// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_cache_transaction.h" #include "build/build_config.h" // For OS_POSIX #if defined(OS_POSIX) #include #endif #include #include #include "base/bind.h" #include "base/callback_helpers.h" #include "base/compiler_specific.h" #include "base/format_macros.h" #include "base/location.h" #include "base/macros.h" #include "base/metrics/histogram_macros.h" #include "base/metrics/sparse_histogram.h" #include "base/single_thread_task_runner.h" #include "base/strings/string_number_conversions.h" // For HexEncode. #include "base/strings/string_piece.h" #include "base/strings/string_util.h" // For LowerCaseEqualsASCII. #include "base/strings/stringprintf.h" #include "base/thread_task_runner_handle.h" #include "base/time/clock.h" #include "base/values.h" #include "net/base/auth.h" #include "net/base/load_flags.h" #include "net/base/load_timing_info.h" #include "net/base/upload_data_stream.h" #include "net/cert/cert_status_flags.h" #include "net/cert/x509_certificate.h" #include "net/disk_cache/disk_cache.h" #include "net/http/disk_based_cert_cache.h" #include "net/http/http_network_session.h" #include "net/http/http_request_info.h" #include "net/http/http_util.h" #include "net/ssl/ssl_cert_request_info.h" #include "net/ssl/ssl_config_service.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace net { namespace { // TODO(ricea): Move this to HttpResponseHeaders once it is standardised. static const char kFreshnessHeader[] = "Resource-Freshness"; // Stores data relevant to the statistics of writing and reading entire // certificate chains using DiskBasedCertCache. |num_pending_ops| is the number // of certificates in the chain that have pending operations in the // DiskBasedCertCache. |start_time| is the time that the read and write // commands began being issued to the DiskBasedCertCache. // TODO(brandonsalmon): Remove this when it is no longer necessary to // collect data. class SharedChainData : public base::RefCounted { public: SharedChainData(int num_ops, TimeTicks start) : num_pending_ops(num_ops), start_time(start) {} int num_pending_ops; TimeTicks start_time; private: friend class base::RefCounted; ~SharedChainData() {} DISALLOW_COPY_AND_ASSIGN(SharedChainData); }; // Used to obtain a cache entry key for an OSCertHandle. // TODO(brandonsalmon): Remove this when cache keys are stored // and no longer have to be recomputed to retrieve the OSCertHandle // from the disk. std::string GetCacheKeyForCert(X509Certificate::OSCertHandle cert_handle) { SHA1HashValue fingerprint = X509Certificate::CalculateFingerprint(cert_handle); return "cert:" + base::HexEncode(fingerprint.data, arraysize(fingerprint.data)); } // |dist_from_root| indicates the position of the read certificate in the // certificate chain, 0 indicating it is the root. |is_leaf| indicates // whether or not the read certificate was the leaf of the chain. // |shared_chain_data| contains data shared by each certificate in // the chain. void OnCertReadIOComplete( int dist_from_root, bool is_leaf, const scoped_refptr& shared_chain_data, X509Certificate::OSCertHandle cert_handle) { // If |num_pending_ops| is one, this was the last pending read operation // for this chain of certificates. The total time used to read the chain // can be calculated by subtracting the starting time from Now(). shared_chain_data->num_pending_ops--; if (!shared_chain_data->num_pending_ops) { const TimeDelta read_chain_wait = TimeTicks::Now() - shared_chain_data->start_time; UMA_HISTOGRAM_CUSTOM_TIMES("DiskBasedCertCache.ChainReadTime", read_chain_wait, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 50); } bool success = (cert_handle != NULL); if (is_leaf) UMA_HISTOGRAM_BOOLEAN("DiskBasedCertCache.CertIoReadSuccessLeaf", success); if (success) UMA_HISTOGRAM_CUSTOM_COUNTS( "DiskBasedCertCache.CertIoReadSuccess", dist_from_root, 0, 10, 7); else UMA_HISTOGRAM_CUSTOM_COUNTS( "DiskBasedCertCache.CertIoReadFailure", dist_from_root, 0, 10, 7); } // |dist_from_root| indicates the position of the written certificate in the // certificate chain, 0 indicating it is the root. |is_leaf| indicates // whether or not the written certificate was the leaf of the chain. // |shared_chain_data| contains data shared by each certificate in // the chain. void OnCertWriteIOComplete( int dist_from_root, bool is_leaf, const scoped_refptr& shared_chain_data, const std::string& key) { // If |num_pending_ops| is one, this was the last pending write operation // for this chain of certificates. The total time used to write the chain // can be calculated by subtracting the starting time from Now(). shared_chain_data->num_pending_ops--; if (!shared_chain_data->num_pending_ops) { const TimeDelta write_chain_wait = TimeTicks::Now() - shared_chain_data->start_time; UMA_HISTOGRAM_CUSTOM_TIMES("DiskBasedCertCache.ChainWriteTime", write_chain_wait, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 50); } bool success = !key.empty(); if (is_leaf) UMA_HISTOGRAM_BOOLEAN("DiskBasedCertCache.CertIoWriteSuccessLeaf", success); if (success) UMA_HISTOGRAM_CUSTOM_COUNTS( "DiskBasedCertCache.CertIoWriteSuccess", dist_from_root, 0, 10, 7); else UMA_HISTOGRAM_CUSTOM_COUNTS( "DiskBasedCertCache.CertIoWriteFailure", dist_from_root, 0, 10, 7); } // From http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-21#section-6 // a "non-error response" is one with a 2xx (Successful) or 3xx // (Redirection) status code. bool NonErrorResponse(int status_code) { int status_code_range = status_code / 100; return status_code_range == 2 || status_code_range == 3; } void RecordNoStoreHeaderHistogram(int load_flags, const HttpResponseInfo* response) { if (load_flags & LOAD_MAIN_FRAME) { UMA_HISTOGRAM_BOOLEAN( "Net.MainFrameNoStore", response->headers->HasHeaderValue("cache-control", "no-store")); } } enum ExternallyConditionalizedType { EXTERNALLY_CONDITIONALIZED_CACHE_REQUIRES_VALIDATION, EXTERNALLY_CONDITIONALIZED_CACHE_USABLE, EXTERNALLY_CONDITIONALIZED_MISMATCHED_VALIDATORS, EXTERNALLY_CONDITIONALIZED_MAX }; } // namespace struct HeaderNameAndValue { const char* name; const char* value; }; // If the request includes one of these request headers, then avoid caching // to avoid getting confused. static const HeaderNameAndValue kPassThroughHeaders[] = { { "if-unmodified-since", NULL }, // causes unexpected 412s { "if-match", NULL }, // causes unexpected 412s { "if-range", NULL }, { NULL, NULL } }; struct ValidationHeaderInfo { const char* request_header_name; const char* related_response_header_name; }; static const ValidationHeaderInfo kValidationHeaders[] = { { "if-modified-since", "last-modified" }, { "if-none-match", "etag" }, }; // If the request includes one of these request headers, then avoid reusing // our cached copy if any. static const HeaderNameAndValue kForceFetchHeaders[] = { { "cache-control", "no-cache" }, { "pragma", "no-cache" }, { NULL, NULL } }; // If the request includes one of these request headers, then force our // cached copy (if any) to be revalidated before reusing it. static const HeaderNameAndValue kForceValidateHeaders[] = { { "cache-control", "max-age=0" }, { NULL, NULL } }; static bool HeaderMatches(const HttpRequestHeaders& headers, const HeaderNameAndValue* search) { for (; search->name; ++search) { std::string header_value; if (!headers.GetHeader(search->name, &header_value)) continue; if (!search->value) return true; HttpUtil::ValuesIterator v(header_value.begin(), header_value.end(), ','); while (v.GetNext()) { if (base::LowerCaseEqualsASCII( base::StringPiece(v.value_begin(), v.value_end()), search->value)) return true; } } return false; } //----------------------------------------------------------------------------- HttpCache::Transaction::Transaction(RequestPriority priority, HttpCache* cache) : next_state_(STATE_NONE), request_(NULL), priority_(priority), cache_(cache->GetWeakPtr()), entry_(NULL), new_entry_(NULL), new_response_(NULL), mode_(NONE), reading_(false), invalid_range_(false), truncated_(false), is_sparse_(false), range_requested_(false), handling_206_(false), cache_pending_(false), done_reading_(false), vary_mismatch_(false), couldnt_conditionalize_request_(false), bypass_lock_for_test_(false), fail_conditionalization_for_test_(false), io_buf_len_(0), read_offset_(0), effective_load_flags_(0), write_len_(0), transaction_pattern_(PATTERN_UNDEFINED), total_received_bytes_(0), total_sent_bytes_(0), websocket_handshake_stream_base_create_helper_(NULL), weak_factory_(this) { static_assert(HttpCache::Transaction::kNumValidationHeaders == arraysize(kValidationHeaders), "invalid number of validation headers"); io_callback_ = base::Bind(&Transaction::OnIOComplete, weak_factory_.GetWeakPtr()); } HttpCache::Transaction::~Transaction() { // We may have to issue another IO, but we should never invoke the callback_ // after this point. callback_.Reset(); if (cache_) { if (entry_) { bool cancel_request = reading_ && response_.headers.get(); if (cancel_request) { if (partial_) { entry_->disk_entry->CancelSparseIO(); } else { cancel_request &= (response_.headers->response_code() == 200); } } cache_->DoneWithEntry(entry_, this, cancel_request); } else if (cache_pending_) { cache_->RemovePendingTransaction(this); } } } int HttpCache::Transaction::WriteMetadata(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(buf); DCHECK_GT(buf_len, 0); DCHECK(!callback.is_null()); if (!cache_.get() || !entry_) return ERR_UNEXPECTED; // We don't need to track this operation for anything. // It could be possible to check if there is something already written and // avoid writing again (it should be the same, right?), but let's allow the // caller to "update" the contents with something new. return entry_->disk_entry->WriteData(kMetadataIndex, 0, buf, buf_len, callback, true); } bool HttpCache::Transaction::AddTruncatedFlag() { DCHECK(mode_ & WRITE || mode_ == NONE); // Don't set the flag for sparse entries. if (partial_ && !truncated_) return true; if (!CanResume(true)) return false; // We may have received the whole resource already. if (done_reading_) return true; truncated_ = true; next_state_ = STATE_CACHE_WRITE_TRUNCATED_RESPONSE; DoLoop(OK); return true; } LoadState HttpCache::Transaction::GetWriterLoadState() const { if (network_trans_.get()) return network_trans_->GetLoadState(); if (entry_ || !request_) return LOAD_STATE_IDLE; return LOAD_STATE_WAITING_FOR_CACHE; } const BoundNetLog& HttpCache::Transaction::net_log() const { return net_log_; } int HttpCache::Transaction::Start(const HttpRequestInfo* request, const CompletionCallback& callback, const BoundNetLog& net_log) { DCHECK(request); DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); DCHECK(!reading_); DCHECK(!network_trans_.get()); DCHECK(!entry_); DCHECK_EQ(next_state_, STATE_NONE); if (!cache_.get()) return ERR_UNEXPECTED; SetRequest(net_log, request); // We have to wait