// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_network_transaction.h" #include "base/scoped_ptr.h" #include "base/compiler_specific.h" #include "base/field_trial.h" #include "base/histogram.h" #include "base/string_util.h" #include "base/trace_event.h" #include "build/build_config.h" #include "net/base/connection_type_histograms.h" #include "net/base/io_buffer.h" #include "net/base/load_flags.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/base/ssl_cert_request_info.h" #include "net/base/upload_data_stream.h" #include "net/http/http_auth.h" #include "net/http/http_auth_handler.h" #include "net/http/http_basic_stream.h" #include "net/http/http_chunked_decoder.h" #include "net/http/http_network_session.h" #include "net/http/http_request_info.h" #include "net/http/http_response_headers.h" #include "net/http/http_util.h" #include "net/socket/client_socket_factory.h" #include "net/socket/socks5_client_socket.h" #include "net/socket/socks_client_socket.h" #include "net/socket/ssl_client_socket.h" using base::Time; namespace net { void HttpNetworkTransaction::ResponseHeaders::Realloc(size_t new_size) { headers_.reset(static_cast(realloc(headers_.release(), new_size))); } namespace { void BuildRequestHeaders(const HttpRequestInfo* request_info, const std::string& authorization_headers, const UploadDataStream* upload_data_stream, bool using_proxy, std::string* request_headers) { const std::string path = using_proxy ? HttpUtil::SpecForRequest(request_info->url) : HttpUtil::PathForRequest(request_info->url); *request_headers = StringPrintf("%s %s HTTP/1.1\r\nHost: %s\r\n", request_info->method.c_str(), path.c_str(), GetHostAndOptionalPort(request_info->url).c_str()); // For compat with HTTP/1.0 servers and proxies: if (using_proxy) *request_headers += "Proxy-"; *request_headers += "Connection: keep-alive\r\n"; if (!request_info->user_agent.empty()) { StringAppendF(request_headers, "User-Agent: %s\r\n", request_info->user_agent.c_str()); } // Our consumer should have made sure that this is a safe referrer. See for // instance WebCore::FrameLoader::HideReferrer. if (request_info->referrer.is_valid()) StringAppendF(request_headers, "Referer: %s\r\n", request_info->referrer.spec().c_str()); // Add a content length header? if (upload_data_stream) { StringAppendF(request_headers, "Content-Length: %llu\r\n", upload_data_stream->size()); } else if (request_info->method == "POST" || request_info->method == "PUT" || request_info->method == "HEAD") { // An empty POST/PUT request still needs a content length. As for HEAD, // IE and Safari also add a content length header. Presumably it is to // support sending a HEAD request to an URL that only expects to be sent a // POST or some other method that normally would have a message body. *request_headers += "Content-Length: 0\r\n"; } // Honor load flags that impact proxy caches. if (request_info->load_flags & LOAD_BYPASS_CACHE) { *request_headers += "Pragma: no-cache\r\nCache-Control: no-cache\r\n"; } else if (request_info->load_flags & LOAD_VALIDATE_CACHE) { *request_headers += "Cache-Control: max-age=0\r\n"; } if (!authorization_headers.empty()) { *request_headers += authorization_headers; } // TODO(darin): Need to prune out duplicate headers. *request_headers += request_info->extra_headers; *request_headers += "\r\n"; } // The HTTP CONNECT method for establishing a tunnel connection is documented // in draft-luotonen-web-proxy-tunneling-01.txt and RFC 2817, Sections 5.2 and // 5.3. void BuildTunnelRequest(const HttpRequestInfo* request_info, const std::string& authorization_headers, std::string* request_headers) { // RFC 2616 Section 9 says the Host request-header field MUST accompany all // HTTP/1.1 requests. Add "Proxy-Connection: keep-alive" for compat with // HTTP/1.0 proxies such as Squid (required for NTLM authentication). *request_headers = StringPrintf( "CONNECT %s HTTP/1.1\r\nHost: %s\r\nProxy-Connection: keep-alive\r\n", GetHostAndPort(request_info->url).c_str(), GetHostAndOptionalPort(request_info->url).c_str()); if (!request_info->user_agent.empty()) StringAppendF(request_headers, "User-Agent: %s\r\n", request_info->user_agent.c_str()); if (!authorization_headers.empty()) { *request_headers += authorization_headers; } *request_headers += "\r\n"; } } // namespace //----------------------------------------------------------------------------- HttpNetworkTransaction::HttpNetworkTransaction(HttpNetworkSession* session, ClientSocketFactory* csf) : pending_auth_target_(HttpAuth::AUTH_NONE), ALLOW_THIS_IN_INITIALIZER_LIST( io_callback_(this, &HttpNetworkTransaction::OnIOComplete)), user_callback_(NULL), session_(session), request_(NULL), pac_request_(NULL), socket_factory_(csf), reused_socket_(false), using_ssl_(false), proxy_mode_(kDirectConnection), establishing_tunnel_(false), reading_body_from_socket_(false), request_headers_(new RequestHeaders()), request_headers_bytes_sent_(0), header_buf_(new ResponseHeaders()), header_buf_capacity_(0), header_buf_len_(0), header_buf_body_offset_(-1), header_buf_http_offset_(-1), response_body_length_(-1), // -1 means unspecified. response_body_read_(0), read_buf_len_(0), next_state_(STATE_NONE) { session->ssl_config_service()->GetSSLConfig(&ssl_config_); } int HttpNetworkTransaction::Start(const HttpRequestInfo* request_info, CompletionCallback* callback, LoadLog* load_log) { UpdateConnectionTypeHistograms(CONNECTION_ANY); load_log_ = load_log; request_ = request_info; start_time_ = base::Time::Now(); next_state_ = STATE_RESOLVE_PROXY; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartIgnoringLastError( CompletionCallback* callback) { if (connection_.socket()->IsConnected()) { next_state_ = STATE_WRITE_HEADERS; } else { connection_.socket()->Disconnect(); connection_.Reset(); next_state_ = STATE_INIT_CONNECTION; } int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartWithCertificate( X509Certificate* client_cert, CompletionCallback* callback) { ssl_config_.client_cert = client_cert; if (client_cert) { session_->ssl_client_auth_cache()->Add(GetHostAndPort(request_->url), client_cert); } ssl_config_.send_client_cert = true; next_state_ = STATE_INIT_CONNECTION; // Reset the other member variables. // Note: this is necessary only with SSL renegotiation. ResetStateForRestart(); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartWithAuth( const std::wstring& username, const std::wstring& password, CompletionCallback* callback) { HttpAuth::Target target = pending_auth_target_; if (target == HttpAuth::AUTH_NONE) { NOTREACHED(); return ERR_UNEXPECTED; } pending_auth_target_ = HttpAuth::AUTH_NONE; DCHECK(auth_identity_[target].invalid || (username.empty() && password.empty())); if (auth_identity_[target].invalid) { // Update the username/password. auth_identity_[target].source = HttpAuth::IDENT_SRC_EXTERNAL; auth_identity_[target].invalid = false; auth_identity_[target].username = username; auth_identity_[target].password = password; } PrepareForAuthRestart(target); DCHECK(user_callback_ == NULL); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } void HttpNetworkTransaction::PrepareForAuthRestart(HttpAuth::Target target) { DCHECK(HaveAuth(target)); DCHECK(auth_identity_[target].source != HttpAuth::IDENT_SRC_PATH_LOOKUP); // Add the auth entry to the cache before restarting. We don't know whether // the identity is valid yet, but if it is valid we want other transactions // to know about it. If an entry for (origin, handler->realm()) already // exists, we update it. // // If auth_identity_[target].source is HttpAuth::IDENT_SRC_NONE, // auth_identity_[target] contains