// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/proxy/multi_threaded_proxy_resolver.h" #include "base/bind.h" #include "base/bind_helpers.h" #include "base/message_loop/message_loop_proxy.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/threading/thread.h" #include "base/threading/thread_restrictions.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/proxy/proxy_info.h" // TODO(eroman): Have the MultiThreadedProxyResolver clear its PAC script // data when SetPacScript fails. That will reclaim memory when // testing bogus scripts. namespace net { // An "executor" is a job-runner for PAC requests. It encapsulates a worker // thread and a synchronous ProxyResolver (which will be operated on said // thread.) class MultiThreadedProxyResolver::Executor : public base::RefCountedThreadSafe { public: // |coordinator| must remain valid throughout our lifetime. It is used to // signal when the executor is ready to receive work by calling // |coordinator->OnExecutorReady()|. // The constructor takes ownership of |resolver|. // |thread_number| is an identifier used when naming the worker thread. Executor(MultiThreadedProxyResolver* coordinator, ProxyResolver* resolver, int thread_number); // Submit a job to this executor. void StartJob(Job* job); // Callback for when a job has completed running on the executor's thread. void OnJobCompleted(Job* job); // Cleanup the executor. Cancels all outstanding work, and frees the thread // and resolver. void Destroy(); // Returns the outstanding job, or NULL. Job* outstanding_job() const { return outstanding_job_.get(); } ProxyResolver* resolver() { return resolver_.get(); } int thread_number() const { return thread_number_; } private: friend class base::RefCountedThreadSafe; ~Executor(); MultiThreadedProxyResolver* coordinator_; const int thread_number_; // The currently active job for this executor (either a SetPacScript or // GetProxyForURL task). scoped_refptr outstanding_job_; // The synchronous resolver implementation. scoped_ptr resolver_; // The thread where |resolver_| is run on. // Note that declaration ordering is important here. |thread_| needs to be // destroyed *before* |resolver_|, in case |resolver_| is currently // executing on |thread_|. scoped_ptr thread_; }; // MultiThreadedProxyResolver::Job --------------------------------------------- class MultiThreadedProxyResolver::Job : public base::RefCountedThreadSafe { public: // Identifies the subclass of Job (only being used for debugging purposes). enum Type { TYPE_GET_PROXY_FOR_URL, TYPE_SET_PAC_SCRIPT, TYPE_SET_PAC_SCRIPT_INTERNAL, }; Job(Type type, const CompletionCallback& callback) : type_(type), callback_(callback), executor_(NULL), was_cancelled_(false) { } void set_executor(Executor* executor) { executor_ = executor; } // The "executor" is the job runner that is scheduling this job. If // this job has not been submitted to an executor yet, this will be // NULL (and we know it hasn't started yet). Executor* executor() { return executor_; } // Mark the job as having been cancelled. void Cancel() { was_cancelled_ = true; } // Returns true if Cancel() has been called. bool was_cancelled() const { return was_cancelled_; } Type type() const { return type_; } // Returns true if this job still has a user callback. Some jobs // do not have a user callback, because they were helper jobs // scheduled internally (for example TYPE_SET_PAC_SCRIPT_INTERNAL). // // Otherwise jobs that correspond with user-initiated work will // have a non-null callback up until the callback is run. bool has_user_callback() const { return !callback_.is_null(); } // This method is called when the job is inserted into a wait queue // because no executors were ready to accept it. virtual void WaitingForThread() {} // This method is called just before the job is posted to the work thread. virtual void FinishedWaitingForThread() {} // This