case STATE_DOOM_ENTRY: DCHECK_EQ(OK, rv); rv = DoDoomEntry(); break; case STATE_DOOM_ENTRY_COMPLETE: rv = DoDoomEntryComplete(rv); break; case STATE_ADD_TO_ENTRY: DCHECK_EQ(OK, rv); rv = DoAddToEntry(); break; case STATE_ADD_TO_ENTRY_COMPLETE: rv = DoAddToEntryComplete(rv); break; case STATE_ADD_TO_ENTRY_COMPLETE_AFTER_DELAY: rv = DoAddToEntryCompleteAfterDelay(rv); break; case STATE_START_PARTIAL_CACHE_VALIDATION: DCHECK_EQ(OK, rv); rv = DoStartPartialCacheValidation(); break; case STATE_COMPLETE_PARTIAL_CACHE_VALIDATION: rv = DoCompletePartialCacheValidation(rv); break; case STATE_UPDATE_CACHED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoUpdateCachedResponse(); break; case STATE_UPDATE_CACHED_RESPONSE_COMPLETE: rv = DoUpdateCachedResponseComplete(rv); break; case STATE_OVERWRITE_CACHED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoOverwriteCachedResponse(); break; case STATE_TRUNCATE_CACHED_DATA: DCHECK_EQ(OK, rv); rv = DoTruncateCachedData(); break; case STATE_TRUNCATE_CACHED_DATA_COMPLETE: rv = DoTruncateCachedDataComplete(rv); break; case STATE_TRUNCATE_CACHED_METADATA: DCHECK_EQ(OK, rv); rv = DoTruncateCachedMetadata(); break; case STATE_TRUNCATE_CACHED_METADATA_COMPLETE: rv = DoTruncateCachedMetadataComplete(rv); break; case STATE_PARTIAL_HEADERS_RECEIVED: DCHECK_EQ(OK, rv); rv = DoPartialHeadersReceived(); break; case STATE_CACHE_READ_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheReadResponse(); break; case STATE_CACHE_READ_RESPONSE_COMPLETE: rv = DoCacheReadResponseComplete(rv); break; case STATE_CACHE_WRITE_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheWriteResponse(); break; case STATE_CACHE_WRITE_TRUNCATED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheWriteTruncatedResponse(); break; case STATE_CACHE_WRITE_RESPONSE_COMPLETE: rv = DoCacheWriteResponseComplete(rv); break; case STATE_CACHE_READ_METADATA: DCHECK_EQ(OK, rv); rv = DoCacheReadMetadata(); break; case STATE_CACHE_READ_METADATA_COMPLETE: rv = DoCacheReadMetadataComplete(rv); break; case STATE_CACHE_QUERY_DATA: DCHECK_EQ(OK, rv); rv = DoCacheQueryData(); break; case STATE_CACHE_QUERY_DATA_COMPLETE: rv = DoCacheQueryDataComplete(rv); break; case STATE_CACHE_READ_DATA: DCHECK_EQ(OK, rv); rv = DoCacheReadData(); break; case STATE_CACHE_READ_DATA_COMPLETE: rv = DoCacheReadDataComplete(rv); break; case STATE_CACHE_WRITE_DATA: rv = DoCacheWriteData(rv); break; case STATE_CACHE_WRITE_DATA_COMPLETE: rv = DoCacheWriteDataComplete(rv); break; default: NOTREACHED() << "bad state"; rv = ERR_FAILED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); if (rv != ERR_IO_PENDING) HandleResult(rv); return rv; } int HttpCache::Transaction::DoGetBackend() { cache_pending_ = true; next_state_ = STATE_GET_BACKEND_COMPLETE; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_GET_BACKEND); ReportCacheActionStart(); return cache_->GetBackendForTransaction(this); } int HttpCache::Transaction::DoGetBackendComplete(int result) { DCHECK(result == OK || result == ERR_FAILED); ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_GET_BACKEND, result); cache_pending_ = false; if (!ShouldPassThrough()) { cache_key_ = cache_->GenerateCacheKey(request_); // Requested cache access mode. if (effective_load_flags_ & LOAD_ONLY_FROM_CACHE) { mode_ = READ; } else if (effective_load_flags_ & LOAD_BYPASS_CACHE) { mode_ = WRITE; } else { mode_ = READ_WRITE; } // Downgrade to UPDATE if the request has been externally conditionalized. if (external_validation_.initialized) { if (mode_ & WRITE) { // Strip off the READ_DATA bit (and maybe add back a READ_META bit // in case READ was off). mode_ = UPDATE; } else { mode_ = NONE; } } } // Use PUT and DELETE only to invalidate existing stored entries. if ((request_->method == "PUT" || request_->method == "DELETE") && mode_ != READ_WRITE && mode_ != WRITE) { mode_ = NONE; } // If must use cache, then we must fail. This can happen for back/forward // navigations to a page generated via a form post. if (!(mode_ & READ) && effective_load_flags_ & LOAD_ONLY_FROM_CACHE) return ERR_CACHE_MISS; if (mode_ == NONE) { if (partial_.get()) { partial_->RestoreHeaders(&custom_request_->extra_headers); partial_.reset(); } next_state_ = STATE_SEND_REQUEST; } else { next_state_ = STATE_INIT_ENTRY; } // This is only set if we have something to do with the response. range_requested_ = (partial_.get() != NULL); return OK; } int HttpCache::Transaction::DoSendRequest() { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(!network_trans_.get()); send_request_since_ = TimeTicks::Now(); // Create a network transaction. int rv = cache_->network_layer_->CreateTransaction(&network_trans_, NULL); if (rv != OK) return rv; ReportNetworkActionStart(); next_state_ = STATE_SEND_REQUEST_COMPLETE; rv = network_trans_->Start(request_, io_callback_, net_log_); return rv; } int HttpCache::Transaction::DoSendRequestComplete(int result) { ReportNetworkActionFinish(); if (!cache_) return ERR_UNEXPECTED; if (result == OK) { next_state_ = STATE_SUCCESSFUL_SEND_REQUEST; return OK; } // Do not record requests that have network errors or restarts. UpdateTransactionPattern(PATTERN_NOT_COVERED); if (IsCertificateError(result)) { const HttpResponseInfo* response = network_trans_->GetResponseInfo(); // If we get a certificate error, then there is a certificate in ssl_info, // so GetResponseInfo() should never return NULL here. DCHECK(response); response_.ssl_info = response->ssl_info; } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { const HttpResponseInfo* response = network_trans_->GetResponseInfo(); DCHECK(response); response_.cert_request_info = response->cert_request_info; } return result; } // We received the response headers and there is no error. int HttpCache::Transaction::DoSuccessfulSendRequest() { DCHECK(!new_response_); const HttpResponseInfo* new_response = network_trans_->GetResponseInfo(); if (infinite_cache_transaction_.get()) infinite_cache_transaction_->OnResponseReceived(new_response); if (new_response->headers->response_code() == 401 || new_response->headers->response_code() == 407) { auth_response_ = *new_response; return OK; } new_response_ = new_response; if (!ValidatePartialResponse() && !auth_response_.headers) { // Something went wrong with this request and we have to restart it. // If we have an authentication response, we are exposed to weird things // hapenning if the user cancels the authentication before we receive // the new response. UpdateTransactionPattern(PATTERN_NOT_COVERED); response_ = HttpResponseInfo(); network_trans_.reset(); new_response_ = NULL; next_state_ = STATE_SEND_REQUEST; return OK; } if (handling_206_ && mode_ == READ_WRITE && !truncated_ && !is_sparse_) { // We have stored the full entry, but it changed and the server is // sending a range. We