// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "net/quic/congestion_control/rtt_stats.h" #include "net/quic/congestion_control/tcp_cubic_sender.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/mock_clock.h" #include "net/quic/test_tools/quic_config_peer.h" #include "testing/gtest/include/gtest/gtest.h" using std::min; namespace net { namespace test { // TODO(ianswett): A number of theses tests were written with the assumption of // an initial CWND of 10. They have carefully calculated values which should be // updated to be based on kInitialCongestionWindowInsecure. const uint32 kInitialCongestionWindowPackets = 10; const uint32 kDefaultWindowTCP = kInitialCongestionWindowPackets * kDefaultTCPMSS; const float kRenoBeta = 0.7f; // Reno backoff factor. class TcpCubicSenderPeer : public TcpCubicSender { public: TcpCubicSenderPeer(const QuicClock* clock, bool reno, QuicPacketCount max_tcp_congestion_window) : TcpCubicSender( clock, &rtt_stats_, reno, kInitialCongestionWindowPackets, max_tcp_congestion_window, &stats_) { } QuicPacketCount congestion_window() { return congestion_window_; } QuicPacketCount slowstart_threshold() { return slowstart_threshold_; } const HybridSlowStart& hybrid_slow_start() const { return hybrid_slow_start_; } float GetRenoBeta() const { return RenoBeta(); } RttStats rtt_stats_; QuicConnectionStats stats_; }; class TcpCubicSenderTest : public ::testing::Test { protected: TcpCubicSenderTest() : one_ms_(QuicTime::Delta::FromMilliseconds(1)), sender_(new TcpCubicSenderPeer(&clock_, true, kMaxTcpCongestionWindow)), sequence_number_(1), acked_sequence_number_(0), bytes_in_flight_(0) { standard_packet_.bytes_sent = kDefaultTCPMSS; } int SendAvailableSendWindow() { // Send as long as TimeUntilSend returns Zero. int packets_sent = 0; bool can_send = sender_->TimeUntilSend( clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero(); while (can_send) { sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++, kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA); ++packets_sent; bytes_in_flight_ += kDefaultTCPMSS; can_send = sender_->TimeUntilSend( clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero(); } return packets_sent; } // Normal is that TCP acks every other segment. void AckNPackets(int n) { sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60), QuicTime::Delta::Zero(), clock_.Now()); SendAlgorithmInterface::CongestionVector acked_packets; SendAlgorithmInterface::CongestionVector lost_packets; for (int i = 0; i < n; ++i) { ++acked_sequence_number_; acked_packets.push_back( std::make_pair(acked_sequence_number_, standard_packet_)); } sender_->OnCongestionEvent( true, bytes_in_flight_, acked_packets, lost_packets); bytes_in_flight_ -= n * kDefaultTCPMSS; clock_.AdvanceTime(one_ms_); } void LoseNPackets(int n) { SendAlgorithmInterface::CongestionVector acked_packets; SendAlgorithmInterface::CongestionVector lost_packets; for (int i = 0; i < n; ++i) { ++acked_sequence_number_; lost_packets.push_back( std::make_pair(acked_sequence_number_, standard_packet_)); } sender_->OnCongestionEvent( false, bytes_in_flight_, acked_packets, lost_packets); bytes_in_flight_ -= n * kDefaultTCPMSS; } // Does not increment acked_sequence_number_. void LosePacket(QuicPacketSequenceNumber sequence_number) { SendAlgorithmInterface::CongestionVector acked_packets; SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(sequence_number, standard_packet_)); sender_->OnCongestionEvent( false, bytes_in_flight_, acked_packets, lost_packets); bytes_in_flight_ -= kDefaultTCPMSS; } const QuicTime::Delta one_ms_; MockClock clock_; scoped_ptr sender_; QuicPacketSequenceNumber sequence_number_; QuicPacketSequenceNumber acked_sequence_number_; QuicByteCount bytes_in_flight_; TransmissionInfo standard_packet_; }; TEST_F(TcpCubicSenderTest, SimpleSender) { // At startup make sure we are at the default. EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); // At startup make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); // Make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); // And that window is un-affected. EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); // Fill the send window with data, then verify that we can't send. SendAvailableSendWindow(); EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(), sender_->GetCongestionWindow(), HAS_RETRANSMITTABLE_DATA).IsZero()); } TEST_F(TcpCubicSenderTest, ApplicationLimitedSlowStart) { // Send exactly 10 packets and ensure the CWND ends at 14 packets. const int kNumberOfAcks = 5; // At startup make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); // Make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); SendAvailableSendWindow(); for (int i = 0; i < kNumberOfAcks; ++i) { AckNPackets(2); } QuicByteCount bytes_to_send = sender_->GetCongestionWindow(); // It's expected 2 acks will arrive