// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_network_transaction.h" #include "base/scoped_ptr.h" #include "base/compiler_specific.h" #include "base/string_util.h" #include "base/trace_event.h" #include "build/build_config.h" #include "net/base/client_socket_factory.h" #include "net/base/dns_resolution_observer.h" #include "net/base/host_resolver.h" #include "net/base/load_flags.h" #include "net/base/net_util.h" #include "net/base/ssl_client_socket.h" #include "net/base/upload_data_stream.h" #include "net/http/http_auth.h" #include "net/http/http_auth_handler.h" #include "net/http/http_chunked_decoder.h" #include "net/http/http_network_session.h" #include "net/http/http_request_info.h" #include "net/http/http_util.h" using base::Time; namespace net { //----------------------------------------------------------------------------- HttpNetworkTransaction::HttpNetworkTransaction(HttpNetworkSession* session, ClientSocketFactory* csf) : ALLOW_THIS_IN_INITIALIZER_LIST( io_callback_(this, &HttpNetworkTransaction::OnIOComplete)), user_callback_(NULL), session_(session), request_(NULL), pac_request_(NULL), socket_factory_(csf), connection_(session->connection_pool()), reused_socket_(false), using_ssl_(false), using_proxy_(false), using_tunnel_(false), establishing_tunnel_(false), request_headers_bytes_sent_(0), header_buf_capacity_(0), header_buf_len_(0), header_buf_body_offset_(-1), header_buf_http_offset_(-1), content_length_(-1), // -1 means unspecified. content_read_(0), read_buf_(NULL), read_buf_len_(0), next_state_(STATE_NONE) { #if defined(OS_WIN) // TODO(port): Port the SSLConfigService class to Linux and Mac OS X. session->ssl_config_service()->GetSSLConfig(&ssl_config_); #endif } int HttpNetworkTransaction::Start(const HttpRequestInfo* request_info, CompletionCallback* callback) { request_ = request_info; next_state_ = STATE_RESOLVE_PROXY; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartIgnoringLastError( CompletionCallback* callback) { // TODO(wtc): If the connection is no longer alive, call // connection_.socket()->ReconnectIgnoringLastError(). next_state_ = STATE_WRITE_HEADERS; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartWithAuth( const std::wstring& username, const std::wstring& password, CompletionCallback* callback) { DCHECK(NeedAuth(HttpAuth::AUTH_PROXY) || NeedAuth(HttpAuth::AUTH_SERVER)); // Figure out whether this username password is for proxy or server. // Proxy gets set first, then server. HttpAuth::Target target = NeedAuth(HttpAuth::AUTH_PROXY) ? HttpAuth::AUTH_PROXY : HttpAuth::AUTH_SERVER; // Update the username/password. auth_identity_[target].source = HttpAuth::IDENT_SRC_EXTERNAL; auth_identity_[target].invalid = false; auth_identity_[target].username = username; auth_identity_[target].password = password; PrepareForAuthRestart(target); DCHECK(user_callback_ == NULL); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } void HttpNetworkTransaction::PrepareForAuthRestart(HttpAuth::Target target) { DCHECK(HaveAuth(target)); DCHECK(auth_identity_[target].source != HttpAuth::IDENT_SRC_PATH_LOOKUP); // Add the auth entry to the cache before restarting. We don't know whether // the identity is valid yet, but if it is valid we want other transactions // to know about it. If an entry for (origin, handler->realm()) already // exists, we update it. session_->auth_cache()->Add(AuthOrigin(target), auth_handler_[target], auth_identity_[target].username, auth_identity_[target].password, AuthPath(target)); next_state_ = STATE_INIT_CONNECTION; connection_.set_socket(NULL); connection_.Reset(); // Reset the other member variables. ResetStateForRestart(); } int HttpNetworkTransaction::Read(char* buf, int buf_len, CompletionCallback* callback) { DCHECK(response_.headers); DCHECK(buf); DCHECK(buf_len > 0); if (!connection_.is_initialized()) return 0; // connection_ has been reset. Treat like EOF. read_buf_ = buf; read_buf_len_ = buf_len; next_state_ = STATE_READ_BODY; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } const HttpResponseInfo* HttpNetworkTransaction::GetResponseInfo() const { return (response_.headers || response_.ssl_info.cert) ? &response_ : NULL; } LoadState HttpNetworkTransaction::GetLoadState() const { // TODO(wtc): Define a new LoadState value for the // STATE_INIT_CONNECTION_COMPLETE state, which delays the HTTP request. switch (next_state_) { case STATE_RESOLVE_PROXY_COMPLETE: return LOAD_STATE_RESOLVING_PROXY_FOR_URL; case STATE_RESOLVE_HOST_COMPLETE: return LOAD_STATE_RESOLVING_HOST; case STATE_CONNECT_COMPLETE: return LOAD_STATE_CONNECTING; case STATE_WRITE_HEADERS_COMPLETE: case STATE_WRITE_BODY_COMPLETE: return LOAD_STATE_SENDING_REQUEST; case STATE_READ_HEADERS_COMPLETE: return LOAD_STATE_WAITING_FOR_RESPONSE; case