have to delete the old entry. UpdateTransactionPattern(PATTERN_NOT_COVERED); DoneWritingToEntry(false); } if (new_response_->headers->response_code() == 416 && (request_->method == "GET" || request_->method == "POST")) { DCHECK_EQ(NONE, mode_); response_ = *new_response_; return OK; } if (mode_ == WRITE && transaction_pattern_ != PATTERN_ENTRY_CANT_CONDITIONALIZE) { UpdateTransactionPattern(PATTERN_ENTRY_NOT_CACHED); } if (mode_ == WRITE && (request_->method == "PUT" || request_->method == "DELETE")) { if (NonErrorResponse(new_response->headers->response_code())) { int ret = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, ret); } cache_->DoneWritingToEntry(entry_, true); entry_ = NULL; mode_ = NONE; } if (mode_ != NONE && request_->method == "POST" && NonErrorResponse(new_response->headers->response_code())) { cache_->DoomMainEntryForUrl(request_->url); } // Are we expecting a response to a conditional query? if (mode_ == READ_WRITE || mode_ == UPDATE) { if (new_response->headers->response_code() == 304 || handling_206_) { UpdateTransactionPattern(PATTERN_ENTRY_VALIDATED); next_state_ = STATE_UPDATE_CACHED_RESPONSE; return OK; } UpdateTransactionPattern(PATTERN_ENTRY_UPDATED); mode_ = WRITE; } next_state_ = STATE_OVERWRITE_CACHED_RESPONSE; return OK; } int HttpCache::Transaction::DoNetworkRead() { ReportNetworkActionStart(); next_state_ = STATE_NETWORK_READ_COMPLETE; return network_trans_->Read(read_buf_, io_buf_len_, io_callback_); } int HttpCache::Transaction::DoNetworkReadComplete(int result) { DCHECK(mode_ & WRITE || mode_ == NONE); ReportNetworkActionFinish(); if (!cache_) return ERR_UNEXPECTED; if (infinite_cache_transaction_.get()) infinite_cache_transaction_->OnDataRead(read_buf_->data(), result); // If there is an error or we aren't saving the data, we are done; just wait // until the destructor runs to see if we can keep the data. if (mode_ == NONE || result < 0) return result; next_state_ = STATE_CACHE_WRITE_DATA; return result; } int HttpCache::Transaction::DoInitEntry() { DCHECK(!new_entry_); if (!cache_) return ERR_UNEXPECTED; if (mode_ == WRITE) { next_state_ = STATE_DOOM_ENTRY; return OK; } next_state_ = STATE_OPEN_ENTRY; return OK; } int HttpCache::Transaction::DoOpenEntry() { DCHECK(!new_entry_); next_state_ = STATE_OPEN_ENTRY_COMPLETE; cache_pending_ = true; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_OPEN_ENTRY); first_cache_access_since_ = TimeTicks::Now(); ReportCacheActionStart(); defer_cache_sensitivity_delay_ = true; return ResetCacheIOStart(cache_->OpenEntry(cache_key_, &new_entry_, this)); } int HttpCache::Transaction::DoOpenEntryComplete(int result) { // It is important that we go to STATE_ADD_TO_ENTRY whenever the result is // OK, otherwise the cache will end up with an active entry without any // transaction attached. ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_OPEN_ENTRY, result); cache_pending_ = false; if (result == OK) { next_state_ = STATE_ADD_TO_ENTRY; return OK; } if (result == ERR_CACHE_RACE) { next_state_ = STATE_INIT_ENTRY; return OK; } if (request_->method == "PUT" || request_->method == "DELETE") { DCHECK(mode_ == READ_WRITE || mode_ == WRITE); mode_ = NONE; next_state_ = STATE_SEND_REQUEST; return OK; } if (mode_ == READ_WRITE) { mode_ = WRITE; next_state_ = STATE_CREATE_ENTRY; return OK; } if (mode_ == UPDATE) { // There is no cache entry to update; proceed without caching. mode_ = NONE; next_state_ = STATE_SEND_REQUEST; return OK; } if (cache_->mode() == PLAYBACK) DVLOG(1) << "Playback Cache Miss: " << request_->url; // The entry does not exist, and we are not permitted to create a new entry, // so we must fail. return ERR_CACHE_MISS; } int HttpCache::Transaction::DoCreateEntry() { DCHECK(!new_entry_); next_state_ = STATE_CREATE_ENTRY_COMPLETE; cache_pending_ = true; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_CREATE_ENTRY); ReportCacheActionStart(); defer_cache_sensitivity_delay_ = true; return ResetCacheIOStart(cache_->CreateEntry(cache_key_, &new_entry_, this)); } int HttpCache::Transaction::DoCreateEntryComplete(int result) { // It is important that we go to STATE_ADD_TO_ENTRY whenever the result is // OK, otherwise the cache will end up with an active entry without any // transaction attached. ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_CREATE_ENTRY, result); cache_pending_ = false; next_state_ = STATE_ADD_TO_ENTRY; if (result == ERR_CACHE_RACE) { next_state_ = STATE_INIT_ENTRY; return OK; } if (result == OK) { UMA_HISTOGRAM_BOOLEAN("HttpCache.OpenToCreateRace", false); } else { UMA_HISTOGRAM_BOOLEAN("HttpCache.OpenToCreateRace", true); // We have a race here: Maybe we failed to open the entry and decided to // create one, but by the time we called create, another transaction already // created the entry. If we want to eliminate this issue, we need an atomic // OpenOrCreate() method exposed by the disk cache. DLOG(WARNING) << "Unable to create cache entry"; mode_ = NONE; if (partial_.get()) partial_->RestoreHeaders(&custom_request_->extra_headers); next_state_ = STATE_SEND_REQUEST; } return OK; } int HttpCache::Transaction::DoDoomEntry() { next_state_ = STATE_DOOM_ENTRY_COMPLETE; cache_pending_ = true; if (first_cache_access_since_.is_null()) first_cache_access_since_ = TimeTicks::Now(); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_DOOM_ENTRY); ReportCacheActionStart(); return ResetCacheIOStart(cache_->DoomEntry(cache_key_, this)); } int HttpCache::Transaction::DoDoomEntryComplete(int result) { ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_DOOM_ENTRY, result); next_state_ = STATE_CREATE_ENTRY; cache_pending_ = false; if (result == ERR_CACHE_RACE) next_state_ = STATE_INIT_ENTRY; return OK; } int HttpCache::Transaction::DoAddToEntry() { DCHECK(new_entry_); cache_pending_ = true; next_state_ = STATE_ADD_TO_ENTRY_COMPLETE; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_ADD_TO_ENTRY); DCHECK(entry_lock_waiting_since_.is_null()); entry_lock_waiting_since_ = TimeTicks::Now(); return cache_->AddTransactionToEntry(new_entry_, this); } int HttpCache::Transaction::DoAddToEntryComplete(int result) { DCHECK(defer_cache_sensitivity_delay_); defer_cache_sensitivity_delay_ = false; net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_ADD_TO_ENTRY, result); const TimeDelta entry_lock_wait = TimeTicks::Now() - entry_lock_waiting_since_; UMA_HISTOGRAM_TIMES("HttpCache.EntryLockWait", entry_lock_wait); static const bool prefetching_fieldtrial = base::FieldTrialList::TrialExists("Prefetch"); if (prefetching_fieldtrial) { UMA_HISTOGRAM_TIMES( base::FieldTrial::MakeName("HttpCache.EntryLockWait", "Prefetch"), entry_lock_wait); } static const bool prerendering_fieldtrial = base::FieldTrialList::TrialExists("Prerender"); if (prerendering_fieldtrial) { UMA_HISTOGRAM_TIMES( base::FieldTrial::MakeName("HttpCache.EntryLockWait", "Prerender"), entry_lock_wait); } entry_lock_waiting_since_ = TimeTicks(); DCHECK(new_entry_); cache_pending_ = false; if (result == OK) entry_ = new_entry_; // If there is a failure, the cache should have taken care of new_entry_. new_entry_ = NULL; next_state_ = STATE_ADD_TO_ENTRY_COMPLETE_AFTER_DELAY; if (deferred_cache_sensitivity_delay_ == base::TimeDelta()) return result; base::TimeDelta delay = deferred_cache_sensitivity_delay_; deferred_cache_sensitivity_delay_ = base::TimeDelta(); ScheduleDelayedLoop(delay, result); return ERR_IO_PENDING; } int HttpCache::Transaction::DoAddToEntryCompleteAfterDelay(int result) { if (result == ERR_CACHE_RACE) { next_state_ = STATE_INIT_ENTRY; return OK; } if (result != OK) { NOTREACHED(); return result; } if (mode_ == WRITE) { if (partial_.get()) partial_->RestoreHeaders(&custom_request_->extra_headers); next_state_ = STATE_SEND_REQUEST; } else { // We have to read the headers from the cached entry. DCHECK(mode_ & READ_META); next_state_ = STATE_CACHE_READ_RESPONSE; } return OK; } // We may end up here multiple times for a given request. int HttpCache::Transaction::DoStartPartialCacheValidation() { if (mode_ == NONE) return OK; next_state_ = STATE_COMPLETE_PARTIAL_CACHE_VALIDATION; return ResetCacheIOStart( partial_->ShouldValidateCache(entry_->disk_entry, io_callback_)); } int HttpCache::Transaction::DoCompletePartialCacheValidation(int result) { if (!result) { // This is the end of the request. if (mode_ & WRITE) { DoneWritingToEntry(true); } else { cache_->DoneReadingFromEntry(entry_, this); entry_ = NULL; } return result; } if (result < 0) return result; partial_->PrepareCacheValidation(entry_->disk_entry, &custom_request_->extra_headers); if (reading_ && partial_->IsCurrentRangeCached()) { next_state_ = STATE_CACHE_READ_DATA; return OK; } return BeginCacheValidation(); } // We received 304 or 206 and we want to update the cached response headers. int HttpCache::Transaction::DoUpdateCachedResponse() { next_state_ = STATE_UPDATE_CACHED_RESPONSE_COMPLETE; int rv = OK; // Update cached response based on headers in new_response. // TODO(wtc): should we update cached certificate (response_.ssl_info), too? response_.headers->Update(*new_response_->headers); response_.response_time = new_response_->response_time; response_.request_time = new_response_->request_time; if (response_.headers->HasHeaderValue("cache-control", "no-store")) { if (!entry_->doomed) { int ret = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, ret); } } else { // If we are already reading, we already updated the headers for this // request; doing it again will change Content-Length. if (!reading_) { target_state_ = STATE_UPDATE_CACHED_RESPONSE_COMPLETE; next_state_ = STATE_CACHE_WRITE_RESPONSE; rv = OK; } } return rv; } int HttpCache::Transaction::DoUpdateCachedResponseComplete(int result) { if (mode_ == UPDATE) { DCHECK(!handling_206_); // We got a "not modified" response and already updated the corresponding // cache entry above. // // By closing the cached entry now, we make sure that the 304 rather than // the cached 200 response, is what will be returned to the user. DoneWritingToEntry(true); } else if (entry_ && !handling_206_) { DCHECK_EQ(READ_WRITE, mode_); if (!partial_.get() || partial_->IsLastRange()) { cache_->ConvertWriterToReader(entry_); mode_ = READ; } // We no longer need the network transaction, so destroy it. final_upload_progress_ = network_trans_->GetUploadProgress(); network_trans_.reset(); } else if (entry_ && handling_206_ && truncated_ && partial_->initial_validation()) { // We just finished the validation of a truncated entry, and the server // is willing to resume the operation. Now we go back and start serving // the first part to the user. network_trans_.reset(); new_response_ = NULL; next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; partial_->SetRangeToStartDownload(); return OK; } next_state_ = STATE_OVERWRITE_CACHED_RESPONSE; return OK; } int HttpCache::Transaction::DoOverwriteCachedResponse() { if (mode_ & READ) { next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } // We change the value of Content-Length for partial content. if (handling_206_ && partial_.get()) partial_->FixContentLength(new_response_->headers); response_ = *new_response_; if (handling_206_ && !CanResume(false)) { // There is no point in storing this resource because it will never be used. DoneWritingToEntry(false); if (partial_.get()) partial_->FixResponseHeaders(response_.headers, true); next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } target_state_ = STATE_TRUNCATE_CACHED_DATA; next_state_ = truncated_ ? STATE_CACHE_WRITE_TRUNCATED_RESPONSE : STATE_CACHE_WRITE_RESPONSE; return OK; } int HttpCache::Transaction::DoTruncateCachedData() { next_state_ = STATE_TRUNCATE_CACHED_DATA_COMPLETE; if (!entry_) return OK; if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_DATA); ReportCacheActionStart(); // Truncate the stream. return ResetCacheIOStart( WriteToEntry(kResponseContentIndex, 0, NULL, 0, io_callback_)); } int HttpCache::Transaction::DoTruncateCachedDataComplete(int result) { if (entry_) { ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_DATA, result); } } next_state_ = STATE_TRUNCATE_CACHED_METADATA; return OK; } int HttpCache::Transaction::DoTruncateCachedMetadata() { next_state_ = STATE_TRUNCATE_CACHED_METADATA_COMPLETE; if (!entry_) return OK; if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); ReportCacheActionStart(); return ResetCacheIOStart( WriteToEntry(kMetadataIndex, 0, NULL, 0, io_callback_)); } int HttpCache::Transaction::DoTruncateCachedMetadataComplete(int result) { if (entry_) { ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_INFO, result); } } // If this response is a redirect, then we can stop writing now. (We don't // need to cache the response body of a redirect.) if (response_.headers->IsRedirect(NULL)) DoneWritingToEntry(true); next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } int HttpCache::Transaction::DoPartialHeadersReceived() { new_response_ = NULL; if (entry_ && !partial_.get() && entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; if (!partial_.get()) return OK; if (reading_) { if (network_trans_.get()) { next_state_ = STATE_NETWORK_READ; } else { next_state_ = STATE_CACHE_READ_DATA; } } else if (mode_ != NONE) { // We are about to return the headers for a byte-range request to the user, // so let's fix them. partial_->FixResponseHeaders(response_.headers, true); } return OK; } int HttpCache::Transaction::DoCacheReadResponse() { DCHECK(entry_); next_state_ = STATE_CACHE_READ_RESPONSE_COMPLETE; io_buf_len_ = entry_->disk_entry->GetDataSize(kResponseInfoIndex); read_buf_ = new