when the bytes_in_flight are greater than // half the CWND. EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2, bytes_to_send); } TEST_F(TcpCubicSenderTest, ExponentialSlowStart) { const int kNumberOfAcks = 20; // At startup make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); EXPECT_FALSE(sender_->HasReliableBandwidthEstimate()); EXPECT_EQ(QuicBandwidth::Zero(), sender_->BandwidthEstimate()); // Make sure we can send. EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA).IsZero()); for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } const QuicByteCount cwnd = sender_->GetCongestionWindow(); EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks, cwnd); EXPECT_FALSE(sender_->HasReliableBandwidthEstimate()); EXPECT_EQ(QuicBandwidth::FromBytesAndTimeDelta( cwnd, sender_->rtt_stats_.smoothed_rtt()), sender_->BandwidthEstimate()); } TEST_F(TcpCubicSenderTest, SlowStartAckTrain) { sender_->SetNumEmulatedConnections(1); EXPECT_EQ(kMaxTcpCongestionWindow * kDefaultTCPMSS, sender_->GetSlowStartThreshold()); // Make sure that we fall out of slow start when we send ACK train longer // than half the RTT, in this test case 30ms, which is more than 30 calls to // Ack2Packets in one round. // Since we start at 10 packet first round will be 5 second round 10 etc // Hence we should pass 30 at 65 = 5 + 10 + 20 + 30 const int kNumberOfAcks = 65; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // We should now have fallen out of slow start. // Testing Reno phase. // We should need 140(65*2+10) ACK:ed packets before increasing window by // one. for (int i = 0; i < 69; ++i) { SendAvailableSendWindow(); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } SendAvailableSendWindow(); AckNPackets(2); QuicByteCount expected_ss_tresh = expected_send_window; expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_EQ(expected_ss_tresh, sender_->GetSlowStartThreshold()); EXPECT_EQ(140u, sender_->slowstart_threshold()); // Now RTO and ensure slow start gets reset. EXPECT_TRUE(sender_->hybrid_slow_start().started()); sender_->OnRetransmissionTimeout(true); EXPECT_FALSE(sender_->hybrid_slow_start().started()); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(expected_send_window / 2 / kDefaultTCPMSS, sender_->slowstart_threshold()); // Now revert the RTO and ensure the CWND and slowstart threshold revert. sender_->RevertRetransmissionTimeout(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_EQ(140u, sender_->slowstart_threshold()); } TEST_F(TcpCubicSenderTest, SlowStartPacketLoss) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Lose a packet to exit slow start. LoseNPackets(1); size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS; // We should now have fallen out of slow start with a reduced window. expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Recovery phase. We need to ack every packet in the recovery window before // we exit recovery. size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; DVLOG(1) << "number_packets: " << number_of_packets_in_window; AckNPackets(packets_in_recovery_window); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // We need to ack an entire window before we increase CWND by 1. AckNPackets(number_of_packets_in_window - 2); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Next ack should increase cwnd by 1. AckNPackets(1); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Now RTO and ensure slow start gets reset. EXPECT_TRUE(sender_->hybrid_slow_start().started()); sender_->OnRetransmissionTimeout(true); EXPECT_FALSE(sender_->hybrid_slow_start().started()); } TEST_F(TcpCubicSenderTest, NoPRRWhenLessThanOnePacketInFlight) { SendAvailableSendWindow(); LoseNPackets(kInitialCongestionWindowPackets - 1); AckNPackets(1); // PRR will allow 2 packets for every ack during recovery. EXPECT_EQ(2, SendAvailableSendWindow()); // Simulate abandoning all packets by supplying a bytes_in_flight of 0. // PRR should now allow a packet to be sent, even though prr's state // variables believe it has sent enough packets. EXPECT_EQ(QuicTime::Delta::Zero(), sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA)); } TEST_F(TcpCubicSenderTest, SlowStartPacketLossPRR) { sender_->SetNumEmulatedConnections(1); // Test based on the first example in RFC6937. // Ack 10 packets in 5 acks to raise the CWND to 20, as in the example. const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); // We should now have fallen out of slow start with a reduced window. size_t send_window_before_loss = expected_send_window; expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Testing TCP proportional rate reduction. // We should send packets paced over the received acks for the remaining // outstanding packets. The number of packets before we exit recovery is the // original CWND minus the packet that has been lost and the one which // triggered the