until the backend is initialized so we start the SM. next_state_ = STATE_GET_BACKEND; int rv = DoLoop(OK); // Setting this here allows us to check for the existence of a callback_ to // determine if we are still inside Start. if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartIgnoringLastError( const CompletionCallback& callback) { DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_.get()) return ERR_UNEXPECTED; int rv = RestartNetworkRequest(); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartWithCertificate( X509Certificate* client_cert, SSLPrivateKey* client_private_key, const CompletionCallback& callback) { DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_.get()) return ERR_UNEXPECTED; int rv = RestartNetworkRequestWithCertificate(client_cert, client_private_key); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } int HttpCache::Transaction::RestartWithAuth( const AuthCredentials& credentials, const CompletionCallback& callback) { DCHECK(auth_response_.headers.get()); DCHECK(!callback.is_null()); // Ensure that we only have one asynchronous call at a time. DCHECK(callback_.is_null()); if (!cache_.get()) return ERR_UNEXPECTED; // Clear the intermediate response since we are going to start over. auth_response_ = HttpResponseInfo(); int rv = RestartNetworkRequestWithAuth(credentials); if (rv == ERR_IO_PENDING) callback_ = callback; return rv; } bool HttpCache::Transaction::IsReadyToRestartForAuth() { if (!network_trans_.get()) return false; return network_trans_->IsReadyToRestartForAuth(); } int HttpCache::Transaction::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK_EQ(next_state_, STATE_NONE); DCHECK(buf); DCHECK_GT(buf_len, 0); DCHECK(!callback.is_null()); DCHECK(callback_.is_null()); if (!cache_.get()) return ERR_UNEXPECTED; // If we have an intermediate auth response at this point, then it means the // user wishes to read the network response (the error page). If there is a // previous response in the cache then we should leave it intact. if (auth_response_.headers.get() && mode_ != NONE) { UpdateTransactionPattern(PATTERN_NOT_COVERED); DCHECK(mode_ & WRITE); DoneWritingToEntry(mode_ == READ_WRITE); mode_ = NONE; } reading_ = true; read_buf_ = buf; io_buf_len_ = buf_len; if (network_trans_) { DCHECK(mode_ == WRITE || mode_ == NONE || (mode_ == READ_WRITE && partial_)); next_state_ = STATE_NETWORK_READ; } else { DCHECK(mode_ == READ || (mode_ == READ_WRITE && partial_)); next_state_ = STATE_CACHE_READ_DATA; } int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) { DCHECK(callback_.is_null()); callback_ = callback; } return rv; } void HttpCache::Transaction::StopCaching() { // We really don't know where we are now. Hopefully there is no operation in // progress, but nothing really prevents this method to be called after we // returned ERR_IO_PENDING. We cannot attempt to truncate the entry at this // point because we need the state machine for that (and even if we are really // free, that would be an asynchronous operation). In other words, keep the // entry how it is (it will be marked as truncated at destruction), and let // the next piece of code that executes know that we are now reading directly // from the net. // TODO(mmenke): This doesn't release the lock on the cache entry, so a // future request for the resource will be blocked on this one. // Fix this. if (cache_.get() && entry_ && (mode_ & WRITE) && network_trans_.get() && !is_sparse_ && !range_requested_) { mode_ = NONE; } } bool HttpCache::Transaction::GetFullRequestHeaders( HttpRequestHeaders* headers) const { if (network_trans_) return network_trans_->GetFullRequestHeaders(headers); // TODO(ttuttle): Read headers from cache. return false; } int64_t HttpCache::Transaction::GetTotalReceivedBytes() const { int64_t total_received_bytes = total_received_bytes_; if (network_trans_) total_received_bytes += network_trans_->GetTotalReceivedBytes(); return total_received_bytes; } int64_t HttpCache::Transaction::GetTotalSentBytes() const { int64_t total_sent_bytes = total_sent_bytes_; if (network_trans_) total_sent_bytes += network_trans_->GetTotalSentBytes(); return total_sent_bytes; } void HttpCache::Transaction::DoneReading() { if (cache_.get() && entry_) { DCHECK_NE(mode_, UPDATE); if (mode_ & WRITE) { DoneWritingToEntry(true); } else if (mode_ & READ) { // It is necessary to check mode_ & READ because it is possible // for mode_ to be NONE and entry_ non-NULL with a write entry // if StopCaching was called. cache_->DoneReadingFromEntry(entry_, this); entry_ = NULL; } } } const HttpResponseInfo* HttpCache::Transaction::GetResponseInfo() const { // Null headers means we encountered an error or haven't a response yet if (auth_response_.headers.get()) return &auth_response_; return &response_; } LoadState HttpCache::Transaction::GetLoadState() const { LoadState state = GetWriterLoadState(); if (state != LOAD_STATE_WAITING_FOR_CACHE) return state; if (cache_.get()) return cache_->GetLoadStateForPendingTransaction(this); return LOAD_STATE_IDLE; } UploadProgress HttpCache::Transaction::GetUploadProgress() const { if (network_trans_.get()) return network_trans_->GetUploadProgress(); return final_upload_progress_; } void HttpCache::Transaction::SetQuicServerInfo( QuicServerInfo* quic_server_info) {} bool HttpCache::Transaction::GetLoadTimingInfo( LoadTimingInfo* load_timing_info) const { if (network_trans_) return network_trans_->GetLoadTimingInfo(load_timing_info); if (old_network_trans_load_timing_) { *load_timing_info = *old_network_trans_load_timing_; return true; } if (first_cache_access_since_.is_null()) return false; // If the cache entry was opened, return that time. load_timing_info->send_start = first_cache_access_since_; // This time doesn't make much sense when reading from the cache, so just use // the same time as send_start. load_timing_info->send_end = first_cache_access_since_; return true; } bool HttpCache::Transaction::GetRemoteEndpoint(IPEndPoint* endpoint) const { if (network_trans_) return network_trans_->GetRemoteEndpoint(endpoint); if (!old_remote_endpoint_.address().empty()) { *endpoint = old_remote_endpoint_; return true; } return false; } void HttpCache::Transaction::PopulateNetErrorDetails( NetErrorDetails* details) const { if (network_trans_) return network_trans_->PopulateNetErrorDetails(details); return; } void HttpCache::Transaction::SetPriority(RequestPriority priority) { priority_ = priority; if (network_trans_) network_trans_->SetPriority(priority_); } void HttpCache::Transaction::SetWebSocketHandshakeStreamCreateHelper( WebSocketHandshakeStreamBase::CreateHelper* create_helper) { websocket_handshake_stream_base_create_helper_ = create_helper; if (network_trans_) network_trans_->SetWebSocketHandshakeStreamCreateHelper(create_helper); } void HttpCache::Transaction::SetBeforeNetworkStartCallback( const BeforeNetworkStartCallback& callback) { DCHECK(!network_trans_); before_network_start_callback_ = callback; } void HttpCache::Transaction::SetBeforeProxyHeadersSentCallback( const BeforeProxyHeadersSentCallback& callback) { DCHECK(!network_trans_); before_proxy_headers_sent_callback_ = callback; } int HttpCache::Transaction::ResumeNetworkStart() { if (network_trans_) return network_trans_->ResumeNetworkStart(); return ERR_UNEXPECTED; } void HttpCache::Transaction::GetConnectionAttempts( ConnectionAttempts* out) const { ConnectionAttempts new_connection_attempts; if (network_trans_) network_trans_->GetConnectionAttempts(&new_connection_attempts); out->swap(new_connection_attempts); out->insert(out->begin(), old_connection_attempts_.begin(), old_connection_attempts_.end()); } //----------------------------------------------------------------------------- // A few common patterns: (Foo* means Foo -> FooComplete) // // 1. Not-cached entry: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> CreateEntry* -> AddToEntry* -> // SendRequest* -> SuccessfulSendRequest -> OverwriteCachedResponse -> // CacheWriteResponse* -> TruncateCachedData* -> TruncateCachedMetadata* -> // PartialHeadersReceived // // Read(): // NetworkRead* -> CacheWriteData* // // 2. Cached entry, no validation: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheDispatchValidation -> BeginPartialCacheValidation() -> // BeginCacheValidation() -> SetupEntryForRead() // // Read(): // CacheReadData* // // 3. Cached entry, validation (304): // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheDispatchValidation -> BeginPartialCacheValidation() -> // BeginCacheValidation() -> SendRequest* -> SuccessfulSendRequest -> // UpdateCachedResponse -> CacheWriteUpdatedResponse* -> // UpdateCachedResponseComplete -> OverwriteCachedResponse -> // PartialHeadersReceived // // Read(): // CacheReadData* // // 4. Cached entry, validation and replace (200): // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheDispatchValidation -> BeginPartialCacheValidation() -> // BeginCacheValidation() -> SendRequest* -> SuccessfulSendRequest -> // OverwriteCachedResponse -> CacheWriteResponse* -> DoTruncateCachedData* -> // TruncateCachedMetadata* -> PartialHeadersReceived // // Read(): // NetworkRead* -> CacheWriteData* // // 5. Sparse entry, partially cached, byte range request: // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheDispatchValidation -> BeginPartialCacheValidation() -> // CacheQueryData* -> ValidateEntryHeadersAndContinue() -> // StartPartialCacheValidation -> CompletePartialCacheValidation -> // BeginCacheValidation() -> SendRequest* -> SuccessfulSendRequest -> // UpdateCachedResponse -> CacheWriteUpdatedResponse* -> // UpdateCachedResponseComplete -> OverwriteCachedResponse -> // PartialHeadersReceived // // Read() 1: // NetworkRead* -> CacheWriteData* // // Read() 2: // NetworkRead* -> CacheWriteData* -> StartPartialCacheValidation -> // CompletePartialCacheValidation -> CacheReadData* -> // // Read() 3: // CacheReadData* -> StartPartialCacheValidation -> // CompletePartialCacheValidation -> BeginCacheValidation() -> SendRequest* -> // SuccessfulSendRequest -> UpdateCachedResponse* -> OverwriteCachedResponse // -> PartialHeadersReceived -> NetworkRead* -> CacheWriteData* // // 6. HEAD. Not-cached entry: // Pass through. Don't save a HEAD by itself. // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> SendRequest* // // 7. HEAD. Cached entry, no validation: // Start(): // The same flow as for a GET request (example #2) // // Read(): // CacheReadData (returns 0) // // 8. HEAD. Cached entry, validation (304): // The request updates the stored headers. // Start(): Same as for a GET request (example #3) // // Read(): // CacheReadData (returns 0) // // 9. HEAD. Cached entry, validation and replace (200): // Pass through. The request dooms the old entry, as a HEAD won't be stored by // itself. // Start(): // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheDispatchValidation -> BeginPartialCacheValidation() -> // BeginCacheValidation() -> SendRequest* -> SuccessfulSendRequest -> // OverwriteCachedResponse // // 10. HEAD. Sparse entry, partially cached: // Serve the request from the cache, as long as it doesn't require // revalidation. Ignore missing ranges when deciding to revalidate. If the // entry requires revalidation, ignore the whole request and go to full pass // through (the result of the HEAD request will NOT update the entry). // // Start(): Basically the same as example 7, as we never create a partial_ // object for this request. // // 11. Prefetch, not-cached entry: // The same as example 1. The "unused_since_prefetch" bit is stored as true in // UpdateCachedResponse. // // 12. Prefetch, cached entry: // Like examples 2-4, only CacheToggleUnusedSincePrefetch* is inserted between // CacheReadResponse* and CacheDispatchValidation if the unused_since_prefetch // bit is unset. // // 13. Cached entry less than 5 minutes old, unused_since_prefetch is true: // Skip validation, similar to example 2. // GetBackend* -> InitEntry -> OpenEntry* -> AddToEntry* -> CacheReadResponse* // -> CacheToggleUnusedSincePrefetch* -> CacheDispatchValidation -> // BeginPartialCacheValidation() -> BeginCacheValidation() -> // SetupEntryForRead() // // Read(): // CacheReadData* // // 14. Cached entry more than 5 minutes old, unused_since_prefetch is true: // Like examples 2-4, only CacheToggleUnusedSincePrefetch* is inserted between // CacheReadResponse* and CacheDispatchValidation. int HttpCache::Transaction::DoLoop(int result) { DCHECK(next_state_ != STATE_NONE); int rv = result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_GET_BACKEND: DCHECK_EQ(OK, rv); rv = DoGetBackend(); break; case STATE_GET_BACKEND_COMPLETE: rv = DoGetBackendComplete(rv); break; case STATE_INIT_ENTRY: DCHECK_EQ(OK, rv); rv = DoInitEntry(); break; case STATE_OPEN_ENTRY: DCHECK_EQ(OK, rv); rv = DoOpenEntry(); break; case STATE_OPEN_ENTRY_COMPLETE: rv = DoOpenEntryComplete(rv); break; case STATE_DOOM_ENTRY: DCHECK_EQ(OK, rv); rv = DoDoomEntry(); break; case STATE_DOOM_ENTRY_COMPLETE: rv = DoDoomEntryComplete(rv); break; case STATE_CREATE_ENTRY: DCHECK_EQ(OK, rv); rv = DoCreateEntry(); break; case STATE_CREATE_ENTRY_COMPLETE: rv = DoCreateEntryComplete(rv); break; case STATE_ADD_TO_ENTRY: DCHECK_EQ(OK, rv); rv = DoAddToEntry(); break; case STATE_ADD_TO_ENTRY_COMPLETE: rv = DoAddToEntryComplete(rv); break; case STATE_CACHE_READ_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheReadResponse(); break; case STATE_CACHE_READ_RESPONSE_COMPLETE: rv = DoCacheReadResponseComplete(rv); break; case STATE_TOGGLE_UNUSED_SINCE_PREFETCH: DCHECK_EQ(OK, rv); rv = DoCacheToggleUnusedSincePrefetch(); break; case STATE_TOGGLE_UNUSED_SINCE_PREFETCH_COMPLETE: rv = DoCacheToggleUnusedSincePrefetchComplete(rv); break; case STATE_CACHE_DISPATCH_VALIDATION: DCHECK_EQ(OK, rv); rv = DoCacheDispatchValidation(); break; case STATE_CACHE_QUERY_DATA: DCHECK_EQ(OK, rv); rv = DoCacheQueryData(); break; case STATE_CACHE_QUERY_DATA_COMPLETE: rv = DoCacheQueryDataComplete(rv); break; case STATE_START_PARTIAL_CACHE_VALIDATION: DCHECK_EQ(OK, rv); rv = DoStartPartialCacheValidation(); break; case STATE_COMPLETE_PARTIAL_CACHE_VALIDATION: rv = DoCompletePartialCacheValidation(rv); break; case STATE_SEND_REQUEST: DCHECK_EQ(OK, rv); rv = DoSendRequest(); break; case STATE_SEND_REQUEST_COMPLETE: rv = DoSendRequestComplete(rv); break; case STATE_SUCCESSFUL_SEND_REQUEST: DCHECK_EQ(OK, rv); rv = DoSuccessfulSendRequest(); break; case STATE_UPDATE_CACHED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoUpdateCachedResponse(); break; case STATE_CACHE_WRITE_UPDATED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheWriteUpdatedResponse(); break; case STATE_CACHE_WRITE_UPDATED_RESPONSE_COMPLETE: rv = DoCacheWriteUpdatedResponseComplete(rv); break; case STATE_UPDATE_CACHED_RESPONSE_COMPLETE: rv = DoUpdateCachedResponseComplete(rv); break; case STATE_OVERWRITE_CACHED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoOverwriteCachedResponse(); break; case STATE_CACHE_WRITE_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheWriteResponse(); break; case STATE_CACHE_WRITE_RESPONSE_COMPLETE: rv = DoCacheWriteResponseComplete(rv); break; case STATE_TRUNCATE_CACHED_DATA: DCHECK_EQ(OK, rv); rv = DoTruncateCachedData(); break; case STATE_TRUNCATE_CACHED_DATA_COMPLETE: rv = DoTruncateCachedDataComplete(rv); break; case STATE_TRUNCATE_CACHED_METADATA: DCHECK_EQ(OK, rv); rv = DoTruncateCachedMetadata(); break; case STATE_TRUNCATE_CACHED_METADATA_COMPLETE: rv = DoTruncateCachedMetadataComplete(rv); break; case STATE_PARTIAL_HEADERS_RECEIVED: DCHECK_EQ(OK, rv); rv = DoPartialHeadersReceived(); break; case STATE_CACHE_READ_METADATA: DCHECK_EQ(OK, rv); rv = DoCacheReadMetadata(); break; case STATE_CACHE_READ_METADATA_COMPLETE: rv = DoCacheReadMetadataComplete(rv); break; case STATE_NETWORK_READ: DCHECK_EQ(OK, rv); rv = DoNetworkRead(); break; case STATE_NETWORK_READ_COMPLETE: rv = DoNetworkReadComplete(rv); break; case STATE_CACHE_READ_DATA: DCHECK_EQ(OK, rv); rv = DoCacheReadData(); break; case STATE_CACHE_READ_DATA_COMPLETE: rv = DoCacheReadDataComplete(rv); break; case STATE_CACHE_WRITE_DATA: rv = DoCacheWriteData(rv); break; case STATE_CACHE_WRITE_DATA_COMPLETE: rv = DoCacheWriteDataComplete(rv); break; case STATE_CACHE_WRITE_TRUNCATED_RESPONSE: DCHECK_EQ(OK, rv); rv = DoCacheWriteTruncatedResponse(); break; case STATE_CACHE_WRITE_TRUNCATED_RESPONSE_COMPLETE: rv = DoCacheWriteTruncatedResponseComplete(rv); break; default: NOTREACHED() << "bad state"; rv = ERR_FAILED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); if (rv != ERR_IO_PENDING && !callback_.is_null()) { read_buf_ = NULL; // Release the buffer before invoking the callback. base::ResetAndReturn(&callback_).Run(rv); } return rv; } int HttpCache::Transaction::DoGetBackend() { cache_pending_ = true; next_state_ = STATE_GET_BACKEND_COMPLETE; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_GET_BACKEND); return cache_->GetBackendForTransaction(this); } int HttpCache::Transaction::DoGetBackendComplete(int result) { DCHECK(result == OK || result == ERR_FAILED); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_GET_BACKEND, result); cache_pending_ = false; if (!ShouldPassThrough()) { cache_key_ = cache_->GenerateCacheKey(request_); // Requested cache access mode. if (effective_load_flags_ & LOAD_ONLY_FROM_CACHE) { mode_ = READ; } else if (effective_load_flags_ & LOAD_BYPASS_CACHE) { mode_ = WRITE; } else { mode_ = READ_WRITE; } // Downgrade to UPDATE if the request has been externally conditionalized. if (external_validation_.initialized) { if (mode_ & WRITE) { // Strip off the READ_DATA bit (and maybe add back a READ_META bit // in case READ was off). mode_ = UPDATE; } else { mode_ = NONE; } } } // Use PUT and DELETE only to invalidate existing stored entries. if ((request_->method == "PUT" || request_->method == "DELETE") && mode_ != READ_WRITE && mode_ != WRITE) { mode_ = NONE; } // Note that if mode_ == UPDATE (which is tied to external_validation_), the // transaction behaves the same for GET and HEAD requests at this point: if it // was not modified, the entry is updated and a response is not returned from // the cache. If we receive 200, it doesn't matter if there was a validation // header or not. if (request_->method == "HEAD" && mode_ == WRITE) mode_ = NONE; // If must use cache, then we must fail. This can happen for back/forward // navigations to a page generated via a form post. if (!(mode_ & READ) && effective_load_flags_ & LOAD_ONLY_FROM_CACHE) return ERR_CACHE_MISS; if (mode_ == NONE) { if (partial_) { partial_->RestoreHeaders(&custom_request_->extra_headers); partial_.reset(); } next_state_ = STATE_SEND_REQUEST; } else { next_state_ = STATE_INIT_ENTRY; } // This is only set if we have something to do with the response. range_requested_ = (partial_.get() != NULL); return OK; } int HttpCache::Transaction::DoInitEntry() { DCHECK(!new_entry_); if (!cache_.get()) return ERR_UNEXPECTED; if (mode_ == WRITE) { next_state_ = STATE_DOOM_ENTRY; return OK; } next_state_ = STATE_OPEN_ENTRY; return OK; } int HttpCache::Transaction::DoOpenEntry() { DCHECK(!new_entry_); next_state_ = STATE_OPEN_ENTRY_COMPLETE; cache_pending_ = true; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_OPEN_ENTRY); first_cache_access_since_ = TimeTicks::Now(); return cache_->OpenEntry(cache_key_, &new_entry_, this); } int HttpCache::Transaction::DoOpenEntryComplete(int result) { // It is important that we go to STATE_ADD_TO_ENTRY whenever the result is // OK, otherwise the cache will end up with an active entry without any // transaction attached. net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_OPEN_ENTRY, result); cache_pending_ = false; if (result == OK) { next_state_ = STATE_ADD_TO_ENTRY; return OK; } if (result == ERR_CACHE_RACE) { next_state_ = STATE_INIT_ENTRY; return OK; } if (request_->method == "PUT" || request_->method == "DELETE" || (request_->method == "HEAD" && mode_ == READ_WRITE)) { DCHECK(mode_ == READ_WRITE || mode_ == WRITE || request_->method == "HEAD"); mode_ = NONE; next_state_ = STATE_SEND_REQUEST; return OK; } if (mode_ == READ_WRITE) { mode_ = WRITE; next_state_ = STATE_CREATE_ENTRY; return OK; } if (mode_ == UPDATE) { // There is no cache entry to update; proceed without caching. mode_ = NONE; next_state_ = STATE_SEND_REQUEST; return OK; } // The entry does not exist, and we are not permitted to create a new entry, // so we must fail. return ERR_CACHE_MISS; } int HttpCache::Transaction::DoDoomEntry() { next_state_ = STATE_DOOM_ENTRY_COMPLETE; cache_pending_ = true; if (first_cache_access_since_.is_null()) first_cache_access_since_ = TimeTicks::Now(); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_DOOM_ENTRY); return cache_->DoomEntry(cache_key_, this); } int HttpCache::Transaction::DoDoomEntryComplete(int result) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_DOOM_ENTRY, result); next_state_ = STATE_CREATE_ENTRY; cache_pending_ = false; if (result == ERR_CACHE_RACE) next_state_ = STATE_INIT_ENTRY; return OK; } int HttpCache::Transaction::DoCreateEntry() { DCHECK(!new_entry_); next_state_ = STATE_CREATE_ENTRY_COMPLETE; cache_pending_ = true; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_CREATE_ENTRY); return cache_->CreateEntry(cache_key_, &new_entry_, this); } int HttpCache::Transaction::DoCreateEntryComplete(int result) { // It is important that we go to STATE_ADD_TO_ENTRY whenever the result is // OK, otherwise the cache will end up with an active entry without any // transaction attached. net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_CREATE_ENTRY, result); cache_pending_ = false; switch (result) { case OK: next_state_ = STATE_ADD_TO_ENTRY; break; case ERR_CACHE_RACE: next_state_ = STATE_INIT_ENTRY; break; default: // We have a race here: Maybe we