IOBuffer(io_buf_len_); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_INFO); ReportCacheActionStart(); return ResetCacheIOStart( entry_->disk_entry->ReadData(kResponseInfoIndex, 0, read_buf_, io_buf_len_, io_callback_)); } int HttpCache::Transaction::DoCacheReadResponseComplete(int result) { ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_INFO, result); if (result != io_buf_len_ || !HttpCache::ParseResponseInfo(read_buf_->data(), io_buf_len_, &response_, &truncated_)) { return OnCacheReadError(result, true); } // Some resources may have slipped in as truncated when they're not. int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); if (response_.headers->GetContentLength() == current_size) truncated_ = false; // We now have access to the cache entry. // // o if we are a reader for the transaction, then we can start reading the // cache entry. // // o if we can read or write, then we should check if the cache entry needs // to be validated and then issue a network request if needed or just read // from the cache if the cache entry is already valid. // // o if we are set to UPDATE, then we are handling an externally // conditionalized request (if-modified-since / if-none-match). We check // if the request headers define a validation request. // switch (mode_) { case READ: UpdateTransactionPattern(PATTERN_ENTRY_USED); result = BeginCacheRead(); break; case READ_WRITE: result = BeginPartialCacheValidation(); break; case UPDATE: result = BeginExternallyConditionalizedRequest(); break; case WRITE: default: NOTREACHED(); result = ERR_FAILED; } return result; } int HttpCache::Transaction::DoCacheWriteResponse() { if (entry_) { if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); ReportCacheActionStart(); } return WriteResponseInfoToEntry(false); } int HttpCache::Transaction::DoCacheWriteTruncatedResponse() { if (entry_) { if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); ReportCacheActionStart(); } return WriteResponseInfoToEntry(true); } int HttpCache::Transaction::DoCacheWriteResponseComplete(int result) { next_state_ = target_state_; target_state_ = STATE_NONE; if (!entry_) return OK; ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_INFO, result); } // Balance the AddRef from WriteResponseInfoToEntry. if (result != io_buf_len_) { DLOG(ERROR) << "failed to write response info to cache"; DoneWritingToEntry(false); } return OK; } int HttpCache::Transaction::DoCacheReadMetadata() { DCHECK(entry_); DCHECK(!response_.metadata); next_state_ = STATE_CACHE_READ_METADATA_COMPLETE; response_.metadata = new IOBufferWithSize(entry_->disk_entry->GetDataSize(kMetadataIndex)); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_INFO); ReportCacheActionStart(); return ResetCacheIOStart( entry_->disk_entry->ReadData(kMetadataIndex, 0, response_.metadata, response_.metadata->size(), io_callback_)); } int HttpCache::Transaction::DoCacheReadMetadataComplete(int result) { ReportCacheActionFinish(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_INFO, result); if (result != response_.metadata->size()) return OnCacheReadError(result, false); return OK; } int HttpCache::Transaction::DoCacheQueryData() { next_state_ = STATE_CACHE_QUERY_DATA_COMPLETE; // Balanced in DoCacheQueryDataComplete. return ResetCacheIOStart( entry_->disk_entry->ReadyForSparseIO(io_callback_)); } int HttpCache::Transaction::DoCacheQueryDataComplete(int result) { DCHECK_EQ(OK, result); if (!cache_) return ERR_UNEXPECTED; return ValidateEntryHeadersAndContinue(); } int HttpCache::Transaction::DoCacheReadData() { DCHECK(entry_); next_state_ = STATE_CACHE_READ_DATA_COMPLETE; if (infinite_cache_transaction_.get()) infinite_cache_transaction_->OnServedFromCache(&response_); if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_DATA); ReportCacheActionStart(); if (partial_.get()) { return ResetCacheIOStart( partial_->CacheRead(entry_->disk_entry, read_buf_, io_buf_len_, io_callback_)); } return ResetCacheIOStart( entry_->disk_entry->ReadData(kResponseContentIndex, read_offset_, read_buf_, io_buf_len_, io_callback_)); } int HttpCache::Transaction::DoCacheReadDataComplete(int result) { ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_DATA, result); } if (!cache_) return ERR_UNEXPECTED; if (partial_.get()) { // Partial requests are confusing to report in histograms because they may // have multiple underlying requests. UpdateTransactionPattern(PATTERN_NOT_COVERED); return DoPartialCacheReadCompleted(result); } if (result > 0) { read_offset_ += result; } else if (result == 0) { // End of file. RecordHistograms(); cache_->DoneReadingFromEntry(entry_, this); entry_ = NULL; } else { return OnCacheReadError(result, false); } return result; } int HttpCache::Transaction::DoCacheWriteData(int num_bytes) { next_state_ = STATE_CACHE_WRITE_DATA_COMPLETE; write_len_ = num_bytes; if (entry_) { if (net_log_.IsLoggingAllEvents()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_DATA); ReportCacheActionStart(); } return ResetCacheIOStart( AppendResponseDataToEntry(read_buf_, num_bytes, io_callback_)); } int HttpCache::Transaction::DoCacheWriteDataComplete(int result) { if (entry_) { ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_DATA, result); } } // Balance the AddRef from DoCacheWriteData. if (!cache_) return ERR_UNEXPECTED; if (result != write_len_) { DLOG(ERROR) << "failed to write response data to cache"; DoneWritingToEntry(false); // We want to ignore errors writing to disk and just keep reading from // the network. result = write_len_; } else if (!done_reading_ && entry_) { int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); int64 body_size = response_.headers->GetContentLength(); if (body_size >= 0 && body_size <= current_size) done_reading_ = true; } if (partial_.get()) { // This may be the last request. if (!