no identity because identity is not // required yet. bool has_auth_identity = auth_identity_[target].source != HttpAuth::IDENT_SRC_NONE; if (has_auth_identity) { session_->auth_cache()->Add(AuthOrigin(target), auth_handler_[target], auth_identity_[target].username, auth_identity_[target].password, AuthPath(target)); } bool keep_alive = false; if (response_.headers->IsKeepAlive()) { // If there is a response body of known length, we need to drain it first. if (response_body_length_ > 0 || chunked_decoder_.get()) { next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART; read_buf_ = new IOBuffer(kDrainBodyBufferSize); // A bit bucket read_buf_len_ = kDrainBodyBufferSize; return; } if (response_body_length_ == 0) // No response body to drain. keep_alive = true; // response_body_length_ is -1 and we're not using chunked encoding. We // don't know the length of the response body, so we can't reuse this // connection even though the server says it's keep-alive. } // If the auth scheme is connection-based but the proxy/server mistakenly // marks the connection as non-keep-alive, the auth is going to fail, so log // an error message. if (!keep_alive && auth_handler_[target]->is_connection_based() && has_auth_identity) { LOG(ERROR) << "Can't perform " << auth_handler_[target]->scheme() << " auth to the " << AuthTargetString(target) << " " << AuthOrigin(target) << " over a non-keep-alive connection"; HttpVersion http_version = response_.headers->GetHttpVersion(); LOG(ERROR) << " HTTP version is " << http_version.major_value() << "." << http_version.minor_value(); std::string header_val; void* iter = NULL; while (response_.headers->EnumerateHeader(&iter, "connection", &header_val)) { LOG(ERROR) << " Has header Connection: " << header_val; } iter = NULL; while (response_.headers->EnumerateHeader(&iter, "proxy-connection", &header_val)) { LOG(ERROR) << " Has header Proxy-Connection: " << header_val; } // RFC 4559 requires that a proxy indicate its support of NTLM/Negotiate // authentication with a "Proxy-Support: Session-Based-Authentication" // response header. iter = NULL; while (response_.headers->EnumerateHeader(&iter, "proxy-support", &header_val)) { LOG(ERROR) << " Has header Proxy-Support: " << header_val; } } // We don't need to drain the response body, so we act as if we had drained // the response body. DidDrainBodyForAuthRestart(keep_alive); } void HttpNetworkTransaction::DidDrainBodyForAuthRestart(bool keep_alive) { if (keep_alive) { next_state_ = STATE_WRITE_HEADERS; reused_socket_ = true; } else { next_state_ = STATE_INIT_CONNECTION; connection_.socket()->Disconnect(); connection_.Reset(); } // Reset the other member variables. ResetStateForRestart(); } int HttpNetworkTransaction::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(response_.headers); DCHECK(buf); DCHECK_LT(0, buf_len); if (!connection_.is_initialized()) return 0; // connection_ has been reset. Treat like EOF. if (establishing_tunnel_) { // We're trying to read the body of the response but we're still trying to // establish an SSL tunnel through the proxy. We can't read these bytes // when establishing a tunnel because they might be controlled by an active // network attacker. We don't worry about this for HTTP because an active // network attacker can already control HTTP sessions. // We reach this case when the user cancels a 407 proxy auth prompt. // See http://crbug.com/8473 DCHECK_EQ(407, response_.headers->response_code()); LogBlockedTunnelResponse(response_.headers->response_code()); return ERR_TUNNEL_CONNECTION_FAILED; } // http://crbug.com/16371: We're seeing |user_buf_->data()| return NULL. // See if the user is passing in an IOBuffer with a NULL |data_|. CHECK(buf); CHECK(buf->data()); read_buf_ = buf; read_buf_len_ = buf_len; next_state_ = STATE_READ_BODY; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } const HttpResponseInfo* HttpNetworkTransaction::GetResponseInfo() const { return (response_.headers || response_.ssl_info.cert || response_.cert_request_info) ? &response_ : NULL; } LoadState HttpNetworkTransaction::GetLoadState() const { // TODO(wtc): Define a new LoadState value for the // STATE_INIT_CONNECTION_COMPLETE state, which delays the HTTP request. switch (next_state_) { case STATE_RESOLVE_PROXY_COMPLETE: return LOAD_STATE_RESOLVING_PROXY_FOR_URL; case STATE_INIT_CONNECTION_COMPLETE: return connection_.GetLoadState(); case STATE_WRITE_HEADERS_COMPLETE: case STATE_WRITE_BODY_COMPLETE: return LOAD_STATE_SENDING_REQUEST; case STATE_READ_HEADERS_COMPLETE: return LOAD_STATE_WAITING_FOR_RESPONSE; case STATE_READ_BODY_COMPLETE: return LOAD_STATE_READING_RESPONSE; default: return LOAD_STATE_IDLE; } } uint64 HttpNetworkTransaction::GetUploadProgress() const { if (!request_body_stream_.get()) return 0; return request_body_stream_->position(); } HttpNetworkTransaction::~HttpNetworkTransaction() { // If we still have an open socket, then make sure to disconnect it so it // won't call us back and we don't try to reuse it later on. if (connection_.is_initialized()) connection_.socket()->Disconnect(); if (pac_request_) session_->proxy_service()->CancelPacRequest(pac_request_); } void HttpNetworkTransaction::DoCallback(int rv) { DCHECK(rv != ERR_IO_PENDING); DCHECK(user_callback_); // Since Run may result in Read being called, clear user_callback_ up front. CompletionCallback* c = user_callback_; user_callback_ = NULL; c->Run(rv); } void HttpNetworkTransaction::OnIOComplete(int result) { int rv = DoLoop(result); if (rv != ERR_IO_PENDING) DoCallback(rv); } int HttpNetworkTransaction::DoLoop(int result) { DCHECK(next_state_ != STATE_NONE); int rv = result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_RESOLVE_PROXY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.resolve_proxy", request_, request_->url.spec()); rv = DoResolveProxy(); break; case STATE_RESOLVE_PROXY_COMPLETE: rv = DoResolveProxyComplete(rv); TRACE_EVENT_END("http.resolve_proxy", request_, request_->url.spec()); break; case STATE_INIT_CONNECTION: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.init_conn", request_, request_->url.spec()); rv = DoInitConnection(); break; case STATE_INIT_CONNECTION_COMPLETE: rv = DoInitConnectionComplete(rv); TRACE_EVENT_END("http.init_conn", request_, request_->url.spec()); break; case STATE_SOCKS_CONNECT: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.socks_connect", request_, request_->url.spec()); rv = DoSOCKSConnect(); break; case STATE_SOCKS_CONNECT_COMPLETE: rv = DoSOCKSConnectComplete(rv); TRACE_EVENT_END("http.socks_connect", request_, request_->url.spec()); break; case STATE_SSL_CONNECT: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.ssl_connect", request_, request_->url.spec()); rv = DoSSLConnect(); break; case STATE_SSL_CONNECT_COMPLETE: rv = DoSSLConnectComplete(rv); TRACE_EVENT_END("http.ssl_connect", request_, request_->url.spec()); break; case STATE_WRITE_HEADERS: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.write_headers", request_, request_->url.spec()); rv = DoWriteHeaders(); break; case STATE_WRITE_HEADERS_COMPLETE: rv = DoWriteHeadersComplete(rv); TRACE_EVENT_END("http.write_headers", request_, request_->url.spec()); break; case STATE_WRITE_BODY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.write_body", request_, request_->url.spec()); rv = DoWriteBody(); break; case STATE_WRITE_BODY_COMPLETE: rv = DoWriteBodyComplete(rv); TRACE_EVENT_END("http.write_body", request_, request_->url.spec()); break; case STATE_READ_HEADERS: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec()); rv = DoReadHeaders(); break; case STATE_READ_HEADERS_COMPLETE: rv = DoReadHeadersComplete(rv); TRACE_EVENT_END("http.read_headers", request_, request_->url.spec()); break; case STATE_READ_BODY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec()); rv = DoReadBody(); break; case STATE_READ_BODY_COMPLETE: rv = DoReadBodyComplete(rv); TRACE_EVENT_END("http.read_body", request_, request_->url.spec()); break; case STATE_DRAIN_BODY_FOR_AUTH_RESTART: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.drain_body_for_auth_restart", request_, request_->url.spec()); rv = DoDrainBodyForAuthRestart(); break; case STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE: rv = DoDrainBodyForAuthRestartComplete(rv); TRACE_EVENT_END("http.drain_body_for_auth_restart", request_, request_->url.spec()); break; default: NOTREACHED() << "bad state"; rv = ERR_FAILED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); return rv; } int HttpNetworkTransaction::DoResolveProxy() { DCHECK(!pac_request_); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; if (request_->load_flags & LOAD_BYPASS_PROXY) { proxy_info_.UseDirect(); return OK; } return session_->proxy_service()->ResolveProxy( request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_); } int HttpNetworkTransaction::DoResolveProxyComplete(int result) { next_state_ = STATE_INIT_CONNECTION; // Remove unsupported proxies from the list. proxy_info_.RemoveProxiesWithoutScheme( ProxyServer::SCHEME_DIRECT | ProxyServer::SCHEME_HTTP | ProxyServer::SCHEME_SOCKS4 | ProxyServer::SCHEME_SOCKS5); pac_request_ = NULL; if (result != OK) { DLOG(ERROR) << "Failed to resolve proxy: " << result; proxy_info_.UseDirect(); } return OK; } int HttpNetworkTransaction::DoInitConnection() { DCHECK(!connection_.is_initialized()); next_state_ = STATE_INIT_CONNECTION_COMPLETE; using_ssl_ = request_->url.SchemeIs("https"); if (proxy_info_.is_direct()) proxy_mode_ = kDirectConnection; else if (proxy_info_.proxy_server().is_socks()) proxy_mode_ = kSOCKSProxy; else if (using_ssl_) proxy_mode_ = kHTTPProxyUsingTunnel; else proxy_mode_ = kHTTPProxy; // Build the string used to uniquely identify connections of this type. // Determine the host and port to connect to. std::string connection_group; std::string host; int port; if (proxy_mode_ != kDirectConnection) { ProxyServer proxy_server = proxy_info_.proxy_server(); connection_group = "proxy/" + proxy_server.ToURI() + "/"; host = proxy_server.HostNoBrackets(); port = proxy_server.port(); } else { host = request_->url.HostNoBrackets(); port = request_->url.EffectiveIntPort(); } // For a connection via HTTP proxy not using CONNECT, the connection // is to the proxy server only. For all other cases // (direct, HTTP proxy CONNECT, SOCKS), the connection is upto the // url endpoint. Hence we append the url data into the connection_group. if (proxy_mode_ != kHTTPProxy) connection_group.append(request_->url.GetOrigin().spec()); // TODO(willchan): Downgrade this back to a DCHECK after closing // http://crbug.com/15374. if (connection_group.empty()) { char url_debug[4096]; base::strlcpy(url_debug, request_->url.possibly_invalid_spec().c_str(), arraysize(url_debug)); char url_origin_debug[4096]; base::strlcpy(url_origin_debug, request_->url.GetOrigin().possibly_invalid_spec().c_str(), arraysize(url_origin_debug)); CHECK(false) << "URL: " << url_debug << ", Origin: " << url_origin_debug; } HostResolver::RequestInfo resolve_info(host, port); // The referrer is used by the DNS prefetch system to corellate resolutions // with the page that triggered them. It doesn't impact the actual addresses // that we resolve to. resolve_info.set_referrer(request_->referrer); // If the user is refreshing the page, bypass the host cache. if (request_->load_flags & LOAD_BYPASS_CACHE || request_->load_flags & LOAD_DISABLE_CACHE) { resolve_info.set_allow_cached_response(false); } int rv = connection_.Init(connection_group, resolve_info, request_->priority, &io_callback_, session_->tcp_socket_pool(), load_log_); return rv; } int HttpNetworkTransaction::DoInitConnectionComplete(int result) { if (result < 0) return ReconsiderProxyAfterError(result); DCHECK(connection_.is_initialized()); LogTCPConnectedMetrics(connection_); // Set the reused_socket_ flag to indicate that we are using a keep-alive // connection. This flag is used to handle errors that occur while we are // trying to reuse a keep-alive connection. reused_socket_ = connection_.is_reused(); if (reused_socket_) { next_state_ = STATE_WRITE_HEADERS; } else { // Now we have a TCP connected socket. Perform other connection setup as // needed. if (proxy_mode_ == kSOCKSProxy) next_state_ = STATE_SOCKS_CONNECT; else if (using_ssl_ && proxy_mode_ == kDirectConnection) { next_state_ = STATE_SSL_CONNECT; } else { next_state_ = STATE_WRITE_HEADERS; if (proxy_mode_ == kHTTPProxyUsingTunnel) establishing_tunnel_ = true; } } http_stream_.reset(new HttpBasicStream(&connection_)); return OK; } int HttpNetworkTransaction::DoSOCKSConnect() { DCHECK_EQ(kSOCKSProxy, proxy_mode_); next_state_ = STATE_SOCKS_CONNECT_COMPLETE; // Add a SOCKS connection on top of our existing transport socket. ClientSocket* s = connection_.release_socket(); HostResolver::RequestInfo req_info(request_->url.HostNoBrackets(), request_->url.EffectiveIntPort()); req_info.set_referrer(request_->referrer); if (proxy_info_.proxy_server().scheme() == ProxyServer::SCHEME_SOCKS5) s = new SOCKS5ClientSocket(s, req_info, session_->host_resolver()); else s = new SOCKSClientSocket(s, req_info, session_->host_resolver()); connection_.set_socket(s); return connection_.socket()->Connect(&io_callback_); } int HttpNetworkTransaction::DoSOCKSConnectComplete(int result) { DCHECK_EQ(kSOCKSProxy, proxy_mode_); if (result == OK) { if (using_ssl_) { next_state_ = STATE_SSL_CONNECT; } else { next_state_ = STATE_WRITE_HEADERS; } } else { result = ReconsiderProxyAfterError(result); } return result; } int HttpNetworkTransaction::DoSSLConnect() { next_state_ = STATE_SSL_CONNECT_COMPLETE; if (request_->load_flags & LOAD_VERIFY_EV_CERT) ssl_config_.verify_ev_cert = true; // Add a SSL socket on top of our existing transport socket. ClientSocket* s = connection_.release_socket(); s = socket_factory_->CreateSSLClientSocket( s, request_->url.HostNoBrackets(), ssl_config_); connection_.set_socket(s); return connection_.socket()->Connect(&io_callback_); } int HttpNetworkTransaction::DoSSLConnectComplete(int result) { if (IsCertificateError(result)) result = HandleCertificateError(result); if (result == OK) { next_state_ = STATE_WRITE_HEADERS; } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { result = HandleCertificateRequest(result); } else { result = HandleSSLHandshakeError(result); } return result; } int HttpNetworkTransaction::DoWriteHeaders() { next_state_ = STATE_WRITE_HEADERS_COMPLETE; // This is constructed lazily (instead of within our Start method), so that // we have proxy info available. if (request_headers_->headers_.empty()) { // Figure out if we can/should add Proxy-Authentication & Authentication // headers. bool have_proxy_auth = ShouldApplyProxyAuth() && (HaveAuth(HttpAuth::AUTH_PROXY) || SelectPreemptiveAuth(HttpAuth::AUTH_PROXY)); bool have_server_auth = ShouldApplyServerAuth() && (HaveAuth(HttpAuth::AUTH_SERVER) || SelectPreemptiveAuth(HttpAuth::AUTH_SERVER)); std::string authorization_headers; if (have_proxy_auth) authorization_headers.append( BuildAuthorizationHeader(HttpAuth::AUTH_PROXY)); if (have_server_auth) authorization_headers.append( BuildAuthorizationHeader(HttpAuth::AUTH_SERVER)); if (establishing_tunnel_) { BuildTunnelRequest(request_, authorization_headers, &request_headers_->headers_); } else { if (request_->upload_data) request_body_stream_.reset(new UploadDataStream(request_->upload_data)); BuildRequestHeaders(request_, authorization_headers, request_body_stream_.get(), proxy_mode_ == kHTTPProxy, &request_headers_->headers_); } } // Record our best estimate of the 'request time' as the time when we send // out the first bytes of the request headers. if (request_headers_bytes_sent_ == 0) { response_.request_time = Time::Now(); } request_headers_->SetDataOffset(request_headers_bytes_sent_); int buf_len = static_cast(request_headers_->headers_.size() - request_headers_bytes_sent_); DCHECK_GT(buf_len, 0); return http_stream_->Write(request_headers_, buf_len, &io_callback_); } int HttpNetworkTransaction::DoWriteHeadersComplete(int result) { if (result < 0) return HandleIOError(result); request_headers_bytes_sent_ += result; if (request_headers_bytes_sent_ < request_headers_->headers_.size()) { next_state_ = STATE_WRITE_HEADERS; } else if (!establishing_tunnel_ && request_body_stream_.get() && request_body_stream_->size()) { next_state_ = STATE_WRITE_BODY; } else { next_state_ = STATE_READ_HEADERS; } return OK; } int HttpNetworkTransaction::DoWriteBody() { next_state_ = STATE_WRITE_BODY_COMPLETE; DCHECK(request_body_stream_.get()); DCHECK(request_body_stream_->size()); int buf_len = static_cast(request_body_stream_->buf_len()); return http_stream_->Write(request_body_stream_->buf(), buf_len, &io_callback_); } int HttpNetworkTransaction::DoWriteBodyComplete(int result) { if (result < 0) return HandleIOError(result); request_body_stream_->DidConsume(result); if (request_body_stream_->position() < request_body_stream_->size()) { next_state_ = STATE_WRITE_BODY; } else { next_state_ = STATE_READ_HEADERS; } return OK; } int HttpNetworkTransaction::DoReadHeaders() { next_state_ = STATE_READ_HEADERS_COMPLETE; // Grow the read buffer if necessary. if (header_buf_len_ == header_buf_capacity_) { header_buf_capacity_ += kHeaderBufInitialSize; header_buf_->Realloc(header_buf_capacity_); } int buf_len = header_buf_capacity_ - header_buf_len_; header_buf_->set_data(header_buf_len_); // http://crbug.com/16371: We're seeing |user_buf_->data()| return NULL. // See if the user is passing in an IOBuffer with a NULL |data_|. CHECK(header_buf_->data()); return http_stream_->Read(header_buf_, buf_len, &io_callback_); } int HttpNetworkTransaction::HandleConnectionClosedBeforeEndOfHeaders() { if (establishing_tunnel_) { // The connection was closed before the tunnel could be established. return ERR_TUNNEL_CONNECTION_FAILED; } if (has_found_status_line_start()) { // Assume EOF is end-of-headers. header_buf_body_offset_ = header_buf_len_; return OK; } // No status line was matched yet. Could have been a HTTP/0.9 response, or // a partial HTTP/1.x response. if (header_buf_len_ == 0) { // The connection was closed before any data was sent. Likely an error // rather than empty HTTP/0.9 response. return ERR_EMPTY_RESPONSE; } // Assume everything else is a HTTP/0.9 response (including responses // of 'h', 'ht', 'htt'). header_buf_body_offset_ = 0; return OK; } int HttpNetworkTransaction::DoReadHeadersComplete(int result) { // We can get a certificate error or ERR_SSL_CLIENT_AUTH_CERT_NEEDED here // due to SSL renegotiation. if (using_ssl_) { if (IsCertificateError(result)) { // We don't handle a certificate error during SSL renegotiation, so we // have to return an error that's not in the certificate error range // (-2xx). LOG(ERROR) << "Got a server certificate with error " << result << " during SSL renegotiation"; result = ERR_CERT_ERROR_IN_SSL_RENEGOTIATION; } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { result = HandleCertificateRequest(result); if (result == OK) return result; } } if (result < 0) return HandleIOError(result); if (result == 0 && ShouldResendRequest(result)) { ResetConnectionAndRequestForResend(); return result; } // Record our best estimate of the 'response time' as the time when we read // the first bytes of the response headers. if (header_buf_len_ == 0) { // After we call RestartWithAuth header_buf_len will be zero again, and // we need to be cautious about incorrectly logging the duration across the // authentication activitiy. bool first_response = response_.response_time == Time(); response_.response_time = Time::Now(); if (first_response) LogTransactionConnectedMetrics(); } // The socket was closed before we found end-of-headers. if (result == 0) { int rv = HandleConnectionClosedBeforeEndOfHeaders(); if (rv != OK) return rv; } else { header_buf_len_ += result; DCHECK(header_buf_len_ <= header_buf_capacity_); // Look for the start of the status line, if it hasn't been found yet. if (!has_found_status_line_start()) { header_buf_http_offset_ = HttpUtil::LocateStartOfStatusLine( header_buf_->headers(), header_buf_len_); } if (has_found_status_line_start()) { int eoh = HttpUtil::LocateEndOfHeaders( header_buf_->headers(), header_buf_len_, header_buf_http_offset_); if (eoh == -1) { // Prevent growing the headers buffer indefinitely. if (header_buf_len_ >= kMaxHeaderBufSize) return ERR_RESPONSE_HEADERS_TOO_BIG; // Haven't found the end of headers yet, keep reading. next_state_ = STATE_READ_HEADERS; return OK; } header_buf_body_offset_ = eoh; } else if (header_buf_len_ < 8) { // Not enough data to decide whether this is HTTP/0.9 yet. // 8 bytes = (4 bytes of junk) + "http".length() next_state_ = STATE_READ_HEADERS; return OK; } else { // Enough data was read -- there is no status line. header_buf_body_offset_ = 0; } } // And, we are done with the Start or the SSL tunnel CONNECT sequence. return DidReadResponseHeaders(); } int HttpNetworkTransaction::DoReadBody() { DCHECK(read_buf_); DCHECK_GT(read_buf_len_, 0); DCHECK(connection_.is_initialized()); DCHECK(!header_buf_->headers() || header_buf_body_offset_ >= 0); next_state_ = STATE_READ_BODY_COMPLETE; // We may have already consumed the indicated content length. if (response_body_length_ != -1 && response_body_read_ >= response_body_length_) return 0; // We may have some data remaining in the header buffer. if (header_buf_->headers() && header_buf_body_offset_ < header_buf_len_) { int n = std::min(read_buf_len_, header_buf_len_ - header_buf_body_offset_); memcpy(read_buf_->data(), header_buf_->headers() + header_buf_body_offset_, n); header_buf_body_offset_ += n; if (header_buf_body_offset_ == header_buf_len_) { header_buf_->Reset(); header_buf_capacity_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = -1; } return n; } reading_body_from_socket_ = true; return http_stream_->Read(read_buf_, read_buf_len_, &io_callback_); } int HttpNetworkTransaction::DoReadBodyComplete(int result) { // We are done with the Read call. DCHECK(!establishing_tunnel_) << "We should never read a response body of a tunnel."; bool unfiltered_eof = (result == 0 && reading_body_from_socket_); reading_body_from_socket_ = false; // Filter incoming data if appropriate. FilterBuf may return an error. if (result > 0 && chunked_decoder_.get()) { result = chunked_decoder_->FilterBuf(read_buf_->data(), result); if (result == 0 && !chunked_decoder_->reached_eof()) { // Don't signal completion of the Read call yet or else it'll look like // we received end-of-file. Wait for more data. next_state_ = STATE_READ_BODY; return OK; } } bool done = false, keep_alive = false; if (result < 0) { // Error while reading the socket. done = true; } else { response_body_read_ += result; if (unfiltered_eof || (response_body_length_ != -1 && response_body_read_ >= response_body_length_) || (chunked_decoder_.get() && chunked_decoder_->reached_eof())) { done = true; keep_alive = response_.headers->IsKeepAlive(); // We can't reuse the connection if we read more than the advertised // content length. if (unfiltered_eof || (response_body_length_ != -1 && response_body_read_ > response_body_length_)) keep_alive = false; } } // Clean up connection_ if we are done. if (done) { LogTransactionMetrics(); if (!keep_alive) connection_.socket()->Disconnect(); connection_.Reset(); // The next Read call will return 0 (EOF). } // Clear these to avoid leaving around old state. read_buf_ = NULL; read_buf_len_ = 0; return result; } int HttpNetworkTransaction::DoDrainBodyForAuthRestart() { // This method differs from DoReadBody only in the next_state_. So we just // call DoReadBody and override the next_state_. Perhaps there is a more // elegant way for these two methods to share code. int rv = DoReadBody(); DCHECK(next_state_ == STATE_READ_BODY_COMPLETE); next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE; return rv; } // TODO(wtc): The first two thirds of this method and the DoReadBodyComplete // method are almost the same. Figure out a good way for these two methods // to share code. int HttpNetworkTransaction::DoDrainBodyForAuthRestartComplete(int result) { bool unfiltered_eof = (result == 0 && reading_body_from_socket_); reading_body_from_socket_ = false; // Filter incoming data if appropriate. FilterBuf may return an error. if (result > 0 && chunked_decoder_.get()) { result = chunked_decoder_->FilterBuf(read_buf_->data(), result); if (result == 0 && !chunked_decoder_->reached_eof()) { // Don't signal completion of the Read call yet or else it'll look like // we received end-of-file. Wait for more data. next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART; return OK; } } // keep_alive defaults to true because the very reason we're draining the // response body is to reuse the connection for auth restart. bool done = false, keep_alive = true; if (result < 0) { // Error while reading the socket. done = true; keep_alive = false; } else { response_body_read_ += result; if (unfiltered_eof || (response_body_length_ != -1 && response_body_read_ >= response_body_length_) || (chunked_decoder_.get() && chunked_decoder_->reached_eof())) { done = true; // We can't reuse the connection if we read more than the advertised // content length. if (unfiltered_eof || (response_body_length_ != -1 && response_body_read_ > response_body_length_)) keep_alive = false; } } if (done) { DidDrainBodyForAuthRestart(keep_alive); } else { // Keep draining. next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART; } return OK; } void HttpNetworkTransaction::LogTCPConnectedMetrics( const ClientSocketHandle& handle) { const base::TimeDelta time_to_obtain_connected_socket = base::TimeTicks::Now() - handle.init_time(); static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); if (handle.reuse_type() == ClientSocketHandle::UNUSED) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Dns_Resolution_And_TCP_Connection_Latency", time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } static LinearHistogram tcp_socket_type_counter( "Net.TCPSocketType", 0, ClientSocketHandle::NUM_TYPES, ClientSocketHandle::NUM_TYPES + 1); tcp_socket_type_counter.SetFlags(kUmaTargetedHistogramFlag); tcp_socket_type_counter.Add(handle.reuse_type()); if (use_late_binding_histogram) { static LinearHistogram tcp_socket_type_counter2( FieldTrial::MakeName("Net.TCPSocketType", "SocketLateBinding").data(), 0, ClientSocketHandle::NUM_TYPES, ClientSocketHandle::NUM_TYPES + 1); tcp_socket_type_counter2.SetFlags(kUmaTargetedHistogramFlag); tcp_socket_type_counter2.Add(handle.reuse_type()); } UMA_HISTOGRAM_CLIPPED_TIMES( "Net.TransportSocketRequestTime", time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.TransportSocketRequestTime", "SocketLateBinding").data(), time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } switch (handle.reuse_type()) { case ClientSocketHandle::UNUSED: break; case ClientSocketHandle::UNUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeBeforeNextUse_UnusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_UnusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; case ClientSocketHandle::REUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeBeforeNextUse_ReusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_ReusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; default: NOTREACHED(); break; } } void HttpNetworkTransaction::LogIOErrorMetrics( const ClientSocketHandle& handle) { static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); static LinearHistogram io_error_socket_type_counter( "Net.IOError_SocketReuseType", 0, ClientSocketHandle::NUM_TYPES, ClientSocketHandle::NUM_TYPES + 1); io_error_socket_type_counter.SetFlags(kUmaTargetedHistogramFlag); io_error_socket_type_counter.Add(handle.reuse_type()); if (use_late_binding_histogram) { static LinearHistogram io_error_socket_type_counter( FieldTrial::MakeName("Net.IOError_SocketReuseType", "SocketLateBinding").data(), 0, ClientSocketHandle::NUM_TYPES, ClientSocketHandle::NUM_TYPES + 1); io_error_socket_type_counter.SetFlags(kUmaTargetedHistogramFlag); io_error_socket_type_counter.Add(handle.reuse_type()); } switch (handle.reuse_type()) { case ClientSocketHandle::UNUSED: break; case ClientSocketHandle::UNUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeOnIOError2_UnusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_UnusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; case ClientSocketHandle::REUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeOnIOError2_ReusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_ReusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; default: NOTREACHED(); break; } } void HttpNetworkTransaction::LogTransactionConnectedMetrics() const { base::TimeDelta total_duration = response_.response_time - start_time_; UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Connected_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.Transaction_Connected_Under_10", "SocketLateBinding").data(), total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } if (!reused_socket_) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Connected_New", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); // Also record for our field trial. static bool use_async_tcp(FieldTrialList::Find("AsyncSlowStart") && !FieldTrialList::Find("AsyncSlowStart")->group_name().empty()); if (use_async_tcp) { UMA_HISTOGRAM_CLIPPED_TIMES( FieldTrial::MakeName("Net.Transaction_Connected_New", "AsyncSlowStart").data(), total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } } // Currently, non-zero priority requests are frame or sub-frame resource // types. This will change when we also prioritize certain subresources like // css, js, etc. if (request_->priority) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Priority_High_Latency", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } else { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Priority_Low_Latency", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } } void HttpNetworkTransaction::LogTransactionMetrics() const { base::TimeDelta duration = base::Time::Now() - response_.request_time; if (60 < duration.InMinutes()) return; base::TimeDelta total_duration = base::Time::Now() - start_time_; UMA_HISTOGRAM_LONG_TIMES("Net.Transaction_Latency", duration); UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Under_10", duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Total_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); if (!reused_socket_) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Latency_Total_New_Connection_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } } void HttpNetworkTransaction::LogBlockedTunnelResponse( int response_code) const { LOG(WARNING) << "Blocked proxy response with status " << response_code << " to CONNECT request for " << GetHostAndPort(request_->url) << "."; } int HttpNetworkTransaction::DidReadResponseHeaders() { DCHECK_GE(header_buf_body_offset_, 0); scoped_refptr headers; if (has_found_status_line_start()) { headers = new HttpResponseHeaders( HttpUtil::AssembleRawHeaders( header_buf_->headers(), header_buf_body_offset_)); } else { // Fabricate a status line to to preserve the HTTP/0.9 version. // (otherwise HttpResponseHeaders will default it to HTTP/1.0). headers = new HttpResponseHeaders(std::string("HTTP/0.9 200 OK")); } if (headers->GetParsedHttpVersion() < HttpVersion(1, 0)) { // Require the "HTTP/1.x" status line for SSL CONNECT. if (establishing_tunnel_) return ERR_TUNNEL_CONNECTION_FAILED; // HTTP/0.9 doesn't support the PUT method, so lack of response headers // indicates a buggy server. See: // https://bugzilla.mozilla.org/show_bug.cgi?id=193921 if (request_->method == "PUT") return ERR_METHOD_NOT_SUPPORTED; } if (establishing_tunnel_) { switch (headers->response_code()) { case 200: // OK if (header_buf_body_offset_ != header_buf_len_) { // The proxy sent extraneous data after the headers. return ERR_TUNNEL_CONNECTION_FAILED; } next_state_ = STATE_SSL_CONNECT; // Reset for the real request and response headers. request_headers_->headers_.clear(); request_headers_bytes_sent_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = -1; establishing_tunnel_ = false; return OK; // We aren't able to CONNECT to the remote host through the proxy. We // need to be very suspicious about the response because an active network // attacker can force us into this state by masquerading as the proxy. // The only safe thing to do here is to fail the connection because our // client is expecting an SSL protected response. // See http://crbug.com/7338. case 407: // Proxy Authentication Required // We need this status code to allow proxy authentication. Our // authentication code is smart enough to avoid being tricked by an // active network attacker. break; default: // For all other status codes, we conservatively fail the CONNECT // request. // We lose something by doing this. We have seen proxy 403, 404, and // 501 response bodies that contain a useful error message. For // example, Squid uses a 404 response to report the DNS error: "The // domain name does not exist." LogBlockedTunnelResponse(headers->response_code()); return ERR_TUNNEL_CONNECTION_FAILED; } } // Check for an intermediate 100 Continue response. An origin server is // allowed to send this response even if we didn't ask for it, so we just // need to skip over it. // We treat any other 1xx in this same way (although in practice getting // a 1xx that isn't a 100 is rare). if (headers->response_code() / 100 == 1) { header_buf_len_ -= header_buf_body_offset_; // If we've already received some bytes after the 1xx response, // move them to the beginning of header_buf_. if (header_buf_len_) { memmove(header_buf_->headers(), header_buf_->headers() + header_buf_body_offset_, header_buf_len_); } header_buf_body_offset_ = -1; next_state_ = STATE_READ_HEADERS; return OK; } response_.headers = headers; response_.vary_data.Init(*request_, *response_.headers); // Figure how to determine EOF: // For certain responses, we know the content length is always 0. From // RFC 2616 Section 4.3 Message Body: // // For response messages, whether or not a message-body is included with // a message is dependent on both the request method and the response // status code (section 6.1.1). All responses to the HEAD request method // MUST NOT include a message-body, even though the presence of entity- // header fields might lead one to believe they do. All 1xx // (informational), 204 (no content), and 304 (not modified) responses // MUST NOT include a message-body. All other responses do include a // message-body, although it MAY be of zero length. switch (response_.headers->response_code()) { // Note that 1xx was already handled earlier. case 204: // No Content case 205: // Reset Content case 304: // Not Modified response_body_length_ = 0; break; } if (request_->method == "HEAD") response_body_length_ = 0; if (response_body_length_ == -1) { // Ignore spurious chunked responses from HTTP/1.0 servers and proxies. // Otherwise "Transfer-Encoding: chunked" trumps "Content-Length: N" if (response_.headers->GetHttpVersion() >= HttpVersion(1, 1) && response_.headers->HasHeaderValue("Transfer-Encoding", "chunked")) { chunked_decoder_.reset(new HttpChunkedDecoder()); } else { response_body_length_ = response_.headers->GetContentLength(); // If response_body_length_ is still -1, then we have to wait for the // server to close the connection. } } int rv = HandleAuthChallenge(); if (rv != OK) return rv; if (using_ssl_ && !establishing_tunnel_) { SSLClientSocket* ssl_socket = reinterpret_cast(connection_.socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); } return OK; } int HttpNetworkTransaction::HandleCertificateError(int error) { DCHECK(using_ssl_); const int kCertFlags = LOAD_IGNORE_CERT_COMMON_NAME_INVALID | LOAD_IGNORE_CERT_DATE_INVALID | LOAD_IGNORE_CERT_AUTHORITY_INVALID | LOAD_IGNORE_CERT_WRONG_USAGE; if (request_->load_flags & kCertFlags) { switch (error) { case ERR_CERT_COMMON_NAME_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_COMMON_NAME_INVALID) error = OK; break; case ERR_CERT_DATE_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_DATE_INVALID) error = OK; break; case ERR_CERT_AUTHORITY_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_AUTHORITY_INVALID) error = OK; break; } } if (error != OK) { SSLClientSocket* ssl_socket = reinterpret_cast(connection_.socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); // Add the bad certificate to the set of allowed certificates in the // SSL info object. This data structure will be consulted after calling // RestartIgnoringLastError(). And the user will be asked interactively // before RestartIgnoringLastError() is ever called. SSLConfig::CertAndStatus bad_cert; bad_cert.cert = response_.ssl_info.cert; bad_cert.cert_status = response_.ssl_info.cert_status; ssl_config_.allowed_bad_certs.push_back(bad_cert); } return error; } int HttpNetworkTransaction::HandleCertificateRequest(int error) { // Assert that the socket did not send a client certificate. // Note: If we got a reused socket, it was created with some other // transaction's ssl_config_, so we need to disable this assertion. We can // get a certificate request on a reused socket when the server requested // renegotiation (rehandshake). // TODO(wtc): add a GetSSLParams method to SSLClientSocket so we can query // the SSL parameters it was created with and get rid of the reused_socket_ // test. DCHECK(reused_socket_ || !ssl_config_.send_client_cert); response_.cert_request_info = new SSLCertRequestInfo; SSLClientSocket* ssl_socket = reinterpret_cast(connection_.socket()); ssl_socket->GetSSLCertRequestInfo(response_.cert_request_info); // Close the connection while the user is selecting a certificate to send // to the server. connection_.socket()->Disconnect(); connection_.Reset(); // If the user selected one of the certificate in client_certs