STATE_READ_BODY_COMPLETE: return LOAD_STATE_READING_RESPONSE; default: return LOAD_STATE_IDLE; } } uint64 HttpNetworkTransaction::GetUploadProgress() const { if (!request_body_stream_.get()) return 0; return request_body_stream_->position(); } HttpNetworkTransaction::~HttpNetworkTransaction() { // If we still have an open socket, then make sure to close it so we don't // try to reuse it later on. if (connection_.is_initialized()) connection_.set_socket(NULL); if (pac_request_) session_->proxy_service()->CancelPacRequest(pac_request_); } void HttpNetworkTransaction::BuildRequestHeaders() { // For proxy use the full url. Otherwise just the absolute path. // This strips out any reference/username/password. std::string path = using_proxy_ ? HttpUtil::SpecForRequest(request_->url) : HttpUtil::PathForRequest(request_->url); request_headers_ = request_->method + " " + path + " HTTP/1.1\r\nHost: " + request_->url.host(); if (request_->url.IntPort() != -1) request_headers_ += ":" + request_->url.port(); request_headers_ += "\r\n"; // For compat with HTTP/1.0 servers and proxies: if (using_proxy_) request_headers_ += "Proxy-"; request_headers_ += "Connection: keep-alive\r\n"; if (!request_->user_agent.empty()) request_headers_ += "User-Agent: " + request_->user_agent + "\r\n"; // Our consumer should have made sure that this is a safe referrer. See for // instance WebCore::FrameLoader::HideReferrer. if (request_->referrer.is_valid()) request_headers_ += "Referer: " + request_->referrer.spec() + "\r\n"; // Add a content length header? if (request_->upload_data) { request_body_stream_.reset(new UploadDataStream(request_->upload_data)); request_headers_ += "Content-Length: " + Uint64ToString(request_body_stream_->size()) + "\r\n"; } else if (request_->method == "POST" || request_->method == "PUT" || request_->method == "HEAD") { // An empty POST/PUT request still needs a content length. As for HEAD, // IE and Safari also add a content length header. Presumably it is to // support sending a HEAD request to an URL that only expects to be sent a // POST or some other method that normally would have a message body. request_headers_ += "Content-Length: 0\r\n"; } // Honor load flags that impact proxy caches. if (request_->load_flags & LOAD_BYPASS_CACHE) { request_headers_ += "Pragma: no-cache\r\nCache-Control: no-cache\r\n"; } else if (request_->load_flags & LOAD_VALIDATE_CACHE) { request_headers_ += "Cache-Control: max-age=0\r\n"; } ApplyAuth(); // TODO(darin): Need to prune out duplicate headers. request_headers_ += request_->extra_headers; request_headers_ += "\r\n"; } // The HTTP CONNECT method for establishing a tunnel connection is documented // in draft-luotonen-web-proxy-tunneling-01.txt and RFC 2817, Sections 5.2 and // 5.3. void HttpNetworkTransaction::BuildTunnelRequest() { // RFC 2616 Section 9 says the Host request-header field MUST accompany all // HTTP/1.1 requests. request_headers_ = StringPrintf("CONNECT %s:%d HTTP/1.1\r\n", request_->url.host().c_str(), request_->url.EffectiveIntPort()); request_headers_ += "Host: " + request_->url.host(); if (request_->url.has_port()) request_headers_ += ":" + request_->url.port(); request_headers_ += "\r\n"; if (!request_->user_agent.empty()) request_headers_ += "User-Agent: " + request_->user_agent + "\r\n"; ApplyAuth(); request_headers_ += "\r\n"; } void HttpNetworkTransaction::DoCallback(int rv) { DCHECK(rv != ERR_IO_PENDING); DCHECK(user_callback_); // Since Run may result in Read being called, clear user_callback_ up front. CompletionCallback* c = user_callback_; user_callback_ = NULL; c->Run(rv); } void HttpNetworkTransaction::OnIOComplete(int result) { int rv = DoLoop(result); if (rv != ERR_IO_PENDING) DoCallback(rv); } int HttpNetworkTransaction::DoLoop(int result) { DCHECK(next_state_ != STATE_NONE); int rv = result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_RESOLVE_PROXY: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.resolve_proxy", request_, request_->url.spec()); rv = DoResolveProxy(); break; case STATE_RESOLVE_PROXY_COMPLETE: rv = DoResolveProxyComplete(rv); TRACE_EVENT_END("http.resolve_proxy", request_, request_->url.spec()); break; case STATE_INIT_CONNECTION: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.init_conn", request_, request_->url.spec()); rv = DoInitConnection(); break; case STATE_INIT_CONNECTION_COMPLETE: rv = DoInitConnectionComplete(rv); TRACE_EVENT_END("http.init_conn", request_, request_->url.spec()); break; case STATE_RESOLVE_HOST: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.resolve_host", request_, request_->url.spec()); rv = DoResolveHost(); break; case STATE_RESOLVE_HOST_COMPLETE: rv = DoResolveHostComplete(rv); TRACE_EVENT_END("http.resolve_host", request_, request_->url.spec()); break; case