(result == 0 && !truncated_ && (partial_->IsLastRange() || mode_ == WRITE))) return DoPartialNetworkReadCompleted(result); } if (result == 0) { // End of file. This may be the result of a connection problem so see if we // have to keep the entry around to be flagged as truncated later on. if (done_reading_ || !entry_ || partial_.get() || response_.headers->GetContentLength() <= 0) DoneWritingToEntry(true); } return result; } //----------------------------------------------------------------------------- void HttpCache::Transaction::SetRequest(const BoundNetLog& net_log, const HttpRequestInfo* request) { net_log_ = net_log; request_ = request; effective_load_flags_ = request_->load_flags; switch (cache_->mode()) { case NORMAL: break; case RECORD: // When in record mode, we want to NEVER load from the cache. // The reason for this is beacuse we save the Set-Cookie headers // (intentionally). If we read from the cache, we replay them // prematurely. effective_load_flags_ |= LOAD_BYPASS_CACHE; break; case PLAYBACK: // When in playback mode, we want to load exclusively from the cache. effective_load_flags_ |= LOAD_ONLY_FROM_CACHE; break; case DISABLE: effective_load_flags_ |= LOAD_DISABLE_CACHE; break; } // Some headers imply load flags. The order here is significant. // // LOAD_DISABLE_CACHE : no cache read or write // LOAD_BYPASS_CACHE : no cache read // LOAD_VALIDATE_CACHE : no cache read unless validation // // The former modes trump latter modes, so if we find a matching header we // can stop iterating kSpecialHeaders. // static const struct { const HeaderNameAndValue* search; int load_flag; } kSpecialHeaders[] = { { kPassThroughHeaders, LOAD_DISABLE_CACHE }, { kForceFetchHeaders, LOAD_BYPASS_CACHE }, { kForceValidateHeaders, LOAD_VALIDATE_CACHE }, }; bool range_found = false; bool external_validation_error = false; if (request_->extra_headers.HasHeader(HttpRequestHeaders::kRange)) range_found = true; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kSpecialHeaders); ++i) { if (HeaderMatches(request_->extra_headers, kSpecialHeaders[i].search)) { effective_load_flags_ |= kSpecialHeaders[i].load_flag; break; } } // Check for conditionalization headers which may correspond with a // cache validation request. for (size_t i = 0; i < arraysize(kValidationHeaders); ++i) { const ValidationHeaderInfo& info = kValidationHeaders[i]; std::string validation_value; if (request_->extra_headers.GetHeader( info.request_header_name, &validation_value)) { if (!external_validation_.values[i].empty() || validation_value.empty()) { external_validation_error = true; } external_validation_.values[i] = validation_value; external_validation_.initialized = true; break; } } // We don't support ranges and validation headers. if (range_found && external_validation_.initialized) { LOG(WARNING) << "Byte ranges AND validation headers found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; } // If there is more than one validation header, we can't treat this request as // a cache validation, since we don't know for sure which header the server // will give us a response for (and they could be contradictory). if (external_validation_error) { LOG(WARNING) << "Multiple or malformed validation headers found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; } if (range_found && !(effective_load_flags_ & LOAD_DISABLE_CACHE)) { UpdateTransactionPattern(PATTERN_NOT_COVERED); partial_.reset(new PartialData); if (request_->method == "GET" && partial_->Init(request_->extra_headers)) { // We will be modifying the actual range requested to the server, so // let's remove the header here. custom_request_.reset(new HttpRequestInfo(*request_)); custom_request_->extra_headers.RemoveHeader(HttpRequestHeaders::kRange); request_ = custom_request_.get(); partial_->SetHeaders(custom_request_->extra_headers); } else { // The range is invalid or we cannot handle it properly. VLOG(1) << "Invalid byte range found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; partial_.reset(NULL); } } } bool HttpCache::Transaction::ShouldPassThrough() { // We may have a null disk_cache if there is an error we cannot recover from, // like not enough disk space, or sharing violations. if (!cache_->disk_cache_.get()) return true; // When using the record/playback modes, we always use the cache // and we never pass through. if (cache_->mode() == RECORD || cache_->mode() == PLAYBACK) return false; if (effective_load_flags_ & LOAD_DISABLE_CACHE) return true; if (request_->method == "GET") return false; if (request_->method == "POST" && request_->upload_data_stream && request_->upload_data_stream->identifier()) { return false; } if (request_->method == "PUT" && request_->upload_data_stream) return false; if (request_->method == "DELETE") return false; // TODO(darin): add support for caching HEAD responses return true; } int HttpCache::Transaction::BeginCacheRead() { // We don't support any combination of LOAD_ONLY_FROM_CACHE and byte ranges. if (response_.headers->response_code() == 206 || partial_.get()) { NOTREACHED(); return ERR_CACHE_MISS; } // We don't have the whole resource. if (truncated_) return ERR_CACHE_MISS; if (entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; return OK; } int HttpCache::Transaction::BeginCacheValidation() { DCHECK(mode_ == READ_WRITE); bool skip_validation = !RequiresValidation(); if (truncated_) { // Truncated entries can cause partial gets, so we shouldn't record this // load in histograms. UpdateTransactionPattern(PATTERN_NOT_COVERED); skip_validation = !partial_->initial_validation(); } if (partial_.get() && (is_sparse_ || truncated_) && (!partial_->IsCurrentRangeCached() || invalid_range_)) { // Force revalidation for sparse or truncated entries. Note that we don't // want to ignore the regular validation logic just because a byte range was // part of the request. skip_validation = false; } if (skip_validation) { UpdateTransactionPattern(PATTERN_ENTRY_USED); if (partial_.get()) { if (truncated_ || is_sparse_ || !invalid_range_) { // We are going to return the saved response headers to the caller, so // we may need to adjust them first. next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } else { partial_.reset(); } } cache_->ConvertWriterToReader(entry_); mode_ = READ; if (entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; } else { // Make the network request conditional, to see if we may reuse our cached // response. If we cannot do so, then we just resort to a normal fetch. // Our mode remains READ_WRITE for a conditional request. We'll switch to // either READ or WRITE mode once we hear back from the server. if (!ConditionalizeRequest()) { UpdateTransactionPattern(PATTERN_ENTRY_CANT_CONDITIONALIZE); if (partial_.get()) return DoRestartPartialRequest(); DCHECK_NE(206, response_.headers->response_code()); mode_ = WRITE; } next_state_ = STATE_SEND_REQUEST; } return OK; } int HttpCache::Transaction::BeginPartialCacheValidation() { DCHECK(mode_ == READ_WRITE); if (response_.headers->response_code() != 206 && !partial_.get() && !truncated_) { return BeginCacheValidation(); } // Partial requests should not be recorded in histograms. UpdateTransactionPattern(PATTERN_NOT_COVERED); if (range_requested_) { next_state_ = STATE_CACHE_QUERY_DATA; return OK; } // The request is not for a range, but we have stored just ranges. partial_.reset(new PartialData()); partial_->SetHeaders(request_->extra_headers); if (!custom_request_.get()) { custom_request_.reset(new HttpRequestInfo(*request_)); request_ = custom_request_.get(); } return ValidateEntryHeadersAndContinue(); } // This should only be called once per request. int HttpCache::Transaction::ValidateEntryHeadersAndContinue() { DCHECK(mode_ == READ_WRITE); if (!partial_->UpdateFromStoredHeaders(response_.headers, entry_->disk_entry, truncated_)) { return