for this // server before, use it automatically. X509Certificate* client_cert = session_->ssl_client_auth_cache()-> Lookup(GetHostAndPort(request_->url)); if (client_cert) { const std::vector >& client_certs = response_.cert_request_info->client_certs; for (size_t i = 0; i < client_certs.size(); ++i) { if (client_cert->fingerprint().Equals(client_certs[i]->fingerprint())) { ssl_config_.client_cert = client_cert; ssl_config_.send_client_cert = true; next_state_ = STATE_INIT_CONNECTION; // Reset the other member variables. // Note: this is necessary only with SSL renegotiation. ResetStateForRestart(); return OK; } } } return error; } int HttpNetworkTransaction::HandleSSLHandshakeError(int error) { if (ssl_config_.send_client_cert && (error == ERR_SSL_PROTOCOL_ERROR || error == ERR_BAD_SSL_CLIENT_AUTH_CERT)) { session_->ssl_client_auth_cache()->Remove(GetHostAndPort(request_->url)); } switch (error) { case ERR_SSL_PROTOCOL_ERROR: case ERR_SSL_VERSION_OR_CIPHER_MISMATCH: if (ssl_config_.tls1_enabled) { // This could be a TLS-intolerant server or an SSL 3.0 server that // chose a TLS-only cipher suite. Turn off TLS 1.0 and retry. ssl_config_.tls1_enabled = false; connection_.socket()->Disconnect(); connection_.Reset(); next_state_ = STATE_INIT_CONNECTION; error = OK; } break; } return error; } // This method determines whether it is safe to resend the request after an // IO error. It can only be called in response to request header or body // write errors or response header read errors. It should not be used in // other cases, such as a Connect error. int HttpNetworkTransaction::HandleIOError(int error) { switch (error) { // If we try to reuse a connection that the server is in the process of // closing, we may end up successfully writing out our request (or a // portion of our request) only to find a connection error when we try to // read from (or finish writing to) the socket. case ERR_CONNECTION_RESET: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_ABORTED: LogIOErrorMetrics(connection_); if (ShouldResendRequest(error)) { ResetConnectionAndRequestForResend(); error = OK; } break; } return error; } void HttpNetworkTransaction::ResetStateForRestart() { pending_auth_target_ = HttpAuth::AUTH_NONE; header_buf_->Reset(); header_buf_capacity_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = -1; header_buf_http_offset_ = -1; response_body_length_ = -1; response_body_read_ = 0; read_buf_ = NULL; read_buf_len_ = 0; request_headers_->headers_.clear(); request_headers_bytes_sent_ = 0; chunked_decoder_.reset(); // Reset all the members of response_. response_ = HttpResponseInfo(); } bool HttpNetworkTransaction::ShouldResendRequest(int error) const { // NOTE: we resend a request only if we reused a keep-alive connection. // This automatically prevents an infinite resend loop because we'll run // out of the cached keep-alive connections eventually. if (establishing_tunnel_ || // We used a socket that was never idle. connection_.reuse_type() == ClientSocketHandle::UNUSED || // We used an unused, idle socket and got a error that wasn't a TCP RST. (connection_.reuse_type() == ClientSocketHandle::UNUSED_IDLE && (error != OK && error != ERR_CONNECTION_RESET)) || header_buf_len_) { // We have received some response headers. return false; } return true; } void HttpNetworkTransaction::ResetConnectionAndRequestForResend() { connection_.socket()->Disconnect(); connection_.Reset(); // There are two reasons we need to clear request_headers_. 1) It contains // the real request headers, but we may need to resend the CONNECT request // first to recreate the SSL tunnel. 2) An empty request_headers_ causes // BuildRequestHeaders to be called, which rewinds request_body_stream_ to // the beginning of request_->upload_data. request_headers_->headers_.clear(); request_headers_bytes_sent_ = 0; next_state_ = STATE_INIT_CONNECTION; // Resend the request. } int HttpNetworkTransaction::ReconsiderProxyAfterError(int error) { DCHECK(!pac_request_); // A failure to resolve the hostname or any error related to establishing a // TCP connection could be grounds for trying a new proxy configuration. // // Why do this when a hostname cannot be resolved? Some URLs only make sense // to proxy servers. The hostname in those URLs might fail to resolve if we // are still using a non-proxy config. We need to check if a proxy config // now exists that corresponds to a proxy server that could load the URL. // switch (error) { case ERR_NAME_NOT_RESOLVED: case ERR_INTERNET_DISCONNECTED: case ERR_ADDRESS_UNREACHABLE: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_RESET: case ERR_CONNECTION_REFUSED: case ERR_CONNECTION_ABORTED: case ERR_TIMED_OUT: case ERR_TUNNEL_CONNECTION_FAILED: break; default: return error; } if (request_->load_flags & LOAD_BYPASS_PROXY) { return error; } int rv = session_->proxy_service()->ReconsiderProxyAfterError( request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_); if (rv == OK || rv == ERR_IO_PENDING) { // If the error was during connection setup, there is no socket to // disconnect. if (connection_.socket()) connection_.socket()->Disconnect(); connection_.Reset(); DCHECK(!request_headers_bytes_sent_); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; } else { rv = error; } return rv; } bool HttpNetworkTransaction::ShouldApplyProxyAuth() const { return (proxy_mode_ == kHTTPProxy) || establishing_tunnel_; } bool HttpNetworkTransaction::ShouldApplyServerAuth() const { return !establishing_tunnel_ && !(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA); } std::string HttpNetworkTransaction::BuildAuthorizationHeader( HttpAuth::Target target) const { DCHECK(HaveAuth(target)); // Add a Authorization/Proxy-Authorization header line. std::string credentials = auth_handler_[target]->GenerateCredentials( auth_identity_[target].username, auth_identity_[target].password, request_, &proxy_info_); return HttpAuth::GetAuthorizationHeaderName(target) + ": " + credentials + "\r\n"; } GURL HttpNetworkTransaction::AuthOrigin(HttpAuth::Target target) const { return target == HttpAuth::AUTH_PROXY ? GURL("http://" + proxy_info_.proxy_server().host_and_port()) : request_->url.GetOrigin(); } std::string HttpNetworkTransaction::AuthPath(HttpAuth::Target target) const { // Proxy authentication realms apply to all paths. So we will use // empty string in place of an absolute path. return target == HttpAuth::AUTH_PROXY ? std::string() : request_->url.path(); } // static std::string HttpNetworkTransaction::AuthTargetString( HttpAuth::Target target) { return target == HttpAuth::AUTH_PROXY ? "proxy" : "server"; } void HttpNetworkTransaction::InvalidateRejectedAuthFromCache( HttpAuth::Target target) { DCHECK(HaveAuth(target)); // TODO(eroman): this short-circuit can be relaxed. If the realm of // the preemptively used auth entry matches the realm of the subsequent // challenge, then we can invalidate the preemptively used entry. // Otherwise as-is we may send the failed credentials one extra time. if (auth_identity_[target].source == HttpAuth::IDENT_SRC_PATH_LOOKUP) return; // Clear the cache entry for the identity we just failed on. // Note: we require the username/password to match before invalidating // since the entry in the cache may be newer than what we used last time. session_->auth_cache()->Remove(AuthOrigin(target), auth_handler_[target]->realm(), auth_identity_[target].username, auth_identity_[target].password); } bool HttpNetworkTransaction::SelectPreemptiveAuth(HttpAuth::Target target) { DCHECK(!HaveAuth(target)); // Don't do preemptive authorization