STATE_CONNECT: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.connect", request_, request_->url.spec()); rv = DoConnect(); break; case STATE_CONNECT_COMPLETE: rv = DoConnectComplete(rv); TRACE_EVENT_END("http.connect", request_, request_->url.spec()); break; case STATE_SSL_CONNECT_OVER_TUNNEL: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.ssl_tunnel", request_, request_->url.spec()); rv = DoSSLConnectOverTunnel(); break; case STATE_SSL_CONNECT_OVER_TUNNEL_COMPLETE: rv = DoSSLConnectOverTunnelComplete(rv); TRACE_EVENT_END("http.ssl_tunnel", request_, request_->url.spec()); break; case STATE_WRITE_HEADERS: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.write_headers", request_, request_->url.spec()); rv = DoWriteHeaders(); break; case STATE_WRITE_HEADERS_COMPLETE: rv = DoWriteHeadersComplete(rv); TRACE_EVENT_END("http.write_headers", request_, request_->url.spec()); break; case STATE_WRITE_BODY: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.write_body", request_, request_->url.spec()); rv = DoWriteBody(); break; case STATE_WRITE_BODY_COMPLETE: rv = DoWriteBodyComplete(rv); TRACE_EVENT_END("http.write_body", request_, request_->url.spec()); break; case STATE_READ_HEADERS: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec()); rv = DoReadHeaders(); break; case STATE_READ_HEADERS_COMPLETE: rv = DoReadHeadersComplete(rv); TRACE_EVENT_END("http.read_headers", request_, request_->url.spec()); break; case STATE_READ_BODY: DCHECK(rv == OK); TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec()); rv = DoReadBody(); break; case STATE_READ_BODY_COMPLETE: rv = DoReadBodyComplete(rv); TRACE_EVENT_END("http.read_body", request_, request_->url.spec()); break; default: NOTREACHED() << "bad state"; rv = ERR_FAILED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); return rv; } int HttpNetworkTransaction::DoResolveProxy() { DCHECK(!pac_request_); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; return session_->proxy_service()->ResolveProxy( request_->url, &proxy_info_, &io_callback_, &pac_request_); } int HttpNetworkTransaction::DoResolveProxyComplete(int result) { next_state_ = STATE_INIT_CONNECTION; pac_request_ = NULL; if (result != OK) { DLOG(ERROR) << "Failed to resolve proxy: " << result; proxy_info_.UseDirect(); } return OK; } int HttpNetworkTransaction::DoInitConnection() { DCHECK(!connection_.is_initialized()); next_state_ = STATE_INIT_CONNECTION_COMPLETE; using_ssl_ = request_->url.SchemeIs("https"); using_proxy_ = !proxy_info_.is_direct() && !using_ssl_; using_tunnel_ = !proxy_info_.is_direct() && using_ssl_; // Build the string used to uniquely identify connections of this type. std::string connection_group; if (using_proxy_ || using_tunnel_) connection_group = "proxy/" + proxy_info_.proxy_server() + "/"; if (!using_proxy_) connection_group.append(request_->url.GetOrigin().spec()); DCHECK(!connection_group.empty()); return connection_.Init(connection_group, &io_callback_); } int HttpNetworkTransaction::DoInitConnectionComplete(int result) { if (result < 0) return result; DCHECK(connection_.is_initialized()); // Set the reused_socket_ flag to indicate that we are using a keep-alive // connection. This flag is used to handle errors that occur while we are // trying to reuse a keep-alive connection. reused_socket_ = (connection_.socket() != NULL); if (reused_socket_) { next_state_ = STATE_WRITE_HEADERS; } else { next_state_ = STATE_RESOLVE_HOST; } return OK; } int HttpNetworkTransaction::DoResolveHost() { next_state_ = STATE_RESOLVE_HOST_COMPLETE; std::string host; int port; // Determine the host and port to connect to. if (using_proxy_ || using_tunnel_) { const std::string& proxy = proxy_info_.proxy_server(); StringTokenizer t(proxy, ":"); // TODO(darin): Handle errors here. Perhaps HttpProxyInfo should do this // before claiming a proxy server configuration. t.GetNext(); host = t.token(); t.GetNext(); port = StringToInt(t.token()); } else { // Direct connection host = request_->url.host(); port = request_->url.EffectiveIntPort(); } DidStartDnsResolution(host, this); return resolver_.Resolve(host, port, &addresses_, &io_callback_); } int HttpNetworkTransaction::DoResolveHostComplete(int result) { bool ok = (result == OK); DidFinishDnsResolutionWithStatus(ok, request_->referrer, this); if (ok) { next_state_ = STATE_CONNECT; } else { result = ReconsiderProxyAfterError(result); } return result; } int HttpNetworkTransaction::DoConnect() { next_state_ = STATE_CONNECT_COMPLETE; DCHECK(!connection_.socket()); ClientSocket* s = socket_factory_->CreateTCPClientSocket(addresses_); // If we are using a direct SSL connection, then go ahead and create the SSL // wrapper socket now. Otherwise, we need to first issue a CONNECT request. if (using_ssl_ && !using_tunnel_) s = socket_factory_->CreateSSLClientSocket(s, request_->url.host(), ssl_config_); connection_.set_socket(s); return connection_.socket()->Connect(&io_callback_); } int HttpNetworkTransaction::DoConnectComplete(int result) { if (IsCertificateError(result)) result = HandleCertificateError(result); if (result == OK) { next_state_ = STATE_WRITE_HEADERS; if (using_tunnel_) establishing_tunnel_ = true; } else { result = HandleSSLHandshakeError(result); if (result != OK) result = ReconsiderProxyAfterError(result); } return result; } int HttpNetworkTransaction::DoSSLConnectOverTunnel() { next_state_ = STATE_SSL_CONNECT_OVER_TUNNEL_COMPLETE; // Add a SSL socket on top of our existing transport socket. ClientSocket* s = connection_.release_socket(); s = socket_factory_->CreateSSLClientSocket(s, request_->url.host(), ssl_config_); connection_.set_socket(s); return connection_.socket()->Connect(&io_callback_); } int HttpNetworkTransaction::DoSSLConnectOverTunnelComplete(int result) { if (IsCertificateError(result)) result = HandleCertificateError(result); if (result == OK) { next_state_ = STATE_WRITE_HEADERS; } else { result = HandleSSLHandshakeError(result); } return result; } int HttpNetworkTransaction::DoWriteHeaders() { next_state_ = STATE_WRITE_HEADERS_COMPLETE; // This is constructed lazily (instead of within our Start method), so that // we have proxy info available. if (request_headers_.empty()) { if (establishing_tunnel_) { BuildTunnelRequest(); } else { BuildRequestHeaders(); } } // Record our best estimate of the 'request time' as the time when we send // out the first bytes of the request headers. if (request_headers_bytes_sent_ == 0) response_.request_time = Time::Now(); const char* buf = request_headers_.data() + request_headers_bytes_sent_; int buf_len = static_cast(request_headers_.size() - request_headers_bytes_sent_); DCHECK(buf_len > 0); return connection_.socket()->Write(buf, buf_len, &io_callback_); } int HttpNetworkTransaction::DoWriteHeadersComplete(int result) { if (result < 0) return HandleIOError(result); request_headers_bytes_sent_ += result; if (request_headers_bytes_sent_ < request_headers_.size()) { next_state_ = STATE_WRITE_HEADERS; } else if (!establishing_tunnel_ && request_->upload_data) { next_state_ = STATE_WRITE_BODY; } else { next_state_ = STATE_READ_HEADERS; } return OK; } int HttpNetworkTransaction::DoWriteBody() { next_state_ = STATE_WRITE_BODY_COMPLETE; DCHECK(request_->upload_data); DCHECK(request_body_stream_.get()); const char* buf = request_body_stream_->buf(); int buf_len = static_cast(request_body_stream_->buf_len()); return connection_.socket()->Write(buf, buf_len, &io_callback_); } int HttpNetworkTransaction::DoWriteBodyComplete(int result) { if (result < 0) return HandleIOError(result); request_body_stream_->DidConsume(result); if (request_body_stream_->position() < request_body_stream_->size()) { next_state_ = STATE_WRITE_BODY; } else { next_state_ = STATE_READ_HEADERS; } return OK; } int HttpNetworkTransaction::DoReadHeaders() { next_state_ = STATE_READ_HEADERS_COMPLETE; // Grow the read buffer if necessary. if (header_buf_len_ == header_buf_capacity_) { header_buf_capacity_ += kHeaderBufInitialSize; header_buf_.reset(static_cast( realloc(header_buf_.release(), header_buf_capacity_))); } char* buf = header_buf_.get() + header_buf_len_; int buf_len = header_buf_capacity_ - header_buf_len_; return connection_.socket()->Read(buf, buf_len, &io_callback_); } int HttpNetworkTransaction::HandleConnectionClosedBeforeEndOfHeaders() { if (establishing_tunnel_) { // The connection was closed before the tunnel could be established. return ERR_TUNNEL_CONNECTION_FAILED; } if (has_found_status_line_start()) { // Assume EOF is end-of-headers. header_buf_body_offset_ = header_buf_len_; return OK; } // No status line was matched yet. Could have been a HTTP/0.9 response, or // a partial HTTP/1.x response. if (header_buf_len_ == 0) { // The connection was closed before any data was sent. Likely an error // rather than empty HTTP/0.9 response. return ERR_EMPTY_RESPONSE; } // Assume everything else is a HTTP/0.9 response (including responses // of 'h', 'ht', 'htt'). header_buf_body_offset_ = 0; return OK; } int HttpNetworkTransaction::DoReadHeadersComplete(int result) { if (result < 0) return HandleIOError(result); if (result == 0 && ShouldResendRequest()) return result; // Record our best estimate of the 'response time' as the time when we read // the first bytes of the response headers. if (header_buf_len_ == 0) response_.response_time = Time::Now(); // The socket was closed before we found end-of-headers. if (result == 0) { int rv = HandleConnectionClosedBeforeEndOfHeaders(); if (rv != OK) return rv; } else { header_buf_len_ += result; DCHECK(header_buf_len_ <= header_buf_capacity_); // Look for the start of the status line, if it hasn't been found yet. if (!has_found_status_line_start()) { header_buf_http_offset_ = HttpUtil::LocateStartOfStatusLine( header_buf_.get(), header_buf_len_); } if (has_found_status_line_start()) { int eoh = HttpUtil::LocateEndOfHeaders( header_buf_.get(), header_buf_len_, header_buf_http_offset_); if (eoh == -1) { // Prevent growing the headers buffer indefinitely. if (header_buf_len_ >= kMaxHeaderBufSize) return ERR_RESPONSE_HEADERS_TOO_BIG; // Haven't found the end of headers yet, keep reading. next_state_ = STATE_READ_HEADERS; return OK; } header_buf_body_offset_ = eoh; } else if (header_buf_len_ < 8) { // Not enough data to decide whether this is HTTP/0.9 yet. // 8 bytes = (4 bytes of junk) + "http".length() next_state_ = STATE_READ_HEADERS; return OK; } else { // Enough data was read -- there is no status line. header_buf_body_offset_ = 0; } } // And, we are done with the Start or the SSL tunnel CONNECT sequence. return DidReadResponseHeaders(); } int HttpNetworkTransaction::DoReadBody() { DCHECK(read_buf_); DCHECK(read_buf_len_ > 0); DCHECK(connection_.is_initialized()); next_state_ = STATE_READ_BODY_COMPLETE; // We may have already consumed the indicated content length. if (content_length_ != -1 && content_read_ >= content_length_) return 0; // We may have some data remaining in the header buffer. if (header_buf_.get() && header_buf_body_offset_ < header_buf_len_) { int n = std::min(read_buf_len_, header_buf_len_ - header_buf_body_offset_); memcpy(read_buf_, header_buf_.get() + header_buf_body_offset_, n); header_buf_body_offset_ += n; if (header_buf_body_offset_ == header_buf_len_) { header_buf_.reset(); header_buf_capacity_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = -1; } return n; } return connection_.socket()->Read(read_buf_, read_buf_len_, &io_callback_); } int HttpNetworkTransaction::DoReadBodyComplete(int result) { // We are done with the Read call. bool unfiltered_eof = (result == 0); // Filter incoming data if appropriate. FilterBuf may return an error. if (result > 0 && chunked_decoder_.get()) { result = chunked_decoder_->FilterBuf(read_buf_, result); if (result == 0 && !chunked_decoder_->reached_eof()) { // Don't signal completion of the Read call yet or else it'll look like // we received end-of-file. Wait for more data. next_state_ = STATE_READ_BODY; return OK; } } bool done = false, keep_alive = false; if (result < 0) { // Error while reading the socket. done = true; } else { content_read_ += result; if (unfiltered_eof || (content_length_ != -1 && content_read_ >= content_length_) || (chunked_decoder_.get() && chunked_decoder_->reached_eof())) { done = true; keep_alive = response_.headers->IsKeepAlive(); // We can't reuse the connection if we read more than the advertised // content length, or if the tunnel was not established successfully. if (unfiltered_eof || (content_length_ != -1 && content_read_ > content_length_) || establishing_tunnel_) keep_alive = false; } } // Clean up the HttpConnection if we are done. if (done) { LogTransactionMetrics(); if (!keep_alive) connection_.set_socket(NULL); connection_.Reset(); // The next Read call will return 0 (EOF). } // Clear these to avoid leaving around old state. read_buf_ = NULL; read_buf_len_ = 0; return result; } void HttpNetworkTransaction::LogTransactionMetrics() const { base::TimeDelta duration = base::Time::Now() - response_.request_time; if (60 < duration.InMinutes()) return; UMA_HISTOGRAM_LONG_TIMES(L"Net.Transaction_Latency", duration); if (!duration.InMilliseconds()) return; UMA_HISTOGRAM_COUNTS(L"Net.Transaction_Bandwidth", static_cast (content_read_ / duration.InMilliseconds())); } int HttpNetworkTransaction::DidReadResponseHeaders() { scoped_refptr headers; if (has_found_status_line_start()) { headers = new HttpResponseHeaders( HttpUtil::AssembleRawHeaders( header_buf_.get(), header_buf_body_offset_)); } else { // Fabricate a status line to to preserve the HTTP/0.9 version. // (otherwise HttpResponseHeaders will default it to HTTP/1.0). headers = new HttpResponseHeaders(std::string("HTTP/0.9 200 OK")); } if (headers->GetParsedHttpVersion() < HttpVersion(1, 0)) { // Require the "HTTP/1.x" status line for SSL CONNECT. if (establishing_tunnel_) return ERR_TUNNEL_CONNECTION_FAILED; // HTTP/0.9 doesn't support the PUT method, so lack of response headers // indicates a buggy server. See: // https://bugzilla.mozilla.org/show_bug.cgi?id=193921 if (request_->method == "PUT") return ERR_METHOD_NOT_SUPPORTED; } // Check for an intermediate 100 Continue response. An origin server is // allowed to send this response even if we didn't ask for it, so we just // need to skip over it. if (headers->response_code() == 100) { header_buf_len_ -= header_buf_body_offset_; // If we've already received some bytes after the 100 Continue response, // move them to the beginning of header_buf_. if (header_buf_len_) { memmove(header_buf_.get(), header_buf_.get() + header_buf_body_offset_, header_buf_len_); } header_buf_body_offset_ = -1; next_state_ = STATE_READ_HEADERS; return OK; } if (establishing_tunnel_ && headers->response_code() == 200) { if (header_buf_body_offset_ != header_buf_len_) { // The proxy sent extraneous data after the headers. return ERR_TUNNEL_CONNECTION_FAILED; } next_state_ = STATE_SSL_CONNECT_OVER_TUNNEL; // Reset for the real request and response headers. request_headers_.clear(); request_headers_bytes_sent_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = 0; establishing_tunnel_ = false; return OK; } response_.headers = headers; response_.vary_data.Init(*request_, *response_.headers); int rv = HandleAuthChallenge(); if (rv == WILL_RESTART_TRANSACTION) { DCHECK(next_state_ == STATE_INIT_CONNECTION); return OK; } if (rv != OK) return rv; // Figure how to determine EOF: // For certain responses, we know the content length is always 0. switch (response_.headers->response_code()) { case 204: // No Content case 205: // Reset Content case 304: // Not Modified content_length_ = 0; break; } if (content_length_ == -1) { // Ignore spurious chunked responses from HTTP/1.0 servers and proxies. // Otherwise "Transfer-Encoding: chunked" trumps "Content-Length: N" if (response_.headers->GetHttpVersion() >= HttpVersion(1, 1) && response_.headers->HasHeaderValue("Transfer-Encoding", "chunked")) { chunked_decoder_.reset(new HttpChunkedDecoder()); } else { content_length_ = response_.headers->GetContentLength(); // If content_length_ is still -1, then we have to wait for the server to // close the connection. } } if (using_ssl_ && !establishing_tunnel_) { SSLClientSocket* ssl_socket = reinterpret_cast(connection_.socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); } return OK; } int HttpNetworkTransaction::HandleCertificateError(int error) { DCHECK(using_ssl_); const int kCertFlags = LOAD_IGNORE_CERT_COMMON_NAME_INVALID | LOAD_IGNORE_CERT_DATE_INVALID | LOAD_IGNORE_CERT_AUTHORITY_INVALID | LOAD_IGNORE_CERT_WRONG_USAGE; if (request_->load_flags & kCertFlags) { switch (error) { case ERR_CERT_COMMON_NAME_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_COMMON_NAME_INVALID) error = OK; break; case ERR_CERT_DATE_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_DATE_INVALID) error = OK; break; case ERR_CERT_AUTHORITY_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_AUTHORITY_INVALID) error = OK; break; } } if (error != OK) { SSLClientSocket* ssl_socket = reinterpret_cast(connection_.socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); } return error; } int HttpNetworkTransaction::HandleSSLHandshakeError(int error) { switch (error) { case ERR_SSL_PROTOCOL_ERROR: case ERR_SSL_VERSION_OR_CIPHER_MISMATCH: if (ssl_config_.tls1_enabled) { // This could be a TLS-intolerant server or an SSL 3.0 server that // chose a TLS-only cipher suite. Turn off TLS 1.0 and retry. ssl_config_.tls1_enabled = false; connection_.set_socket(NULL); connection_.Reset(); next_state_ = STATE_INIT_CONNECTION; error = OK; } break; } return error; } // This method determines whether it is safe to resend the request after an // IO error. It can only be called in response to request header or body // write errors or response header read errors. It should not be used in // other cases, such as a Connect error. int HttpNetworkTransaction::HandleIOError(int error) { switch (error) { // If we try to reuse a connection that the server is in the process of // closing, we may end up successfully writing out our request (or a // portion of our request) only to find a connection error when we try to // read from (or finish writing to) the socket. case ERR_CONNECTION_RESET: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_ABORTED: if (ShouldResendRequest()) error = OK; break; } return error; } void HttpNetworkTransaction::ResetStateForRestart() { header_buf_.reset(); header_buf_capacity_ = 0; header_buf_len_ = 0; header_buf_body_offset_ = -1; header_buf_http_offset_ = -1; content_length_ = -1; content_read_ = 0; read_buf_ = NULL; read_buf_len_ = 0; request_headers_.clear(); request_headers_bytes_sent_ = 0; chunked_decoder_.reset(); // Reset the scoped_refptr response_.headers = NULL; response_.auth_challenge = NULL; } bool HttpNetworkTransaction::ShouldResendRequest() { // NOTE: we resend a request only if we reused a keep-alive connection. // This automatically prevents an infinite resend loop because we'll run // out of the cached keep-alive connections eventually. if (establishing_tunnel_ || !reused_socket_ || // We didn't reuse a keep-alive connection. header_buf_len_) { // We have received some response headers. return false; } connection_.set_socket(NULL); connection_.Reset(); // There are two reasons we need to clear request_headers_. 