DoRestartPartialRequest(); } if (response_.headers->response_code() == 206) is_sparse_ = true; if (!partial_->IsRequestedRangeOK()) { // The stored data is fine, but the request may be invalid. invalid_range_ = true; } next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; return OK; } int HttpCache::Transaction::BeginExternallyConditionalizedRequest() { DCHECK_EQ(UPDATE, mode_); DCHECK(external_validation_.initialized); for (size_t i = 0; i < arraysize(kValidationHeaders); i++) { if (external_validation_.values[i].empty()) continue; // Retrieve either the cached response's "etag" or "last-modified" header. std::string validator; response_.headers->EnumerateHeader( NULL, kValidationHeaders[i].related_response_header_name, &validator); if (response_.headers->response_code() != 200 || truncated_ || validator.empty() || validator != external_validation_.values[i]) { // The externally conditionalized request is not a validation request // for our existing cache entry. Proceed with caching disabled. UpdateTransactionPattern(PATTERN_NOT_COVERED); DoneWritingToEntry(true); } } next_state_ = STATE_SEND_REQUEST; return OK; } int HttpCache::Transaction::RestartNetworkRequest() { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); ReportNetworkActionStart(); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartIgnoringLastError(io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } int HttpCache::Transaction::RestartNetworkRequestWithCertificate( X509Certificate* client_cert) { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); ReportNetworkActionStart(); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartWithCertificate(client_cert, io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } int HttpCache::Transaction::RestartNetworkRequestWithAuth( const AuthCredentials& credentials) { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); ReportNetworkActionStart(); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartWithAuth(credentials, io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } bool HttpCache::Transaction::RequiresValidation() { // TODO(darin): need to do more work here: // - make sure we have a matching request method // - watch out for cached responses that depend on authentication // In playback mode, nothing requires validation. if (cache_->mode() == net::HttpCache::PLAYBACK) return false; if (response_.vary_data.is_valid() && !response_.vary_data.MatchesRequest(*request_, *response_.headers)) { vary_mismatch_ = true; return true; } if (effective_load_flags_ & LOAD_PREFERRING_CACHE) return false; if (effective_load_flags_ & LOAD_VALIDATE_CACHE) return true; if (request_->method == "PUT" || request_->method == "DELETE") return true; if (response_.headers->RequiresValidation( response_.request_time, response_.response_time, Time::Now())) { return true; } return false; } bool HttpCache::Transaction::ConditionalizeRequest() { DCHECK(response_.headers); if (request_->method == "PUT" || request_->method == "DELETE") return false; // This only makes sense for cached 200 or 206 responses. if (response_.headers->response_code() != 200 && response_.headers->response_code() != 206) { return false; } // We should have handled this case before. DCHECK(response_.headers->response_code() != 206 || response_.headers->HasStrongValidators()); // Just use the first available ETag and/or Last-Modified header value. // TODO(darin): Or should we use the last? std::string etag_value; if (response_.headers->GetHttpVersion() >= HttpVersion(1, 1)) response_.headers->EnumerateHeader(NULL, "etag", &etag_value); std::string last_modified_value; if (!vary_mismatch_) { response_.headers->EnumerateHeader(NULL, "last-modified", &last_modified_value); } if (etag_value.empty() && last_modified_value.empty()) return false; if (!partial_.get()) { // Need to customize the request, so this forces us to allocate :( custom_request_.reset(new HttpRequestInfo(*request_)); request_ = custom_request_.get(); } DCHECK(custom_request_.get()); bool use_if_range = partial_.get() && !partial_->IsCurrentRangeCached() && !invalid_range_; if (!etag_value.empty()) { if (use_if_range) { // We don't want to switch to WRITE mode if we don't have this block of a // byte-range request because we may have other parts cached. custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfRange, etag_value); } else { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfNoneMatch, etag_value); } // For byte-range requests, make sure that we use only one way to validate // the request. if (partial_.get() && !partial_->IsCurrentRangeCached()) return true; } if (!last_modified_value.empty()) { if (use_if_range) { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfRange, last_modified_value); } else { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfModifiedSince, last_modified_value); } } return true; } // We just received some headers from the server. We may have asked for a range, // in which case partial_ has an object. This could be the first network request // we make to fulfill the original request, or we may be already reading (from // the net and / or the cache). If we are not expecting a certain response, we // just bypass the cache for this request (but again, maybe we are reading), and // delete partial_ (so we are not able to "fix" the headers that we return to // the user). This results in either a weird response for the caller (we don't // expect it after all), or maybe a range that was not exactly what it was asked // for. // // If the server is simply telling us that the resource has changed, we delete // the cached entry and restart the request as the caller intended (by returning // false from this method). However, we may not be able to do that at any point, // for instance if we already returned the headers to the user. // // WARNING: Whenever this code returns false, it has to make sure that the next // time it is called it will return true so that we don't keep retrying the // request. bool HttpCache::Transaction::ValidatePartialResponse() { const HttpResponseHeaders* headers = new_response_->headers; int response_code = headers->response_code(); bool partial_response = (response_code == 206); handling_206_ = false; if (!entry_ || request_->method != "GET") return true; if (invalid_range_) { // We gave up trying to match this request with the stored data. If the // server is ok with the request, delete the entry, otherwise just ignore // this request DCHECK(!reading_); if (partial_response || response_code == 200) { DoomPartialEntry(true); mode_ = NONE; } else { if (response_code == 304) FailRangeRequest(); IgnoreRangeRequest(); } return true; } if (!partial_.get()) { // We are not expecting 206 but we may have one. if (partial_response) IgnoreRangeRequest(); return