method is called on the worker thread to do the job's work. On // completion, implementors are expected to call OnJobCompleted() on // |origin_loop|. virtual void Run(scoped_refptr origin_loop) = 0; protected: void OnJobCompleted() { // |executor_| will be NULL if the executor has already been deleted. if (executor_) executor_->OnJobCompleted(this); } void RunUserCallback(int result) { DCHECK(has_user_callback()); CompletionCallback callback = callback_; // Reset the callback so has_user_callback() will now return false. callback_.Reset(); callback.Run(result); } friend class base::RefCountedThreadSafe; virtual ~Job() {} private: const Type type_; CompletionCallback callback_; Executor* executor_; bool was_cancelled_; }; // MultiThreadedProxyResolver::SetPacScriptJob --------------------------------- // Runs on the worker thread to call ProxyResolver::SetPacScript. class MultiThreadedProxyResolver::SetPacScriptJob : public MultiThreadedProxyResolver::Job { public: SetPacScriptJob(const scoped_refptr& script_data, const CompletionCallback& callback) : Job(!callback.is_null() ? TYPE_SET_PAC_SCRIPT : TYPE_SET_PAC_SCRIPT_INTERNAL, callback), script_data_(script_data) { } // Runs on the worker thread. void Run(scoped_refptr origin_loop) override { ProxyResolver* resolver = executor()->resolver(); int rv = resolver->SetPacScript(script_data_, CompletionCallback()); DCHECK_NE(rv, ERR_IO_PENDING); origin_loop->PostTask( FROM_HERE, base::Bind(&SetPacScriptJob::RequestComplete, this, rv)); } protected: ~SetPacScriptJob() override {} private: // Runs the completion callback on the origin thread. void RequestComplete(int result_code) { // The task may have been cancelled after it was started. if (!was_cancelled() && has_user_callback()) { RunUserCallback(result_code); } OnJobCompleted(); } const scoped_refptr script_data_; }; // MultiThreadedProxyResolver::GetProxyForURLJob ------------------------------ class MultiThreadedProxyResolver::GetProxyForURLJob : public MultiThreadedProxyResolver::Job { public: // |url| -- the URL of the query. // |results| -- the structure to fill with proxy resolve results. GetProxyForURLJob(const GURL& url, ProxyInfo* results, const CompletionCallback& callback, const BoundNetLog& net_log) : Job(TYPE_GET_PROXY_FOR_URL, callback), results_(results), net_log_(net_log), url_(url), was_waiting_for_thread_(false) { DCHECK(!callback.is_null()); } BoundNetLog* net_log() { return &net_log_; } void WaitingForThread() override { was_waiting_for_thread_ = true; net_log_.BeginEvent(NetLog::TYPE_WAITING_FOR_PROXY_RESOLVER_THREAD); } void FinishedWaitingForThread() override { DCHECK(executor()); if (was_waiting_for_thread_) { net_log_.EndEvent(NetLog::TYPE_WAITING_FOR_PROXY_RESOLVER_THREAD); } net_log_.AddEvent( NetLog::TYPE_SUBMITTED_TO_RESOLVER_THREAD, NetLog::IntegerCallback("thread_number", executor()->thread_number())); } // Runs on the worker thread. void Run(scoped_refptr origin_loop) override { ProxyResolver* resolver = executor()->resolver(); int rv = resolver->GetProxyForURL( url_, &results_buf_, CompletionCallback(), NULL, net_log_); DCHECK_NE(rv, ERR_IO_PENDING); origin_loop->PostTask( FROM_HERE, base::Bind(&GetProxyForURLJob::QueryComplete, this, rv)); } protected: ~GetProxyForURLJob() override {} private: // Runs the completion callback on the origin thread. void QueryComplete(int result_code) { // The Job may have been cancelled after it was started. if (!was_cancelled()) { if (result_code >= OK) { // Note: unit-tests use values > 0. results_->Use(results_buf_); } RunUserCallback(result_code); } OnJobCompleted(); } // Must only be used on the "origin" thread. ProxyInfo* results_; // Can be used on either "origin" or worker thread. BoundNetLog net_log_; const GURL url_; // Usable from within DoQuery on the worker thread. ProxyInfo results_buf_; bool was_waiting_for_thread_; }; // MultiThreadedProxyResolver::Executor ---------------------------------------- MultiThreadedProxyResolver::Executor::Executor( MultiThreadedProxyResolver* coordinator, ProxyResolver* resolver, int thread_number) : coordinator_(coordinator), thread_number_(thread_number), resolver_(resolver) { DCHECK(coordinator); DCHECK(resolver); // Start up the thread. thread_.reset(new base::Thread(base::StringPrintf("PAC thread #%d", thread_number))); CHECK(thread_->Start()); } void MultiThreadedProxyResolver::Executor::StartJob(Job* job) { DCHECK(!outstanding_job_.get()); outstanding_job_ = job; // Run the job. Once it has completed (regardless of whether it was // cancelled), it will invoke OnJobCompleted() on this thread. job->set_executor(this); job->FinishedWaitingForThread(); thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&Job::Run, job, base::MessageLoopProxy::current())); } void MultiThreadedProxyResolver::Executor::OnJobCompleted(Job* job) { DCHECK_EQ(job, outstanding_job_.get()); outstanding_job_ = NULL; coordinator_->OnExecutorReady(this); } void MultiThreadedProxyResolver::Executor::Destroy() { DCHECK(coordinator_); { // See http://crbug.com/69710. base::ThreadRestrictions::ScopedAllowIO allow_io; // Join the worker thread. thread_.reset(); } // Cancel any outstanding job. if (outstanding_job_.get()) { outstanding_job_->Cancel(); // Orphan the job (since this executor may be deleted soon). outstanding_job_->set_executor(NULL); } // It is now safe to free the ProxyResolver, since all the tasks that // were using it on the resolver thread have completed. resolver_.reset(); // Null some stuff as a precaution. coordinator_ = NULL; outstanding_job_ = NULL; } MultiThreadedProxyResolver::Executor::~Executor() { // The important cleanup happens as part of Destroy(), which should always be // called first. DCHECK(!coordinator_) << "Destroy() was not called"; DCHECK(!thread_.get()); DCHECK(!resolver_.get()); DCHECK(!outstanding_job_.get()); } // MultiThreadedProxyResolver -------------------------------------------------- MultiThreadedProxyResolver::MultiThreadedProxyResolver( ProxyResolverFactory* resolver_factory, size_t max_num_threads) : ProxyResolver(resolver_factory->resolvers_expect_pac_bytes()), resolver_factory_(resolver_factory), max_num_threads_(max_num_threads) { DCHECK_GE(max_num_threads, 1u); } MultiThreadedProxyResolver::~MultiThreadedProxyResolver() { // We will cancel all outstanding requests. pending_jobs_.clear(); ReleaseAllExecutors(); } int MultiThreadedProxyResolver::GetProxyForURL( const GURL& url, ProxyInfo* results, const CompletionCallback& callback, RequestHandle* request, const BoundNetLog& net_log) { DCHECK(CalledOnValidThread()); DCHECK(!callback.is_null()); DCHECK(current_script_data_.get()) << "Resolver is un-initialized. Must call SetPacScript() first!"; scoped_refptr job( new GetProxyForURLJob(url, results, callback, net_log)); // Completion will be notified through |callback|, unless the caller cancels // the request using |request|. if (request) *request = reinterpret_cast(job.get()); // If there is an executor that is ready to run this request, submit it! Executor* executor = FindIdleExecutor(); if (executor) { DCHECK_EQ(0u, pending_jobs_.size()); executor->StartJob(job.get()); return ERR_IO_PENDING; } // Otherwise queue this request. (We will schedule it to a thread once one // becomes available). job->WaitingForThread(); pending_jobs_.push_back(job); // If we haven't already reached the thread limit, provision a new thread to // drain the requests more quickly. if (executors_.size() < max_num_threads_) { executor = AddNewExecutor(); executor->StartJob( new SetPacScriptJob(current_script_data_, CompletionCallback())); } return ERR_IO_PENDING; } void MultiThreadedProxyResolver::CancelRequest(RequestHandle req) { DCHECK(CalledOnValidThread()); DCHECK(req); Job* job = reinterpret_cast(req); DCHECK_EQ(Job::TYPE_GET_PROXY_FOR_URL, job->type()); if (job->executor()) { // If the job was already submitted to the executor, just mark it // as cancelled so the user callback isn't run on completion. job->Cancel(); } else { // Otherwise the job is just sitting in a queue. PendingJobsQueue::iterator it = std::find(pending_jobs_.begin(), pending_jobs_.end(), job); DCHECK(it != pending_jobs_.end()); pending_jobs_.erase(it); } } LoadState MultiThreadedProxyResolver::GetLoadState(RequestHandle req) const { DCHECK(CalledOnValidThread()); DCHECK(req); return LOAD_STATE_RESOLVING_PROXY_FOR_URL; } void MultiThreadedProxyResolver::CancelSetPacScript() { DCHECK(CalledOnValidThread()); DCHECK_EQ(0u, pending_jobs_.size()); DCHECK_EQ(1u, executors_.size()); DCHECK_EQ(Job::TYPE_SET_PAC_SCRIPT, executors_[0]->outstanding_job()->type()); // Defensively clear some data which shouldn't be getting used // anymore. current_script_data_ = NULL; ReleaseAllExecutors(); } int MultiThreadedProxyResolver::SetPacScript( const scoped_refptr& script_data, const CompletionCallback&callback) { DCHECK(CalledOnValidThread()); DCHECK(!callback.is_null()); // Save the script details, so we can provision new executors later. current_script_data_ = script_data; // The user should not have any outstanding requests when they call // SetPacScript(). CheckNoOutstandingUserRequests(); // Destroy all of the current threads and their proxy resolvers. ReleaseAllExecutors(); // Provision a new executor, and run the SetPacScript request. On completion // notification will be sent through |callback|. Executor* executor = AddNewExecutor(); executor->StartJob(new SetPacScriptJob(script_data, callback)); return ERR_IO_PENDING; } void MultiThreadedProxyResolver::CheckNoOutstandingUserRequests() const { DCHECK(CalledOnValidThread()); CHECK_EQ(0u, pending_jobs_.size()); for (ExecutorList::const_iterator it = executors_.begin(); it != executors_.end(); ++it) { const Executor* executor = it->get(); Job* job = executor->outstanding_job(); // The "has_user_callback()" is to exclude jobs for which the callback // has already been invoked, or was not user-initiated (as in the case of // lazy thread provisions). User-initiated jobs may !has_user_callback() // when the callback has already been run. (Since we only clear the // outstanding job AFTER the callback has been invoked, it is possible // for a new request to be started from within the callback). CHECK(!job || job->was_cancelled() || !job->has_user_callback()); } } void MultiThreadedProxyResolver::ReleaseAllExecutors() { DCHECK(CalledOnValidThread()); for (ExecutorList::iterator it = executors_.begin(); it != executors_.end(); ++it) { Executor* executor = it->get(); executor->Destroy(); } executors_.clear(); } MultiThreadedProxyResolver::Executor* MultiThreadedProxyResolver::FindIdleExecutor() { DCHECK(CalledOnValidThread()); for (ExecutorList::iterator it = executors_.begin(); it != executors_.end(); ++it) { Executor* executor = it->get(); if (!executor->outstanding_job()) return executor; } return NULL; } MultiThreadedProxyResolver::Executor* MultiThreadedProxyResolver::AddNewExecutor() { DCHECK(CalledOnValidThread()); DCHECK_LT(executors_.size(), max_num_threads_); // The "thread number" is used to give the thread a unique name. int thread_number = executors_.size(); ProxyResolver* resolver = resolver_factory_->CreateProxyResolver(); Executor* executor = new Executor( this, resolver, thread_number); executors_.push_back(make_scoped_refptr(executor)); return executor; } void MultiThreadedProxyResolver::OnExecutorReady(Executor* executor) { DCHECK(CalledOnValidThread()); if (pending_jobs_.empty()) return; // Get the next job to process (FIFO). Transfer it from the pending queue // to the executor. scoped_refptr job = pending_jobs_.front(); pending_jobs_.pop_front(); executor->StartJob(job.get()); } } // namespace net