1) It contains // the real request headers, but we may need to resend the CONNECT request // first to recreate the SSL tunnel. 2) An empty request_headers_ causes // BuildRequestHeaders to be called, which rewinds request_body_stream_ to // the beginning of request_->upload_data. request_headers_.clear(); request_headers_bytes_sent_ = 0; next_state_ = STATE_INIT_CONNECTION; // Resend the request. return true; } int HttpNetworkTransaction::ReconsiderProxyAfterError(int error) { DCHECK(!pac_request_); // A failure to resolve the hostname or any error related to establishing a // TCP connection could be grounds for trying a new proxy configuration. // // Why do this when a hostname cannot be resolved? Some URLs only make sense // to proxy servers. The hostname in those URLs might fail to resolve if we // are still using a non-proxy config. We need to check if a proxy config // now exists that corresponds to a proxy server that could load the URL. // switch (error) { case ERR_NAME_NOT_RESOLVED: case ERR_INTERNET_DISCONNECTED: case ERR_ADDRESS_UNREACHABLE: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_RESET: case ERR_CONNECTION_REFUSED: case ERR_CONNECTION_ABORTED: case ERR_TIMED_OUT: case ERR_TUNNEL_CONNECTION_FAILED: break; default: return error; } int rv = session_->proxy_service()->ReconsiderProxyAfterError( request_->url, &proxy_info_, &io_callback_, &pac_request_); if (rv == OK || rv == ERR_IO_PENDING) { connection_.set_socket(NULL); connection_.Reset(); DCHECK(!request_headers_bytes_sent_); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; } else { rv = error; } return rv; } void HttpNetworkTransaction::AddAuthorizationHeader(HttpAuth::Target target) { // If we have no authentication information, check if we can select // a cache entry preemptively (based on the path). if(!HaveAuth(target) && !SelectPreemptiveAuth(target)) return; DCHECK(HaveAuth(target)); // Add a Authorization/Proxy-Authorization header line. std::string credentials = auth_handler_[target]->GenerateCredentials( auth_identity_[target].username, auth_identity_[target].password, request_, &proxy_info_); request_headers_ += HttpAuth::GetAuthorizationHeaderName(target) + ": " + credentials + "\r\n"; } void HttpNetworkTransaction::ApplyAuth() { // We expect using_proxy_ and using_tunnel_ to be mutually exclusive. DCHECK(!using_proxy_ || !using_tunnel_); // Don't send proxy auth after tunnel has been established. bool should_apply_proxy_auth = using_proxy_ || establishing_tunnel_; // Don't send origin server auth while establishing tunnel. bool should_apply_server_auth = !establishing_tunnel_; if (should_apply_proxy_auth) AddAuthorizationHeader(HttpAuth::AUTH_PROXY); if (should_apply_server_auth) AddAuthorizationHeader(HttpAuth::AUTH_SERVER); } GURL HttpNetworkTransaction::AuthOrigin(HttpAuth::Target target) const { return target == HttpAuth::AUTH_PROXY ? GURL("http://" + proxy_info_.proxy_server()) : request_->url.GetOrigin(); } std::string HttpNetworkTransaction::AuthPath(HttpAuth::Target target) const { // Proxy authentication realms apply to all paths. So we will use // empty string in place of an absolute path. return target == HttpAuth::AUTH_PROXY ? std::string() : request_->url.path(); } void HttpNetworkTransaction::InvalidateRejectedAuthFromCache( HttpAuth::Target target) { DCHECK(HaveAuth(target)); // TODO(eroman): this short-circuit can be relaxed. If the realm of // the preemptively used auth entry matches the realm of the subsequent // challenge, then we can invalidate the preemptively used entry. // Otherwise as-is we may send the failed credentials one extra time. if (auth_identity_[target].source == HttpAuth::IDENT_SRC_PATH_LOOKUP) return; // Clear the cache entry for the identity we just failed on. // Note: we require the username/password to match before invalidating // since the entry in the cache may be newer than what we used last time. session_->auth_cache()->Remove(AuthOrigin(target), auth_handler_[target]->realm(), auth_identity_[target].username, auth_identity_[target].password); } bool HttpNetworkTransaction::SelectPreemptiveAuth(HttpAuth::Target target) { DCHECK(!HaveAuth(target)); // Don't do preemptive authorization if the URL contains a username/password, // since we must first be challenged in order to use the URL's identity. if (request_->url.has_username()) return false; // SelectPreemptiveAuth() is on the critical path for each request, so it // is expected to be fast. LookupByPath() is fast in the common case, since // the number of http auth cache entries is expected to be very