true; } // TODO(rvargas): Do we need to consider other results here?. bool failure = response_code == 200 || response_code == 416; if (partial_->IsCurrentRangeCached()) { // We asked for "If-None-Match: " so a 206 means a new object. if (partial_response) failure = true; if (response_code == 304 && partial_->ResponseHeadersOK(headers)) return true; } else { // We asked for "If-Range: " so a 206 means just another range. if (partial_response && partial_->ResponseHeadersOK(headers)) { handling_206_ = true; return true; } if (!reading_ && !is_sparse_ && !partial_response) { // See if we can ignore the fact that we issued a byte range request. // If the server sends 200, just store it. If it sends an error, redirect // or something else, we may store the response as long as we didn't have // anything already stored. if (response_code == 200 || (!truncated_ && response_code != 304 && response_code != 416)) { // The server is sending something else, and we can save it. DCHECK((truncated_ && !partial_->IsLastRange()) || range_requested_); partial_.reset(); truncated_ = false; return true; } } // 304 is not expected here, but we'll spare the entry (unless it was // truncated). if (truncated_) failure = true; } if (failure) { // We cannot truncate this entry, it has to be deleted. UpdateTransactionPattern(PATTERN_NOT_COVERED); DoomPartialEntry(false); mode_ = NONE; if (!reading_ && !partial_->IsLastRange()) { // We'll attempt to issue another network request, this time without us // messing up the headers. partial_->RestoreHeaders(&custom_request_->extra_headers); partial_.reset(); truncated_ = false; return false; } LOG(WARNING) << "Failed to revalidate partial entry"; partial_.reset(); return true; } IgnoreRangeRequest(); return true; } void HttpCache::Transaction::IgnoreRangeRequest() { // We have a problem. We may or may not be reading already (in which case we // returned the headers), but we'll just pretend that this request is not // using the cache and see what happens. Most likely this is the first // response from the server (it's not changing its mind midway, right?). UpdateTransactionPattern(PATTERN_NOT_COVERED); if (mode_ & WRITE) DoneWritingToEntry(mode_ != WRITE); else if (mode_ & READ && entry_) cache_->DoneReadingFromEntry(entry_, this); partial_.reset(NULL); entry_ = NULL; mode_ = NONE; } void HttpCache::Transaction::FailRangeRequest() { response_ = *new_response_; partial_->FixResponseHeaders(response_.headers, false); } int HttpCache::Transaction::ReadFromNetwork(IOBuffer* data, int data_len) { read_buf_ = data; io_buf_len_ = data_len; next_state_ = STATE_NETWORK_READ; return DoLoop(OK); } int HttpCache::Transaction::ReadFromEntry(IOBuffer* data, int data_len) { read_buf_ = data; io_buf_len_ = data_len; next_state_ = STATE_CACHE_READ_DATA; return DoLoop(OK); } int HttpCache::Transaction::WriteToEntry(int index, int offset, IOBuffer* data, int data_len, const CompletionCallback& callback) { if (!entry_) return data_len; int rv = 0; if (!partial_.get() || !data_len) { rv = entry_->disk_entry->WriteData(index, offset, data, data_len, callback, true); } else { rv = partial_->CacheWrite(entry_->disk_entry, data, data_len, callback); } return rv; } int HttpCache::Transaction::WriteResponseInfoToEntry(bool truncated) { next_state_ = STATE_CACHE_WRITE_RESPONSE_COMPLETE; if (!entry_) return OK; // Do not cache no-store content (unless we are record mode). Do not cache // content with cert errors either. This is to prevent not reporting net // errors when loading a resource from the cache. When we load a page over // HTTPS with a cert error we show an SSL blocking page. If the user clicks // proceed we reload the resource ignoring the errors. The loaded resource // is then cached. If that resource is subsequently loaded from the cache, // no net error is reported (even though the cert status contains the actual // errors) and no SSL blocking page is shown. An alternative would be to // reverse-map the cert status to a net error and replay the net error. if ((cache_->mode() != RECORD && response_.headers->HasHeaderValue("cache-control", "no-store")) || net::IsCertStatusError(response_.ssl_info.cert_status)) { DoneWritingToEntry(false); ReportCacheActionFinish(); if (net_log_.IsLoggingAllEvents()) net_log_.EndEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); return OK; } // When writing headers, we normally only write the non-transient // headers; when in record mode, record everything. bool skip_transient_headers = (cache_->mode() != RECORD); if (truncated) DCHECK_EQ(200, response_.headers->response_code()); scoped_refptr data(new PickledIOBuffer()); response_.Persist(data->pickle(), skip_transient_headers, truncated); data->Done(); io_buf_len_ = data->pickle()->size(); return ResetCacheIOStart( entry_->disk_entry->WriteData(kResponseInfoIndex, 0, data, io_buf_len_, io_callback_, true)); } int HttpCache::Transaction::AppendResponseDataToEntry( IOBuffer* data, int data_len, const CompletionCallback& callback) { if (!entry_ || !data_len) return data_len; int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); return WriteToEntry(kResponseContentIndex, current_size, data, data_len, callback); } void HttpCache::Transaction::DoneWritingToEntry(bool success) { if (!entry_) return; RecordHistograms(); cache_->DoneWritingToEntry(entry_, success); entry_ = NULL; mode_ = NONE; // switch to 'pass through' mode } int HttpCache::Transaction::OnCacheReadError(int result, bool restart) { DLOG(ERROR) << "ReadData failed: " << result; // Avoid using this entry in the future. if (cache_) cache_->DoomActiveEntry(cache_key_); if (restart) { DCHECK(!reading_); DCHECK(!network_trans_.get()); cache_->DoneWithEntry(entry_, this, false); entry_ = NULL; is_sparse_ = false; partial_.reset(); next_state_ = STATE_GET_BACKEND; return OK; } return ERR_CACHE_READ_FAILURE; } void HttpCache::Transaction::DoomPartialEntry(bool delete_object) { DVLOG(2) << "DoomPartialEntry"; int rv = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, rv); cache_->DoneWithEntry(entry_, this, false); entry_ = NULL; is_sparse_ = false; if (delete_object) partial_.reset(NULL); } int HttpCache::Transaction::DoPartialNetworkReadCompleted(int result) { partial_->OnNetworkReadCompleted(result); if (result == 0) { // We need to move on to the next range. network_trans_.reset(); next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; } return result; } int HttpCache::Transaction::DoPartialCacheReadCompleted(int result) { partial_->OnCacheReadCompleted(result); if (result == 0 && mode_ == READ_WRITE) { // We need to move on to the next range. next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; } else if (result < 0) { return OnCacheReadError(result, false); } return result; } int HttpCache::Transaction::DoRestartPartialRequest() { // The stored data cannot be used. Get rid of it and restart this request. // We need to also reset the |truncated_| flag as a new entry is created. DoomPartialEntry(!range_requested_); mode_ = WRITE; truncated_ = false; next_state_ = STATE_INIT_ENTRY; return OK; } // Histogram data from the end of 2010 show the following distribution of // response headers: // // Content-Length............... 