failed to open the entry and decided to // create one, but by the time we called create, another transaction // already created the entry. If we want to eliminate this issue, we // need an atomic OpenOrCreate() method exposed by the disk cache. DLOG(WARNING) << "Unable to create cache entry"; mode_ = NONE; if (partial_) partial_->RestoreHeaders(&custom_request_->extra_headers); next_state_ = STATE_SEND_REQUEST; } return OK; } int HttpCache::Transaction::DoAddToEntry() { DCHECK(new_entry_); cache_pending_ = true; next_state_ = STATE_ADD_TO_ENTRY_COMPLETE; net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_ADD_TO_ENTRY); DCHECK(entry_lock_waiting_since_.is_null()); entry_lock_waiting_since_ = TimeTicks::Now(); int rv = cache_->AddTransactionToEntry(new_entry_, this); if (rv == ERR_IO_PENDING) { if (bypass_lock_for_test_) { OnAddToEntryTimeout(entry_lock_waiting_since_); } else { int timeout_milliseconds = 20 * 1000; if (partial_ && new_entry_->writer && new_entry_->writer->range_requested_) { // Quickly timeout and bypass the cache if we're a range request and // we're blocked by the reader/writer lock. Doing so eliminates a long // running issue, http://crbug.com/31014, where two of the same media // resources could not be played back simultaneously due to one locking // the cache entry until the entire video was downloaded. // // Bypassing the cache is not ideal, as we are now ignoring the cache // entirely for all range requests to a resource beyond the first. This // is however a much more succinct solution than the alternatives, which // would require somewhat significant changes to the http caching logic. // // Allow some timeout slack for the entry addition to complete in case // the writer lock is imminently released; we want to avoid skipping // the cache if at all possible. See http://crbug.com/408765 timeout_milliseconds = 25; } base::ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, base::Bind(&HttpCache::Transaction::OnAddToEntryTimeout, weak_factory_.GetWeakPtr(), entry_lock_waiting_since_), TimeDelta::FromMilliseconds(timeout_milliseconds)); } } return rv; } int HttpCache::Transaction::DoAddToEntryComplete(int result) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_ADD_TO_ENTRY, result); const TimeDelta entry_lock_wait = TimeTicks::Now() - entry_lock_waiting_since_; UMA_HISTOGRAM_TIMES("HttpCache.EntryLockWait", entry_lock_wait); entry_lock_waiting_since_ = TimeTicks(); DCHECK(new_entry_); cache_pending_ = false; if (result == OK) entry_ = new_entry_; // If there is a failure, the cache should have taken care of new_entry_. new_entry_ = NULL; if (result == ERR_CACHE_RACE) { next_state_ = STATE_INIT_ENTRY; return OK; } if (result == ERR_CACHE_LOCK_TIMEOUT) { // The cache is busy, bypass it for this transaction. mode_ = NONE; next_state_ = STATE_SEND_REQUEST; if (partial_) { partial_->RestoreHeaders(&custom_request_->extra_headers); partial_.reset(); } return OK; } if (result != OK) { NOTREACHED(); return result; } if (mode_ == WRITE) { if (partial_) partial_->RestoreHeaders(&custom_request_->extra_headers); next_state_ = STATE_SEND_REQUEST; } else { // We have to read the headers from the cached entry. DCHECK(mode_ & READ_META); next_state_ = STATE_CACHE_READ_RESPONSE; } return OK; } int HttpCache::Transaction::DoCacheReadResponse() { DCHECK(entry_); next_state_ = STATE_CACHE_READ_RESPONSE_COMPLETE; io_buf_len_ = entry_->disk_entry->GetDataSize(kResponseInfoIndex); read_buf_ = new IOBuffer(io_buf_len_); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_INFO); return entry_->disk_entry->ReadData(kResponseInfoIndex, 0, read_buf_.get(), io_buf_len_, io_callback_); } int HttpCache::Transaction::DoCacheReadResponseComplete(int result) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_INFO, result); if (result != io_buf_len_ || !HttpCache::ParseResponseInfo(read_buf_->data(), io_buf_len_, &response_, &truncated_)) { return OnCacheReadError(result, true); } // cert_cache() will be null if the CertCacheTrial field trial is disabled. if (cache_->cert_cache() && response_.ssl_info.is_valid()) ReadCertChain(); // Some resources may have slipped in as truncated when they're not. int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); if (response_.headers->GetContentLength() == current_size) truncated_ = false; if ((response_.unused_since_prefetch && !(request_->load_flags & LOAD_PREFETCH)) || (!response_.unused_since_prefetch && (request_->load_flags & LOAD_PREFETCH))) { // Either this is the first use of an entry since it was prefetched or // this is a prefetch. The value of response.unused_since_prefetch is valid // for this transaction but the bit needs to be flipped in storage. next_state_ = STATE_TOGGLE_UNUSED_SINCE_PREFETCH; return OK; } next_state_ = STATE_CACHE_DISPATCH_VALIDATION; return OK; } int HttpCache::Transaction::DoCacheToggleUnusedSincePrefetch() { // Write back the toggled value for the next use of this entry. response_.unused_since_prefetch = !response_.unused_since_prefetch; // TODO(jkarlin): If DoUpdateCachedResponse is also called for this // transaction then metadata will be written to cache twice. If prefetching // becomes more common, consider combining the writes. next_state_ = STATE_TOGGLE_UNUSED_SINCE_PREFETCH_COMPLETE; return WriteResponseInfoToEntry(false); } int HttpCache::Transaction::DoCacheToggleUnusedSincePrefetchComplete( int result) { // Restore the original value for this transaction. response_.unused_since_prefetch = !response_.unused_since_prefetch; next_state_ = STATE_CACHE_DISPATCH_VALIDATION; return OnWriteResponseInfoToEntryComplete(result); } int HttpCache::Transaction::DoCacheDispatchValidation() { // We now have access to the cache entry. // // o if we are a reader for the transaction, then we can start reading the // cache entry. // // o if we can read or write, then we should check if the cache entry needs // to be validated and then issue a network request if needed or just read // from the cache if the cache entry is already valid. // // o if we are set to UPDATE, then we are handling an externally // conditionalized request (if-modified-since / if-none-match). We check // if the request headers define a validation request. // int result = ERR_FAILED; switch (mode_) { case READ: UpdateTransactionPattern(PATTERN_ENTRY_USED); result = BeginCacheRead(); break; case READ_WRITE: result = BeginPartialCacheValidation(); break; case UPDATE: result = BeginExternallyConditionalizedRequest(); break; case WRITE: default: NOTREACHED(); } return result; } int HttpCache::Transaction::DoCacheQueryData() { next_state_ = STATE_CACHE_QUERY_DATA_COMPLETE; return entry_->disk_entry->ReadyForSparseIO(io_callback_); } int HttpCache::Transaction::DoCacheQueryDataComplete(int result) { DCHECK_EQ(OK, result); if (!cache_.get()) return ERR_UNEXPECTED; return ValidateEntryHeadersAndContinue(); } // We may end up here multiple times for a given request. int HttpCache::Transaction::DoStartPartialCacheValidation() { if (mode_ == NONE) return OK; next_state_ = STATE_COMPLETE_PARTIAL_CACHE_VALIDATION; return partial_->ShouldValidateCache(entry_->disk_entry, io_callback_); } int HttpCache::Transaction::DoCompletePartialCacheValidation(int result) { if (!result) { // This is the end of the request. if (mode_ & WRITE) { DoneWritingToEntry(true); } else { cache_->DoneReadingFromEntry(entry_, this); entry_ = NULL; } return result; } if (result < 0) return result; partial_->PrepareCacheValidation(entry_->disk_entry, &custom_request_->extra_headers); if (reading_ && partial_->IsCurrentRangeCached()) { next_state_ = STATE_CACHE_READ_DATA; return OK; } return BeginCacheValidation(); } int HttpCache::Transaction::DoSendRequest() { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(!network_trans_.get()); send_request_since_ = TimeTicks::Now(); // Create a network transaction. int rv = cache_->network_layer_->CreateTransaction(priority_, &network_trans_); if (rv != OK) return rv; network_trans_->SetBeforeNetworkStartCallback(before_network_start_callback_); network_trans_->SetBeforeProxyHeadersSentCallback( before_proxy_headers_sent_callback_); // Old load timing information, if any, is now obsolete. old_network_trans_load_timing_.reset(); old_remote_endpoint_ = IPEndPoint(); if (websocket_handshake_stream_base_create_helper_) network_trans_->SetWebSocketHandshakeStreamCreateHelper( websocket_handshake_stream_base_create_helper_); next_state_ = STATE_SEND_REQUEST_COMPLETE; rv = network_trans_->Start(request_, io_callback_, net_log_); return rv; } int HttpCache::Transaction::DoSendRequestComplete(int result) { if (!cache_.get()) return ERR_UNEXPECTED; // If we tried to conditionalize the request and failed, we know // we won't be reading from the cache after this point. if (couldnt_conditionalize_request_) mode_ = WRITE; if (result == OK) { next_state_ = STATE_SUCCESSFUL_SEND_REQUEST; return OK; } const HttpResponseInfo* response = network_trans_->GetResponseInfo(); response_.network_accessed = response->network_accessed; // Do not record requests that have network errors or restarts. UpdateTransactionPattern(PATTERN_NOT_COVERED); if (IsCertificateError(result)) { // If we get a certificate error, then there is a certificate in ssl_info, // so GetResponseInfo() should never return NULL here. DCHECK(response); response_.ssl_info = response->ssl_info; } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { DCHECK(response); response_.cert_request_info = response->cert_request_info; } else if (response_.was_cached) { DoneWritingToEntry(true); } return result; } // We received the response headers and there is no error. int HttpCache::Transaction::DoSuccessfulSendRequest() { DCHECK(!new_response_); const HttpResponseInfo* new_response = network_trans_->GetResponseInfo(); if (new_response->headers->response_code() == 401 || new_response->headers->response_code() == 407) { auth_response_ = *new_response; if (!reading_) return OK; // We initiated a second request the caller doesn't know about. We should be // able to authenticate this request because we should have authenticated // this URL moments ago. if (IsReadyToRestartForAuth()) { DCHECK(!response_.auth_challenge.get()); next_state_ = STATE_SEND_REQUEST_COMPLETE; // In theory we should check to see if there are new cookies, but there // is no way to do that from here. return network_trans_->RestartWithAuth(AuthCredentials(), io_callback_); } // We have to perform cleanup at this point so that at least the next // request can succeed. We do not retry at this point, because data // has been read and we have no way to gather credentials. We would // fail again, and potentially loop. This can happen if the credentials // expire while chrome is suspended. if (entry_) DoomPartialEntry(false); mode_ = NONE; partial_.reset(); ResetNetworkTransaction(); return ERR_CACHE_AUTH_FAILURE_AFTER_READ; } new_response_ = new_response; if (!ValidatePartialResponse() && !auth_response_.headers.get()) { // Something went wrong with this request and we have to restart it. // If we have an authentication response, we are exposed to weird things // hapenning if the user cancels the authentication before we receive // the new response. net_log_.AddEvent(NetLog::TYPE_HTTP_CACHE_RE_SEND_PARTIAL_REQUEST); UpdateTransactionPattern(PATTERN_NOT_COVERED); response_ = HttpResponseInfo(); ResetNetworkTransaction(); new_response_ = NULL; next_state_ = STATE_SEND_REQUEST; return OK; } if (handling_206_ && mode_ == READ_WRITE && !truncated_ && !is_sparse_) { // We have stored the full entry, but it changed and the server is // sending a range. We have to delete the old entry. UpdateTransactionPattern(PATTERN_NOT_COVERED); DoneWritingToEntry(false); } if (mode_ == WRITE && transaction_pattern_ != PATTERN_ENTRY_CANT_CONDITIONALIZE) { UpdateTransactionPattern(PATTERN_ENTRY_NOT_CACHED); } // Invalidate any cached GET with a successful PUT or DELETE. if (mode_ == WRITE && (request_->method == "PUT" || request_->method == "DELETE")) { if (NonErrorResponse(new_response->headers->response_code())) { int ret = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, ret); } cache_->DoneWritingToEntry(entry_, true); entry_ = NULL; mode_ = NONE; } // Invalidate any cached GET with a successful POST. if (!