small. // (For most users in fact, it will be 0.) HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByPath( AuthOrigin(target), AuthPath(target)); if (entry) { auth_identity_[target].source = HttpAuth::IDENT_SRC_PATH_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); auth_handler_[target] = entry->handler(); return true; } return false; } bool HttpNetworkTransaction::SelectNextAuthIdentityToTry( HttpAuth::Target target) { DCHECK(auth_handler_[target]); DCHECK(auth_identity_[target].invalid); // Try to use the username/password encoded into the URL first. // (By checking source == IDENT_SRC_NONE, we make sure that this // is only done once for the transaction.) if (target == HttpAuth::AUTH_SERVER && request_->url.has_username() && auth_identity_[target].source == HttpAuth::IDENT_SRC_NONE) { auth_identity_[target].source = HttpAuth::IDENT_SRC_URL; auth_identity_[target].invalid = false; // TODO(wtc) It may be necessary to unescape the username and password // after extracting them from the URL. We should be careful about // embedded nulls in that case. auth_identity_[target].username = ASCIIToWide(request_->url.username()); auth_identity_[target].password = ASCIIToWide(request_->url.password()); // TODO(eroman): If the password is blank, should we also try combining // with a password from the cache? return true; } // Check the auth cache for a realm entry. HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByRealm( AuthOrigin(target), auth_handler_[target]->realm()); if (entry) { // Disallow re-using of identity if the scheme of the originating challenge // does not match. This protects against the following situation: // 1. Browser prompts user to sign into DIGEST realm="Foo". // 2. Since the auth-scheme is not BASIC, the user is reasured that it // will not be sent over the wire in clear text. So they use their // most trusted password. // 3. Next, the browser receives a challenge for BASIC realm="Foo". This // is the same realm that we have a cached identity for. However if // we use that identity, it would get sent over the wire in // clear text (which isn't what the user agreed to when entering it). if (entry->handler()->scheme() != auth_handler_[target]->scheme()) { LOG(WARNING) << "The scheme of realm " << auth_handler_[target]->realm() << " has changed from " << entry->handler()->scheme() << " to " << auth_handler_[target]->scheme(); return false; } auth_identity_[target].source = HttpAuth::IDENT_SRC_REALM_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); return true; } return false; } int HttpNetworkTransaction::HandleAuthChallenge() { DCHECK(response_.headers); int status = response_.headers->response_code(); if (status != 401 && status != 407) return OK; HttpAuth::Target target = status == 407 ? HttpAuth::AUTH_PROXY : HttpAuth::AUTH_SERVER; if (target == HttpAuth::AUTH_PROXY && proxy_info_.is_direct()) return ERR_UNEXPECTED_PROXY_AUTH; // The auth we tried just failed, hence it can't be valid. Remove it from // the cache so it won't be used again. if (HaveAuth(target)) InvalidateRejectedAuthFromCache(target); auth_identity_[target].invalid = true; // Find the best authentication challenge that we support. HttpAuth::ChooseBestChallenge(response_.headers.get(), target, &auth_handler_[target]); // We found no supported challenge -- let the transaction continue // so we end up displaying the error page. if (!auth_handler_[target]) return OK; // Pick a new auth identity to try, by looking to the URL and auth cache. // If an identity to try is found, it is saved to auth_identity_[target]. bool has_identity_to_try = SelectNextAuthIdentityToTry(target); DCHECK(has_identity_to_try == !auth_identity_[target].invalid); if (has_identity_to_try) { DCHECK(user_callback_); PrepareForAuthRestart(target); return WILL_RESTART_TRANSACTION; } else { // We have exhausted all identity possibilities, all we can do now is // pass the challenge information back to the client. PopulateAuthChallenge(target); } return OK; } void HttpNetworkTransaction::PopulateAuthChallenge(HttpAuth::Target target) { // Populates response_.auth_challenge with the authentication challenge info. // This info is consumed by URLRequestHttpJob::GetAuthChallengeInfo(). AuthChallengeInfo* auth_info = new AuthChallengeInfo; auth_info->is_proxy = target == HttpAuth::AUTH_PROXY; auth_info->scheme = ASCIIToWide(auth_handler_[target]->scheme()); // TODO(eroman): decode realm according to RFC 2047. auth_info->realm = ASCIIToWide(auth_handler_[target]->realm()); if (target == HttpAuth::AUTH_PROXY) { auth_info->host = ASCIIToWide(proxy_info_.proxy_server()); } else { DCHECK(target == HttpAuth::AUTH_SERVER); auth_info->host = ASCIIToWide(request_->url.host()); } response_.auth_challenge = auth_info; } } // namespace net