87% // Date......................... 98% // Last-Modified................ 49% // Etag......................... 19% // Accept-Ranges: bytes......... 25% // Accept-Ranges: none.......... 0.4% // Strong Validator............. 50% // Strong Validator + ranges.... 24% // Strong Validator + CL........ 49% // bool HttpCache::Transaction::CanResume(bool has_data) { // Double check that there is something worth keeping. if (has_data && !entry_->disk_entry->GetDataSize(kResponseContentIndex)) return false; if (request_->method != "GET") return false; if (response_.headers->GetContentLength() <= 0 || response_.headers->HasHeaderValue("Accept-Ranges", "none") || !response_.headers->HasStrongValidators()) { return false; } return true; } void HttpCache::Transaction::OnIOComplete(int result) { if (!cache_io_start_.is_null()) { base::TimeDelta cache_time = base::TimeTicks::Now() - cache_io_start_; cache_io_start_ = base::TimeTicks(); if (sensitivity_analysis_percent_increase_ > 0) { cache_time *= sensitivity_analysis_percent_increase_; cache_time /= 100; if (!defer_cache_sensitivity_delay_) { ScheduleDelayedLoop(cache_time, result); return; } else { deferred_cache_sensitivity_delay_ += cache_time; } } } DCHECK(cache_io_start_.is_null()); DoLoop(result); } void HttpCache::Transaction::ScheduleDelayedLoop(base::TimeDelta delay, int result) { MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&HttpCache::Transaction::RunDelayedLoop, weak_factory_.GetWeakPtr(), base::TimeTicks::Now(), delay, result), delay); } void HttpCache::Transaction::RunDelayedLoop(base::TimeTicks delay_start_time, base::TimeDelta intended_delay, int result) { base::TimeDelta actual_delay = base::TimeTicks::Now() - delay_start_time; int64 ratio; int64 inverse_ratio; if (intended_delay.InMicroseconds() > 0) { ratio = 100 * actual_delay.InMicroseconds() / intended_delay.InMicroseconds(); } else { ratio = 0; } if (actual_delay.InMicroseconds() > 0) { inverse_ratio = 100 * intended_delay.InMicroseconds() / actual_delay.InMicroseconds(); } else { inverse_ratio = 0; } bool ratio_sample = base::RandInt(0, 99) < ratio; bool inverse_ratio_sample = base::RandInt(0, 99) < inverse_ratio; int intended_delay_ms = intended_delay.InMilliseconds(); UMA_HISTOGRAM_COUNTS_10000( "HttpCache.CacheSensitivityAnalysis_IntendedDelayMs", intended_delay_ms); if (ratio_sample) { UMA_HISTOGRAM_COUNTS_10000( "HttpCache.CacheSensitivityAnalysis_RatioByIntendedDelayMs", intended_delay_ms); } if (inverse_ratio_sample) { UMA_HISTOGRAM_COUNTS_10000( "HttpCache.CacheSensitivityAnalysis_InverseRatioByIntendedDelayMs", intended_delay_ms); } DCHECK(cache_io_start_.is_null()); DCHECK(deferred_cache_sensitivity_delay_ == base::TimeDelta()); DoLoop(result); } void HttpCache::Transaction::ReportCacheActionStart() { if (transaction_delegate_) transaction_delegate_->OnCacheActionStart(); } void HttpCache::Transaction::ReportCacheActionFinish() { if (transaction_delegate_) transaction_delegate_->OnCacheActionFinish(); } void HttpCache::Transaction::ReportNetworkActionStart() { if (transaction_delegate_) transaction_delegate_->OnNetworkActionStart(); } void HttpCache::Transaction::ReportNetworkActionFinish() { if (transaction_delegate_) transaction_delegate_->OnNetworkActionFinish(); } void HttpCache::Transaction::UpdateTransactionPattern( TransactionPattern new_transaction_pattern) { if (transaction_pattern_ == PATTERN_NOT_COVERED) return; DCHECK(transaction_pattern_ == PATTERN_UNDEFINED || new_transaction_pattern == PATTERN_NOT_COVERED); transaction_pattern_ = new_transaction_pattern; } void HttpCache::Transaction::RecordHistograms() { DCHECK_NE(PATTERN_UNDEFINED, transaction_pattern_); if (!cache_ || !cache_->GetCurrentBackend() || cache_->GetCurrentBackend()->GetCacheType() != DISK_CACHE || cache_->mode() != NORMAL || request_->method != "GET") { return; } UMA_HISTOGRAM_ENUMERATION( "HttpCache.Pattern", transaction_pattern_, PATTERN_MAX); if (transaction_pattern_ == PATTERN_NOT_COVERED) return; DCHECK(!range_requested_); DCHECK(!first_cache_access_since_.is_null()); TimeDelta total_time = base::TimeTicks::Now() - first_cache_access_since_; UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone", total_time); bool did_send_request = !send_request_since_.is_null(); DCHECK( (did_send_request && (transaction_pattern_ == PATTERN_ENTRY_NOT_CACHED || transaction_pattern_ == PATTERN_ENTRY_VALIDATED || transaction_pattern_ == PATTERN_ENTRY_UPDATED || transaction_pattern_ == PATTERN_ENTRY_CANT_CONDITIONALIZE)) || (!did_send_request && transaction_pattern_ == PATTERN_ENTRY_USED)); if (!did_send_request) { DCHECK(transaction_pattern_ == PATTERN_ENTRY_USED); UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone.Used", total_time); return; } TimeDelta before_send_time = send_request_since_ - first_cache_access_since_; int before_send_percent = total_time.ToInternalValue() == 0 ? 0 : before_send_time * 100 / total_time; DCHECK_LE(0, before_send_percent); DCHECK_GE(100, before_send_percent); UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone.SentRequest", total_time); UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend", before_send_percent); // TODO(gavinp): Remove or minimize these histograms, particularly the ones // below this comment after we have received initial data. switch (transaction_pattern_) { case PATTERN_ENTRY_CANT_CONDITIONALIZE: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.CantConditionalize", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.CantConditionalize", before_send_percent); break; } case PATTERN_ENTRY_NOT_CACHED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.NotCached", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.NotCached", before_send_percent); break; } case PATTERN_ENTRY_VALIDATED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.Validated", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.Validated", before_send_percent); break; } case PATTERN_ENTRY_UPDATED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.Updated", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.Updated", before_send_percent); break; } default: NOTREACHED(); } } int HttpCache::Transaction::ResetCacheIOStart(int return_value) { DCHECK(cache_io_start_.is_null()); if (return_value == ERR_IO_PENDING) cache_io_start_ = base::TimeTicks::Now(); return return_value; } } // namespace net