(effective_load_flags_ & LOAD_DISABLE_CACHE) && request_->method == "POST" && NonErrorResponse(new_response->headers->response_code())) { cache_->DoomMainEntryForUrl(request_->url); } RecordNoStoreHeaderHistogram(request_->load_flags, new_response); if (new_response_->headers->response_code() == 416 && (request_->method == "GET" || request_->method == "POST")) { // If there is an active entry it may be destroyed with this transaction. response_ = *new_response_; return OK; } // Are we expecting a response to a conditional query? if (mode_ == READ_WRITE || mode_ == UPDATE) { if (new_response->headers->response_code() == 304 || handling_206_) { UpdateTransactionPattern(PATTERN_ENTRY_VALIDATED); next_state_ = STATE_UPDATE_CACHED_RESPONSE; return OK; } UpdateTransactionPattern(PATTERN_ENTRY_UPDATED); mode_ = WRITE; } next_state_ = STATE_OVERWRITE_CACHED_RESPONSE; return OK; } // We received 304 or 206 and we want to update the cached response headers. int HttpCache::Transaction::DoUpdateCachedResponse() { next_state_ = STATE_UPDATE_CACHED_RESPONSE_COMPLETE; int rv = OK; // Update the cached response based on the headers and properties of // new_response_. response_.headers->Update(*new_response_->headers.get()); response_.response_time = new_response_->response_time; response_.request_time = new_response_->request_time; response_.network_accessed = new_response_->network_accessed; response_.unused_since_prefetch = new_response_->unused_since_prefetch; response_.ssl_info = new_response_->ssl_info; if (new_response_->vary_data.is_valid()) { response_.vary_data = new_response_->vary_data; } else if (response_.vary_data.is_valid()) { // There is a vary header in the stored response but not in the current one. // Update the data with the new request headers. HttpVaryData new_vary_data; new_vary_data.Init(*request_, *response_.headers.get()); response_.vary_data = new_vary_data; } if (response_.headers->HasHeaderValue("cache-control", "no-store")) { if (!entry_->doomed) { int ret = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, ret); } } else { // If we are already reading, we already updated the headers for this // request; doing it again will change Content-Length. if (!reading_) { next_state_ = STATE_CACHE_WRITE_UPDATED_RESPONSE; rv = OK; } } return rv; } int HttpCache::Transaction::DoCacheWriteUpdatedResponse() { next_state_ = STATE_CACHE_WRITE_UPDATED_RESPONSE_COMPLETE; return WriteResponseInfoToEntry(false); } int HttpCache::Transaction::DoCacheWriteUpdatedResponseComplete(int result) { next_state_ = STATE_UPDATE_CACHED_RESPONSE_COMPLETE; return OnWriteResponseInfoToEntryComplete(result); } int HttpCache::Transaction::DoUpdateCachedResponseComplete(int result) { if (mode_ == UPDATE) { DCHECK(!handling_206_); // We got a "not modified" response and already updated the corresponding // cache entry above. // // By closing the cached entry now, we make sure that the 304 rather than // the cached 200 response, is what will be returned to the user. DoneWritingToEntry(true); } else if (entry_ && !handling_206_) { DCHECK_EQ(READ_WRITE, mode_); if (!partial_ || partial_->IsLastRange()) { cache_->ConvertWriterToReader(entry_); mode_ = READ; } // We no longer need the network transaction, so destroy it. final_upload_progress_ = network_trans_->GetUploadProgress(); ResetNetworkTransaction(); } else if (entry_ && handling_206_ && truncated_ && partial_->initial_validation()) { // We just finished the validation of a truncated entry, and the server // is willing to resume the operation. Now we go back and start serving // the first part to the user. ResetNetworkTransaction(); new_response_ = NULL; next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; partial_->SetRangeToStartDownload(); return OK; } next_state_ = STATE_OVERWRITE_CACHED_RESPONSE; return OK; } int HttpCache::Transaction::DoOverwriteCachedResponse() { if (mode_ & READ) { next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } // We change the value of Content-Length for partial content. if (handling_206_ && partial_) partial_->FixContentLength(new_response_->headers.get()); response_ = *new_response_; if (request_->method == "HEAD") { // This response is replacing the cached one. DoneWritingToEntry(false); mode_ = NONE; new_response_ = NULL; return OK; } if (handling_206_ && !CanResume(false)) { // There is no point in storing this resource because it will never be used. // This may change if we support LOAD_ONLY_FROM_CACHE with sparse entries. DoneWritingToEntry(false); if (partial_) partial_->FixResponseHeaders(response_.headers.get(), true); next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } next_state_ = STATE_CACHE_WRITE_RESPONSE; return OK; } int HttpCache::Transaction::DoCacheWriteResponse() { next_state_ = STATE_CACHE_WRITE_RESPONSE_COMPLETE; return WriteResponseInfoToEntry(truncated_); } int HttpCache::Transaction::DoCacheWriteResponseComplete(int result) { next_state_ = STATE_TRUNCATE_CACHED_DATA; return OnWriteResponseInfoToEntryComplete(result); } int HttpCache::Transaction::DoTruncateCachedData() { next_state_ = STATE_TRUNCATE_CACHED_DATA_COMPLETE; if (!entry_) return OK; if (net_log_.IsCapturing()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_DATA); // Truncate the stream. return WriteToEntry(kResponseContentIndex, 0, NULL, 0, io_callback_); } int HttpCache::Transaction::DoTruncateCachedDataComplete(int result) { if (entry_) { if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_DATA, result); } } next_state_ = STATE_TRUNCATE_CACHED_METADATA; return OK; } int HttpCache::Transaction::DoTruncateCachedMetadata() { next_state_ = STATE_TRUNCATE_CACHED_METADATA_COMPLETE; if (!entry_) return OK; if (net_log_.IsCapturing()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); return WriteToEntry(kMetadataIndex, 0, NULL, 0, io_callback_); } int HttpCache::Transaction::DoTruncateCachedMetadataComplete(int result) { if (entry_) { if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_INFO, result); } } next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } int HttpCache::Transaction::DoPartialHeadersReceived() { new_response_ = NULL; if (entry_ && !partial_ && entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; if (!partial_) return OK; if (reading_) { if (network_trans_.get()) { next_state_ = STATE_NETWORK_READ; } else { next_state_ = STATE_CACHE_READ_DATA; } } else if (mode_ != NONE) { // We are about to return the headers for a byte-range request to the user, // so let's fix them. partial_->FixResponseHeaders(response_.headers.get(), true); } return OK; } int HttpCache::Transaction::DoCacheReadMetadata() { DCHECK(entry_); DCHECK(!response_.metadata.get()); next_state_ = STATE_CACHE_READ_METADATA_COMPLETE; response_.metadata = new IOBufferWithSize(entry_->disk_entry->GetDataSize(kMetadataIndex)); net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_INFO); return entry_->disk_entry->ReadData(kMetadataIndex, 0, response_.metadata.get(), response_.metadata->size(), io_callback_); } int HttpCache::Transaction::DoCacheReadMetadataComplete(int result) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_INFO, result); if (result != response_.metadata->size()) return OnCacheReadError(result, false); return OK; } int HttpCache::Transaction::DoNetworkRead() { next_state_ = STATE_NETWORK_READ_COMPLETE; return network_trans_->Read(read_buf_.get(), io_buf_len_, io_callback_); } int HttpCache::Transaction::DoNetworkReadComplete(int result) { DCHECK(mode_ & WRITE || mode_ == NONE); if (!cache_.get()) return ERR_UNEXPECTED; // If there is an error or we aren't saving the data, we are done; just wait // until the destructor runs to see if we can keep the data. if (mode_ == NONE || result < 0) return result; next_state_ = STATE_CACHE_WRITE_DATA; return result; } int HttpCache::Transaction::DoCacheReadData() { if (request_->method == "HEAD") return 0; DCHECK(entry_); next_state_ = STATE_CACHE_READ_DATA_COMPLETE; if (net_log_.IsCapturing()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_READ_DATA); if (partial_) { return partial_->CacheRead(entry_->disk_entry, read_buf_.get(), io_buf_len_, io_callback_); } return entry_->disk_entry->ReadData(kResponseContentIndex, read_offset_, read_buf_.get(), io_buf_len_, io_callback_); } int HttpCache::Transaction::DoCacheReadDataComplete(int result) { if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_READ_DATA, result); } if (!cache_.get()) return ERR_UNEXPECTED; if (partial_) { // Partial requests are confusing to report in histograms because they may // have multiple underlying requests. UpdateTransactionPattern(PATTERN_NOT_COVERED); return DoPartialCacheReadCompleted(result); } if (result > 0) { read_offset_ += result; } else if (result == 0) { // End of file. RecordHistograms(); cache_->DoneReadingFromEntry(entry_, this); entry_ = NULL; } else { return OnCacheReadError(result, false); } return result; } int HttpCache::Transaction::DoCacheWriteData(int num_bytes) { next_state_ = STATE_CACHE_WRITE_DATA_COMPLETE; write_len_ = num_bytes; if (entry_) { if (net_log_.IsCapturing()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_DATA); } if (!entry_ || !num_bytes) return num_bytes; int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); return WriteToEntry(kResponseContentIndex, current_size, read_buf_.get(), num_bytes, io_callback_); } int HttpCache::Transaction::DoCacheWriteDataComplete(int result) { if (entry_) { if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_DATA, result); } } if (!cache_.get()) return ERR_UNEXPECTED; if (result != write_len_) { DLOG(ERROR) << "failed to write response data to cache"; DoneWritingToEntry(false); // We want to ignore errors writing to disk and just keep reading from // the network. result = write_len_; } else if (!done_reading_ && entry_ && (!partial_ || truncated_)) { int current_size = entry_->disk_entry->GetDataSize(kResponseContentIndex); int64_t body_size = response_.headers->GetContentLength(); if (body_size >= 0 && body_size <= current_size) done_reading_ = true; } if (partial_) { // This may be the last request. if (result != 0 || truncated_ || !