if the URL contains a username/password, // since we must first be challenged in order to use the URL's identity. if (request_->url.has_username()) return false; // SelectPreemptiveAuth() is on the critical path for each request, so it // is expected to be fast. LookupByPath() is fast in the common case, since // the number of http auth cache entries is expected to be very small. // (For most users in fact, it will be 0.) HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByPath( AuthOrigin(target), AuthPath(target)); // We don't support preemptive authentication for connection-based // authentication schemes because they can't reuse entry->handler(). // Hopefully we can remove this limitation in the future. if (entry && !entry->handler()->is_connection_based()) { auth_identity_[target].source = HttpAuth::IDENT_SRC_PATH_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); auth_handler_[target] = entry->handler(); return true; } return false; } bool HttpNetworkTransaction::SelectNextAuthIdentityToTry( HttpAuth::Target target) { DCHECK(auth_handler_[target]); DCHECK(auth_identity_[target].invalid); // Try to use the username/password encoded into the URL first. // (By checking source == IDENT_SRC_NONE, we make sure that this // is only done once for the transaction.) if (target == HttpAuth::AUTH_SERVER && request_->url.has_username() && auth_identity_[target].source == HttpAuth::IDENT_SRC_NONE) { auth_identity_[target].source = HttpAuth::IDENT_SRC_URL; auth_identity_[target].invalid = false; // Extract the username:password from the URL. GetIdentifyFromUrl(request_->url, &auth_identity_[target].username, &auth_identity_[target].password); // TODO(eroman): If the password is blank, should we also try combining // with a password from the cache? return true; } // Check the auth cache for a realm entry. HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByRealm( AuthOrigin(target), auth_handler_[target]->realm()); if (entry) { // Disallow re-using of identity if the scheme of the originating challenge // does not match. This protects against the following situation: // 1. Browser prompts user to sign into DIGEST realm="Foo". // 2. Since the auth-scheme is not BASIC, the user is reasured that it // will not be sent over the wire in clear text. So they use their // most trusted password. // 3. Next, the browser receives a challenge for BASIC realm="Foo". This // is the same realm that we have a cached identity for. However if // we use that identity, it would get sent over the wire in // clear text (which isn't what the user agreed to when entering it). if (entry->handler()->scheme() != auth_handler_[target]->scheme()) { LOG(WARNING) << "The scheme of realm " << auth_handler_[target]->realm() << " has changed from " << entry->handler()->scheme() << " to " << auth_handler_[target]->scheme(); return false; } auth_identity_[target].source = HttpAuth::IDENT_SRC_REALM_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); return true; } return false; } // static void HttpNetworkTransaction::GetIdentifyFromUrl(const GURL& url, std::wstring* username, std::wstring* password) { UnescapeRule::Type flags = UnescapeRule::SPACES; *username = UnescapeAndDecodeUTF8URLComponent(url.username(), flags); *password = UnescapeAndDecodeUTF8URLComponent(url.password(), flags); } std::string HttpNetworkTransaction::AuthChallengeLogMessage() const { std::string msg; std::string header_val; void* iter = NULL; while (response_.headers->EnumerateHeader(&iter, "proxy-authenticate", &header_val)) { msg.append("\n Has header Proxy-Authenticate: "); msg.append(header_val); } iter = NULL; while (response_.headers->EnumerateHeader(&iter, "www-authenticate", &header_val)) { msg.append("\n Has header WWW-Authenticate: "); msg.append(header_val); } // RFC 4559 requires that a proxy indicate its support of NTLM/Negotiate // authentication with a "Proxy-Support: Session-Based-Authentication" // response header. iter = NULL; while (response_.headers->EnumerateHeader(&iter, "proxy-support", &header_val)) { msg.append("\n Has header Proxy-Support: "); msg.append(header_val); } return msg; } int HttpNetworkTransaction::HandleAuthChallenge() { DCHECK(response_.headers); int status = response_.headers->response_code(); if (status != 401 && status != 407) return OK; HttpAuth::Target target = status == 407 ? HttpAuth::AUTH_PROXY : HttpAuth::AUTH_SERVER; LOG(INFO) << "The " << AuthTargetString(target) << " " << AuthOrigin(target) << " requested auth" << AuthChallengeLogMessage(); if (target == HttpAuth::AUTH_PROXY && proxy_info_.is_direct()) return ERR_UNEXPECTED_PROXY_AUTH; // The auth we tried just failed, hence it can't be valid. Remove it from // the cache so it won't be used again, unless it's a null identity. if (HaveAuth(target) && auth_identity_[target].source != HttpAuth::IDENT_SRC_NONE) InvalidateRejectedAuthFromCache(target); auth_identity_[target].invalid = true; if (target != HttpAuth::AUTH_SERVER || !(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA)) { // Find the best authentication challenge that we support. HttpAuth::ChooseBestChallenge(response_.headers.get(), target, &auth_handler_[target]); } if (!auth_handler_[target]) { if (establishing_tunnel_) { LOG(ERROR) << "Can't perform auth to the " << AuthTargetString(target) << " " << AuthOrigin(target) << " when establishing a tunnel" << AuthChallengeLogMessage(); // We are establishing a tunnel, we can't show the error page because an // active network attacker could control its contents. Instead, we just // fail to establish the tunnel. DCHECK(target == HttpAuth::AUTH_PROXY); return ERR_PROXY_AUTH_REQUESTED; } // We found no supported challenge -- let the transaction continue // so we end up displaying the error page. return OK; } if (auth_handler_[target]->NeedsIdentity()) { // Pick a new auth identity to try, by looking to the URL and auth cache. // If an identity to try is found, it is saved to auth_identity_[target]. SelectNextAuthIdentityToTry(target); } else { // Proceed with a null identity. // // TODO(wtc): Add a safeguard against infinite transaction restarts, if // the server keeps returning "NTLM". auth_identity_[target].source = HttpAuth::IDENT_SRC_NONE; auth_identity_[target].invalid = false; auth_identity_[target].username.clear(); auth_identity_[target].password.clear(); } // Make a note that we are waiting for auth. This variable is inspected // when the client calls RestartWithAuth() to pick up where we left off. pending_auth_target_ = target; if (auth_identity_[target].invalid) { // We have exhausted all identity possibilities, all we can do now is // pass the challenge information back to the client. PopulateAuthChallenge(target); } return OK; } void HttpNetworkTransaction::PopulateAuthChallenge(HttpAuth::Target target) { // Populates response_.auth_challenge with the authentication challenge info. // This info is consumed by URLRequestHttpJob::GetAuthChallengeInfo(). AuthChallengeInfo* auth_info = new AuthChallengeInfo; auth_info->is_proxy = target == HttpAuth::AUTH_PROXY; auth_info->scheme = ASCIIToWide(auth_handler_[target]->scheme()); // TODO(eroman): decode realm according to RFC 2047. auth_info->realm = ASCIIToWide(auth_handler_[target]->realm()); std::string host_and_port; if (target == HttpAuth::AUTH_PROXY) { host_and_port = proxy_info_.proxy_server().host_and_port(); } else { DCHECK(target == HttpAuth::AUTH_SERVER); host_and_port = GetHostAndPort(request_->url); } auth_info->host_and_port = ASCIIToWide(host_and_port); response_.auth_challenge = auth_info; } } // namespace net