(partial_->IsLastRange() || mode_ == WRITE)) { return DoPartialNetworkReadCompleted(result); } } if (result == 0) { // End of file. This may be the result of a connection problem so see if we // have to keep the entry around to be flagged as truncated later on. if (done_reading_ || !entry_ || partial_ || response_.headers->GetContentLength() <= 0) { DoneWritingToEntry(true); } } return result; } int HttpCache::Transaction::DoCacheWriteTruncatedResponse() { next_state_ = STATE_CACHE_WRITE_TRUNCATED_RESPONSE_COMPLETE; return WriteResponseInfoToEntry(true); } int HttpCache::Transaction::DoCacheWriteTruncatedResponseComplete(int result) { return OnWriteResponseInfoToEntryComplete(result); } //----------------------------------------------------------------------------- void HttpCache::Transaction::ReadCertChain() { std::string key = GetCacheKeyForCert(response_.ssl_info.cert->os_cert_handle()); const X509Certificate::OSCertHandles& intermediates = response_.ssl_info.cert->GetIntermediateCertificates(); int dist_from_root = intermediates.size(); scoped_refptr shared_chain_data( new SharedChainData(intermediates.size() + 1, TimeTicks::Now())); cache_->cert_cache()->GetCertificate(key, base::Bind(&OnCertReadIOComplete, dist_from_root, true /* is leaf */, shared_chain_data)); for (X509Certificate::OSCertHandles::const_iterator it = intermediates.begin(); it != intermediates.end(); ++it) { --dist_from_root; key = GetCacheKeyForCert(*it); cache_->cert_cache()->GetCertificate(key, base::Bind(&OnCertReadIOComplete, dist_from_root, false /* is not leaf */, shared_chain_data)); } DCHECK_EQ(0, dist_from_root); } void HttpCache::Transaction::WriteCertChain() { const X509Certificate::OSCertHandles& intermediates = response_.ssl_info.cert->GetIntermediateCertificates(); int dist_from_root = intermediates.size(); scoped_refptr shared_chain_data( new SharedChainData(intermediates.size() + 1, TimeTicks::Now())); cache_->cert_cache()->SetCertificate( response_.ssl_info.cert->os_cert_handle(), base::Bind(&OnCertWriteIOComplete, dist_from_root, true /* is leaf */, shared_chain_data)); for (X509Certificate::OSCertHandles::const_iterator it = intermediates.begin(); it != intermediates.end(); ++it) { --dist_from_root; cache_->cert_cache()->SetCertificate(*it, base::Bind(&OnCertWriteIOComplete, dist_from_root, false /* is not leaf */, shared_chain_data)); } DCHECK_EQ(0, dist_from_root); } void HttpCache::Transaction::SetRequest(const BoundNetLog& net_log, const HttpRequestInfo* request) { net_log_ = net_log; request_ = request; effective_load_flags_ = request_->load_flags; if (cache_->mode() == DISABLE) effective_load_flags_ |= LOAD_DISABLE_CACHE; // Some headers imply load flags. The order here is significant. // // LOAD_DISABLE_CACHE : no cache read or write // LOAD_BYPASS_CACHE : no cache read // LOAD_VALIDATE_CACHE : no cache read unless validation // // The former modes trump latter modes, so if we find a matching header we // can stop iterating kSpecialHeaders. // static const struct { const HeaderNameAndValue* search; int load_flag; } kSpecialHeaders[] = { { kPassThroughHeaders, LOAD_DISABLE_CACHE }, { kForceFetchHeaders, LOAD_BYPASS_CACHE }, { kForceValidateHeaders, LOAD_VALIDATE_CACHE }, }; bool range_found = false; bool external_validation_error = false; bool special_headers = false; if (request_->extra_headers.HasHeader(HttpRequestHeaders::kRange)) range_found = true; for (size_t i = 0; i < arraysize(kSpecialHeaders); ++i) { if (HeaderMatches(request_->extra_headers, kSpecialHeaders[i].search)) { effective_load_flags_ |= kSpecialHeaders[i].load_flag; special_headers = true; break; } } // Check for conditionalization headers which may correspond with a // cache validation request. for (size_t i = 0; i < arraysize(kValidationHeaders); ++i) { const ValidationHeaderInfo& info = kValidationHeaders[i]; std::string validation_value; if (request_->extra_headers.GetHeader( info.request_header_name, &validation_value)) { if (!external_validation_.values[i].empty() || validation_value.empty()) { external_validation_error = true; } external_validation_.values[i] = validation_value; external_validation_.initialized = true; } } if (range_found || special_headers || external_validation_.initialized) { // Log the headers before request_ is modified. std::string empty; net_log_.AddEvent( NetLog::TYPE_HTTP_CACHE_CALLER_REQUEST_HEADERS, base::Bind(&HttpRequestHeaders::NetLogCallback, base::Unretained(&request_->extra_headers), &empty)); } // We don't support ranges and validation headers. if (range_found && external_validation_.initialized) { LOG(WARNING) << "Byte ranges AND validation headers found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; } // If there is more than one validation header, we can't treat this request as // a cache validation, since we don't know for sure which header the server // will give us a response for (and they could be contradictory). if (external_validation_error) { LOG(WARNING) << "Multiple or malformed validation headers found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; } if (range_found && !(effective_load_flags_ & LOAD_DISABLE_CACHE)) { UpdateTransactionPattern(PATTERN_NOT_COVERED); partial_.reset(new PartialData); if (request_->method == "GET" && partial_->Init(request_->extra_headers)) { // We will be modifying the actual range requested to the server, so // let's remove the header here. custom_request_.reset(new HttpRequestInfo(*request_)); custom_request_->extra_headers.RemoveHeader(HttpRequestHeaders::kRange); request_ = custom_request_.get(); partial_->SetHeaders(custom_request_->extra_headers); } else { // The range is invalid or we cannot handle it properly. VLOG(1) << "Invalid byte range found."; effective_load_flags_ |= LOAD_DISABLE_CACHE; partial_.reset(NULL); } } } bool HttpCache::Transaction::ShouldPassThrough() { // We may have a null disk_cache if there is an error we cannot recover from, // like not enough disk space, or sharing violations. if (!cache_->disk_cache_.get()) return true; if (effective_load_flags_ & LOAD_DISABLE_CACHE) return true; if (request_->method == "GET" || request_->method == "HEAD") return false; if (request_->method == "POST" && request_->upload_data_stream && request_->upload_data_stream->identifier()) { return false; } if (request_->method == "PUT" && request_->upload_data_stream) return false; if (request_->method == "DELETE") return false; return true; } int HttpCache::Transaction::BeginCacheRead() { // We don't support any combination of LOAD_ONLY_FROM_CACHE and byte ranges. if (response_.headers->response_code() == 206 || partial_) { NOTREACHED(); return ERR_CACHE_MISS; } if (request_->method == "HEAD") FixHeadersForHead(); // We don't have the whole resource. if (truncated_) return ERR_CACHE_MISS; if (entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; return OK; } int HttpCache::Transaction::BeginCacheValidation() { DCHECK_EQ(mode_, READ_WRITE); ValidationType required_validation = RequiresValidation(); bool skip_validation = (required_validation == VALIDATION_NONE); if ((effective_load_flags_ & LOAD_SUPPORT_ASYNC_REVALIDATION) && required_validation == VALIDATION_ASYNCHRONOUS) { DCHECK_EQ(request_->method, "GET"); skip_validation = true; response_.async_revalidation_required = true; } if (request_->method == "HEAD" && (truncated_ || response_.headers->response_code() == 206)) { DCHECK(!partial_); if (skip_validation) return SetupEntryForRead(); // Bail out! next_state_ = STATE_SEND_REQUEST; mode_ = NONE; return OK; } if (truncated_) { // Truncated entries can cause partial gets, so we shouldn't record this // load in histograms. UpdateTransactionPattern(PATTERN_NOT_COVERED); skip_validation = !partial_->initial_validation(); } if (partial_ && (is_sparse_ || truncated_) && (!partial_->IsCurrentRangeCached() || invalid_range_)) { // Force revalidation for sparse or truncated entries. Note that we don't // want to ignore the regular validation logic just because a byte range was // part of the request. skip_validation = false; } if (skip_validation) { UpdateTransactionPattern(PATTERN_ENTRY_USED); return SetupEntryForRead(); } else { // Make the network request conditional, to see if we may reuse our cached // response. If we cannot do so, then we just resort to a normal fetch. // Our mode remains READ_WRITE for a conditional request. Even if the // conditionalization fails, we don't switch to WRITE mode until we // know we won't be falling back to using the cache entry in the // LOAD_FROM_CACHE_IF_OFFLINE case. if (!ConditionalizeRequest()) { couldnt_conditionalize_request_ = true; UpdateTransactionPattern(PATTERN_ENTRY_CANT_CONDITIONALIZE); if (partial_) return DoRestartPartialRequest(); DCHECK_NE(206, response_.headers->response_code()); } next_state_ = STATE_SEND_REQUEST; } return OK; } int HttpCache::Transaction::BeginPartialCacheValidation() { DCHECK_EQ(mode_, READ_WRITE); if (response_.headers->response_code() != 206 && !partial_ && !truncated_) return BeginCacheValidation(); // Partial requests should not be recorded in histograms. UpdateTransactionPattern(PATTERN_NOT_COVERED); if (request_->method == "HEAD") return BeginCacheValidation(); if (!range_requested_) { // The request is not for a range, but we have stored just ranges. partial_.reset(new PartialData()); partial_->SetHeaders(request_->extra_headers); if (!custom_request_.get()) { custom_request_.reset(new HttpRequestInfo(*request_)); request_ = custom_request_.get(); } } next_state_ = STATE_CACHE_QUERY_DATA; return OK; } // This should only be called once per request. int HttpCache::Transaction::ValidateEntryHeadersAndContinue() { DCHECK_EQ(mode_, READ_WRITE); if (!partial_->UpdateFromStoredHeaders( response_.headers.get(), entry_->disk_entry, truncated_)) { return DoRestartPartialRequest(); } if (response_.headers->response_code() == 206) is_sparse_ = true; if (!partial_->IsRequestedRangeOK()) { // The stored data is fine, but the request may be invalid. invalid_range_ = true; } next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; return OK; } int HttpCache::Transaction::BeginExternallyConditionalizedRequest() { DCHECK_EQ(UPDATE, mode_); DCHECK(external_validation_.initialized); for (size_t i = 0; i < arraysize(kValidationHeaders); i++) { if (external_validation_.values[i].empty()) continue; // Retrieve either the cached response's "etag" or "last-modified" header. std::string validator; response_.headers->EnumerateHeader( NULL, kValidationHeaders[i].related_response_header_name, &validator); if (response_.headers->response_code() != 200 || truncated_ || validator.empty() || validator != external_validation_.values[i]) { // The externally conditionalized request is not a validation request // for our existing cache entry. Proceed with caching disabled. UpdateTransactionPattern(PATTERN_NOT_COVERED); DoneWritingToEntry(true); } } // TODO(ricea): This calculation is expensive to perform just to collect // statistics. Either remove it or use the result, depending on the result of // the experiment. ExternallyConditionalizedType type = EXTERNALLY_CONDITIONALIZED_CACHE_USABLE; if (mode_ == NONE) type = EXTERNALLY_CONDITIONALIZED_MISMATCHED_VALIDATORS; else if (RequiresValidation() != VALIDATION_NONE) type = EXTERNALLY_CONDITIONALIZED_CACHE_REQUIRES_VALIDATION; // TODO(ricea): Add CACHE_USABLE_STALE once stale-while-revalidate CL landed. // TODO(ricea): Either remove this histogram or make it permanent by M40. UMA_HISTOGRAM_ENUMERATION("HttpCache.ExternallyConditionalized", type, EXTERNALLY_CONDITIONALIZED_MAX); next_state_ = STATE_SEND_REQUEST; return OK; } int HttpCache::Transaction::RestartNetworkRequest() { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartIgnoringLastError(io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } int HttpCache::Transaction::RestartNetworkRequestWithCertificate( X509Certificate* client_cert, SSLPrivateKey* client_private_key) { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartWithCertificate( client_cert, client_private_key, io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } int HttpCache::Transaction::RestartNetworkRequestWithAuth( const AuthCredentials& credentials) { DCHECK(mode_ & WRITE || mode_ == NONE); DCHECK(network_trans_.get()); DCHECK_EQ(STATE_NONE, next_state_); next_state_ = STATE_SEND_REQUEST_COMPLETE; int rv = network_trans_->RestartWithAuth(credentials, io_callback_); if (rv != ERR_IO_PENDING) return DoLoop(rv); return rv; } ValidationType HttpCache::Transaction::RequiresValidation() { // TODO(darin): need to do more work here: // - make sure we have a matching request method // - watch out for cached responses that depend on authentication if (response_.vary_data.is_valid() && !response_.vary_data.MatchesRequest(*request_, *response_.headers.get())) { vary_mismatch_ = true; return VALIDATION_SYNCHRONOUS; } if (effective_load_flags_ & LOAD_PREFERRING_CACHE) return VALIDATION_NONE; if (response_.unused_since_prefetch && !(effective_load_flags_ & LOAD_PREFETCH) && response_.headers->GetCurrentAge( response_.request_time, response_.response_time, cache_->clock_->Now()) < TimeDelta::FromMinutes(kPrefetchReuseMins)) { // The first use of a resource after prefetch within a short window skips // validation. return VALIDATION_NONE; } if (effective_load_flags_ & LOAD_VALIDATE_CACHE) return VALIDATION_SYNCHRONOUS; if (request_->method == "PUT" || request_->method == "DELETE") return VALIDATION_SYNCHRONOUS; ValidationType validation_required_by_headers = response_.headers->RequiresValidation(response_.request_time, response_.response_time, cache_->clock_->Now()); if (validation_required_by_headers == VALIDATION_ASYNCHRONOUS) { // Asynchronous revalidation is only supported for GET methods. if (request_->method != "GET") return VALIDATION_SYNCHRONOUS; } return validation_required_by_headers; } bool HttpCache::Transaction::ConditionalizeRequest() { DCHECK(response_.headers.get()); if (request_->method == "PUT" || request_->method == "DELETE") return false; // This only makes sense for cached 200 or 206 responses. if (response_.headers->response_code() != 200 && response_.headers->response_code() != 206) { return false; } if (fail_conditionalization_for_test_) return false; DCHECK(response_.headers->response_code() != 206 || response_.headers->HasStrongValidators()); // Just use the first available ETag and/or Last-Modified header value. // TODO(darin): Or should we use the last? std::string etag_value; if (response_.headers->GetHttpVersion() >= HttpVersion(1, 1)) response_.headers->EnumerateHeader(NULL, "etag", &etag_value); std::string last_modified_value; if (!vary_mismatch_) { response_.headers->EnumerateHeader(NULL, "last-modified", &last_modified_value); } if (etag_value.empty() && last_modified_value.empty()) return false; if (!partial_) { // Need to customize the request, so this forces us to allocate :( custom_request_.reset(new HttpRequestInfo(*request_)); request_ = custom_request_.get(); } DCHECK(custom_request_.get()); bool use_if_range = partial_ && !partial_->IsCurrentRangeCached() && !invalid_range_; if (!use_if_range) { // stale-while-revalidate is not useful when we only have a partial response // cached, so don't set the header in that case. HttpResponseHeaders::FreshnessLifetimes lifetimes = response_.headers->GetFreshnessLifetimes(response_.response_time); if (lifetimes.staleness > TimeDelta()) { TimeDelta current_age = response_.headers->GetCurrentAge( response_.request_time, response_.response_time, cache_->clock_->Now()); custom_request_->extra_headers.SetHeader( kFreshnessHeader, base::StringPrintf("max-age=%" PRId64 ",stale-while-revalidate=%" PRId64 ",age=%" PRId64, lifetimes.freshness.InSeconds(), lifetimes.staleness.InSeconds(), current_age.InSeconds())); } } if (!etag_value.empty()) { if (use_if_range) { // We don't want to switch to WRITE mode if we don't have this block of a // byte-range request because we may have other parts cached. custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfRange, etag_value); } else { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfNoneMatch, etag_value); } // For byte-range requests, make sure that we use only one way to validate // the request. if (partial_ && !partial_->IsCurrentRangeCached()) return true; } if (!last_modified_value.empty()) { if (use_if_range) { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfRange, last_modified_value); } else { custom_request_->extra_headers.SetHeader( HttpRequestHeaders::kIfModifiedSince, last_modified_value); } } return true; } // We just received some headers from the server. We may have asked for a range, // in which case partial_ has an object. This could be the first network request // we make to fulfill the original request, or we may be already reading (from // the net and / or the cache). If we are not expecting a certain response, we // just bypass the cache for this request (but again, maybe we are reading), and // delete partial_ (so we are not able to "fix" the headers that we return to // the user). This results in either a weird response for the caller (we don't // expect it after all), or maybe a range that was not exactly what it was asked // for. // // If the server is simply telling us that the resource has changed, we delete // the cached entry and restart the request as the caller intended (by returning // false from this method). However, we may not be able to do that at any point, // for instance if we already returned the headers to the user. // // WARNING: Whenever this code returns false, it has to make sure that the next // time it is called it will return true so that we don't keep retrying the // request. bool HttpCache::Transaction::ValidatePartialResponse() { const HttpResponseHeaders* headers = new_response_->headers.get(); int response_code = headers->response_code(); bool partial_response = (response_code == 206); handling_206_ = false; if (!entry_ || request_->method != "GET") return true; if (invalid_range_) { // We gave up trying to match this request with the stored data. If the // server is ok with the request, delete the entry, otherwise just ignore // this request DCHECK(!reading_); if (partial_response || response_code == 200) { DoomPartialEntry(true); mode_ = NONE; } else { if (response_code == 304) { // Change the response code of the request to be 416 (Requested range // not satisfiable). response_ = *new_response_; partial_->FixResponseHeaders(response_.headers.get(), false); } IgnoreRangeRequest(); } return true; } if (!partial_) { // We are not expecting 206 but we may have one. if (partial_response) IgnoreRangeRequest(); return true; } // TODO(rvargas): Do we need to consider other results here?. bool failure = response_code == 200 || response_code == 416; if (partial_->IsCurrentRangeCached()) { // We asked for "If-None-Match: " so a 206 means a new object. if (partial_response) failure = true; if (response_code == 304 && partial_->ResponseHeadersOK(headers)) return true; } else { // We asked for "If-Range: " so a 206 means just another range. if (partial_response) { if (partial_->ResponseHeadersOK(headers)) { handling_206_ = true; return true; } else { failure = true; } } if (!reading_ && !is_sparse_ && !partial_response) { // See if we can ignore the fact that we issued a byte range request. // If the server sends 200, just store it. If it sends an error, redirect // or something else, we may store the response as long as we didn't have // anything already stored. if (response_code == 200 || (!truncated_ && response_code != 304 && response_code != 416)) { // The server is sending something else, and we can save it. DCHECK((truncated_ && !partial_->IsLastRange()) || range_requested_); partial_.reset(); truncated_ = false; return true; } } // 304 is not expected here, but we'll spare the entry (unless it was // truncated). if (truncated_) failure = true; } if (failure) { // We cannot truncate this entry, it has to be deleted. UpdateTransactionPattern(PATTERN_NOT_COVERED); mode_ = NONE; if (is_sparse_ || truncated_) { // There was something cached to start with, either sparsed data (206), or // a truncated 200, which means that we probably modified the request, // adding a byte range or modifying the range requested by the caller. if (!reading_ && !partial_->IsLastRange()) { // We have not returned anything to the caller yet so it should be safe // to issue another network request, this time without us messing up the // headers. ResetPartialState(true); return false; } LOG(WARNING) << "Failed to revalidate partial entry"; } DoomPartialEntry(true); return true; } IgnoreRangeRequest(); return true; } void HttpCache::Transaction::IgnoreRangeRequest() { // We have a problem. We may or may not be reading already (in which case we // returned the headers), but we'll just pretend that this request is not // using the cache and see what happens. Most likely this is the first // response from the server (it's not changing its mind midway, right?). UpdateTransactionPattern(PATTERN_NOT_COVERED); if (mode_ & WRITE) DoneWritingToEntry(mode_ != WRITE); else if (mode_ & READ && entry_) cache_->DoneReadingFromEntry(entry_, this); partial_.reset(NULL); entry_ = NULL; mode_ = NONE; } void HttpCache::Transaction::FixHeadersForHead() { if (response_.headers->response_code() == 206) { response_.headers->RemoveHeader("Content-Range"); response_.headers->ReplaceStatusLine("HTTP/1.1 200 OK"); } } int HttpCache::Transaction::SetupEntryForRead() { if (network_trans_) ResetNetworkTransaction(); if (partial_) { if (truncated_ || is_sparse_ || !invalid_range_) { // We are going to return the saved response headers to the caller, so // we may need to adjust them first. next_state_ = STATE_PARTIAL_HEADERS_RECEIVED; return OK; } else { partial_.reset(); } } cache_->ConvertWriterToReader(entry_); mode_ = READ; if (request_->method == "HEAD") FixHeadersForHead(); if (entry_->disk_entry->GetDataSize(kMetadataIndex)) next_state_ = STATE_CACHE_READ_METADATA; return OK; } int HttpCache::Transaction::WriteToEntry(int index, int offset, IOBuffer* data, int data_len, const CompletionCallback& callback) { if (!entry_) return data_len; int rv = 0; if (!partial_ || !data_len) { rv = entry_->disk_entry->WriteData(index, offset, data, data_len, callback, true); } else { rv = partial_->CacheWrite(entry_->disk_entry, data, data_len, callback); } return rv; } int HttpCache::Transaction::WriteResponseInfoToEntry(bool truncated) { if (!entry_) return OK; if (net_log_.IsCapturing()) net_log_.BeginEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); // Do not cache no-store content. Do not cache content with cert errors // either. This is to prevent not reporting net errors when loading a // resource from the cache. When we load a page over HTTPS with a cert error // we show an SSL blocking page. If the user clicks proceed we reload the // resource ignoring the errors. The loaded resource is then cached. If that // resource is subsequently loaded from the cache, no net error is reported // (even though the cert status contains the actual errors) and no SSL // blocking page is shown. An alternative would be to reverse-map the cert // status to a net error and replay the net error. if ((response_.headers->HasHeaderValue("cache-control", "no-store")) || IsCertStatusError(response_.ssl_info.cert_status)) { DoneWritingToEntry(false); if (net_log_.IsCapturing()) net_log_.EndEvent(NetLog::TYPE_HTTP_CACHE_WRITE_INFO); return OK; } // cert_cache() will be null if the CertCacheTrial field trial is disabled. if (cache_->cert_cache() && response_.ssl_info.is_valid()) WriteCertChain(); if (truncated) DCHECK_EQ(200, response_.headers->response_code()); // When writing headers, we normally only write the non-transient headers. bool skip_transient_headers = true; scoped_refptr data(new PickledIOBuffer()); response_.Persist(data->pickle(), skip_transient_headers, truncated); data->Done(); io_buf_len_ = data->pickle()->size(); return entry_->disk_entry->WriteData(kResponseInfoIndex, 0, data.get(), io_buf_len_, io_callback_, true); } int HttpCache::Transaction::OnWriteResponseInfoToEntryComplete(int result) { if (!entry_) return OK; if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HTTP_CACHE_WRITE_INFO, result); } if (result != io_buf_len_) { DLOG(ERROR) << "failed to write response info to cache"; DoneWritingToEntry(false); } return OK; } void HttpCache::Transaction::DoneWritingToEntry(bool success) { if (!entry_) return; RecordHistograms(); cache_->DoneWritingToEntry(entry_, success); entry_ = NULL; mode_ = NONE; // switch to 'pass through' mode } int HttpCache::Transaction::OnCacheReadError(int result, bool restart) { DLOG(ERROR) << "ReadData failed: " << result; const int result_for_histogram = std::max(0, -result); if (restart) { UMA_HISTOGRAM_SPARSE_SLOWLY("HttpCache.ReadErrorRestartable", result_for_histogram); } else { UMA_HISTOGRAM_SPARSE_SLOWLY("HttpCache.ReadErrorNonRestartable", result_for_histogram); } // Avoid using this entry in the future. if (cache_.get()) cache_->DoomActiveEntry(cache_key_); if (restart) { DCHECK(!reading_); DCHECK(!network_trans_.get()); cache_->DoneWithEntry(entry_, this, false); entry_ = NULL; is_sparse_ = false; partial_.reset(); next_state_ = STATE_GET_BACKEND; return OK; } return ERR_CACHE_READ_FAILURE; } void HttpCache::Transaction::OnAddToEntryTimeout(base::TimeTicks start_time) { if (entry_lock_waiting_since_ != start_time) return; DCHECK_EQ(next_state_, STATE_ADD_TO_ENTRY_COMPLETE); if (!cache_) return; cache_->RemovePendingTransaction(this); OnIOComplete(ERR_CACHE_LOCK_TIMEOUT); } void HttpCache::Transaction::DoomPartialEntry(bool delete_object) { DVLOG(2) << "DoomPartialEntry"; int rv = cache_->DoomEntry(cache_key_, NULL); DCHECK_EQ(OK, rv); cache_->DoneWithEntry(entry_, this, false); entry_ = NULL; is_sparse_ = false; truncated_ = false; if (delete_object) partial_.reset(NULL); } int HttpCache::Transaction::DoPartialNetworkReadCompleted(int result) { partial_->OnNetworkReadCompleted(result); if (result == 0) { // We need to move on to the next range. ResetNetworkTransaction(); next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; } return result; } int HttpCache::Transaction::DoPartialCacheReadCompleted(int result) { partial_->OnCacheReadCompleted(result); if (result == 0 && mode_ == READ_WRITE) { // We need to move on to the next range. next_state_ = STATE_START_PARTIAL_CACHE_VALIDATION; } else if (result < 0) { return OnCacheReadError(result, false); } return result; } int HttpCache::Transaction::DoRestartPartialRequest() { // The stored data cannot be used. Get rid of it and restart this request. net_log_.AddEvent(NetLog::TYPE_HTTP_CACHE_RESTART_PARTIAL_REQUEST); // WRITE + Doom + STATE_INIT_ENTRY == STATE_CREATE_ENTRY (without an attempt // to Doom the entry again). mode_ = WRITE; ResetPartialState(!range_requested_); next_state_ = STATE_CREATE_ENTRY; return OK; } void HttpCache::Transaction::ResetPartialState(bool delete_object) { partial_->RestoreHeaders(&custom_request_->extra_headers); DoomPartialEntry(delete_object); if (!delete_object) { // The simplest way to re-initialize partial_ is to create a new object. partial_.reset(new PartialData()); if (partial_->Init(request_->extra_headers)) partial_->SetHeaders(custom_request_->extra_headers); else partial_.reset(); } } void HttpCache::Transaction::ResetNetworkTransaction() { DCHECK(!old_network_trans_load_timing_); DCHECK(network_trans_); LoadTimingInfo load_timing; if (network_trans_->GetLoadTimingInfo(&load_timing)) old_network_trans_load_timing_.reset(new LoadTimingInfo(load_timing)); total_received_bytes_ += network_trans_->GetTotalReceivedBytes(); total_sent_bytes_ += network_trans_->GetTotalSentBytes(); ConnectionAttempts attempts; network_trans_->GetConnectionAttempts(&attempts); for (const auto& attempt : attempts) old_connection_attempts_.push_back(attempt); old_remote_endpoint_ = IPEndPoint(); network_trans_->GetRemoteEndpoint(&old_remote_endpoint_); network_trans_.reset(); } // Histogram data from the end of 2010 show the following distribution of // response headers: // // Content-Length............... 87% // Date......................... 98% // Last-Modified................ 49% // Etag......................... 19% // Accept-Ranges: bytes......... 25% // Accept-Ranges: none.......... 0.4% // Strong Validator............. 50% // Strong Validator + ranges.... 24% // Strong Validator + CL........ 49% // bool HttpCache::Transaction::CanResume(bool has_data) { // Double check that there is something worth keeping. if (has_data && !entry_->disk_entry->GetDataSize(kResponseContentIndex)) return false; if (request_->method != "GET") return false; // Note that if this is a 206, content-length was already fixed after calling // PartialData::ResponseHeadersOK(). if (response_.headers->GetContentLength() <= 0 || response_.headers->HasHeaderValue("Accept-Ranges", "none") || !response_.headers->HasStrongValidators()) { return false; } return true; } void HttpCache::Transaction::UpdateTransactionPattern( TransactionPattern new_transaction_pattern) { if (transaction_pattern_ == PATTERN_NOT_COVERED) return; DCHECK(transaction_pattern_ == PATTERN_UNDEFINED || new_transaction_pattern == PATTERN_NOT_COVERED); transaction_pattern_ = new_transaction_pattern; } void HttpCache::Transaction::RecordHistograms() { DCHECK_NE(PATTERN_UNDEFINED, transaction_pattern_); if (!cache_.get() || !cache_->GetCurrentBackend() || cache_->GetCurrentBackend()->GetCacheType() != DISK_CACHE || cache_->mode() != NORMAL || request_->method != "GET") { return; } UMA_HISTOGRAM_ENUMERATION( "HttpCache.Pattern", transaction_pattern_, PATTERN_MAX); if (transaction_pattern_ == PATTERN_NOT_COVERED) return; DCHECK(!range_requested_); DCHECK(!first_cache_access_since_.is_null()); TimeDelta total_time = base::TimeTicks::Now() - first_cache_access_since_; UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone", total_time); bool did_send_request = !send_request_since_.is_null(); DCHECK( (did_send_request && (transaction_pattern_ == PATTERN_ENTRY_NOT_CACHED || transaction_pattern_ == PATTERN_ENTRY_VALIDATED || transaction_pattern_ == PATTERN_ENTRY_UPDATED || transaction_pattern_ == PATTERN_ENTRY_CANT_CONDITIONALIZE)) || (!did_send_request && transaction_pattern_ == PATTERN_ENTRY_USED)); if (!did_send_request) { DCHECK(transaction_pattern_ == PATTERN_ENTRY_USED); UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone.Used", total_time); return; } TimeDelta before_send_time = send_request_since_ - first_cache_access_since_; int64_t before_send_percent = (total_time.ToInternalValue() == 0) ? 0 : before_send_time * 100 / total_time; DCHECK_GE(before_send_percent, 0); DCHECK_LE(before_send_percent, 100); base::HistogramBase::Sample before_send_sample = static_cast(before_send_percent); UMA_HISTOGRAM_TIMES("HttpCache.AccessToDone.SentRequest", total_time); UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend", before_send_sample); // TODO(gavinp): Remove or minimize these histograms, particularly the ones // below this comment after we have received initial data. switch (transaction_pattern_) { case PATTERN_ENTRY_CANT_CONDITIONALIZE: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.CantConditionalize", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.CantConditionalize", before_send_sample); break; } case PATTERN_ENTRY_NOT_CACHED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.NotCached", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.NotCached", before_send_sample); break; } case PATTERN_ENTRY_VALIDATED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.Validated", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.Validated", before_send_sample); break; } case PATTERN_ENTRY_UPDATED: { UMA_HISTOGRAM_TIMES("HttpCache.BeforeSend.Updated", before_send_time); UMA_HISTOGRAM_PERCENTAGE("HttpCache.PercentBeforeSend.Updated", before_send_sample); break; } default: NOTREACHED(); } } void HttpCache::Transaction::OnIOComplete(int result) { DoLoop(result); } } // namespace net