loss. size_t remaining_packets_in_recovery = send_window_before_loss / kDefaultTCPMSS - 2; for (size_t i = 0; i < remaining_packets_in_recovery; ++i) { AckNPackets(1); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } // We need to ack another window before we increase CWND by 1. size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; for (size_t i = 0; i < number_of_packets_in_window; ++i) { AckNPackets(1); EXPECT_EQ(1, SendAvailableSendWindow()); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } AckNPackets(1); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, SlowStartBurstPacketLossPRR) { sender_->SetNumEmulatedConnections(1); // Test based on the second example in RFC6937, though we also implement // forward acknowledgements, so the first two incoming acks will trigger // PRR immediately. // Ack 20 packets in 10 acks to raise the CWND to 30. const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Lose one more than the congestion window reduction, so that after loss, // bytes_in_flight is lesser than the congestion window. size_t send_window_after_loss = kRenoBeta * expected_send_window; size_t num_packets_to_lose = (expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1; LoseNPackets(num_packets_to_lose); // Immediately after the loss, ensure at least one packet can be sent. // Losses without subsequent acks can occur with timer based loss detection. EXPECT_TRUE(sender_->TimeUntilSend( clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero()); AckNPackets(1); // We should now have fallen out of slow start with a reduced window. expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Only 2 packets should be allowed to be sent, per PRR-SSRB EXPECT_EQ(2, SendAvailableSendWindow()); // Ack the next packet, which triggers another loss. LoseNPackets(1); AckNPackets(1); // Send 2 packets to simulate PRR-SSRB. EXPECT_EQ(2, SendAvailableSendWindow()); // Ack the next packet, which triggers another loss. LoseNPackets(1); AckNPackets(1); // Send 2 packets to simulate PRR-SSRB. EXPECT_EQ(2, SendAvailableSendWindow()); // Exit recovery and return to sending at the new rate. for (int i = 0; i < kNumberOfAcks; ++i) { AckNPackets(1); EXPECT_EQ(1, SendAvailableSendWindow()); } } TEST_F(TcpCubicSenderTest, RTOCongestionWindowAndRevert) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); EXPECT_EQ(kMaxTcpCongestionWindow, sender_->slowstart_threshold()); // Expect the window to decrease to the minimum once the RTO fires // and slow start threshold to be set to 1/2 of the CWND. sender_->OnRetransmissionTimeout(true); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(5u, sender_->slowstart_threshold()); // Now repair the RTO and ensure the slowstart threshold reverts. sender_->RevertRetransmissionTimeout(); EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); EXPECT_EQ(kMaxTcpCongestionWindow, sender_->slowstart_threshold()); } TEST_F(TcpCubicSenderTest, RTOCongestionWindowNoRetransmission) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); // Expect the window to remain unchanged if the RTO fires but no // packets are retransmitted. sender_->OnRetransmissionTimeout(false); EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, RTOTwiceOnlyHalvesSsthresh) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); sender_->OnRetransmissionTimeout(true); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(5u, sender_->slowstart_threshold()); sender_->OnRetransmissionTimeout(true); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(5u, sender_->slowstart_threshold()); AckNPackets(2); EXPECT_EQ(4 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(5u, sender_->slowstart_threshold()); sender_->OnRetransmissionTimeout(true); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(2u, sender_->slowstart_threshold()); } TEST_F(TcpCubicSenderTest, RetransmissionDelay) { const int64 kRttMs = 10; const int64 kDeviationMs = 3; EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay()); sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs), QuicTime::Delta::Zero(), clock_.Now()); // Initial value is to set the median deviation to half of the initial // rtt, the median in then multiplied by a factor of 4 and finally the // smoothed rtt is added which is the initial rtt. QuicTime::Delta expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4); EXPECT_EQ(expected_delay, sender_->RetransmissionDelay()); for (int i = 0; i < 100; ++i) { // Run to make sure that we converge. sender_->rtt_stats_.UpdateRtt( QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs), QuicTime::Delta::Zero(), clock_.Now()); sender_->rtt_stats_.UpdateRtt( QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs), QuicTime::Delta::Zero(), clock_.Now()); } expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4); EXPECT_NEAR(kRttMs, sender_->rtt_stats_.smoothed_rtt().ToMilliseconds(), 1); EXPECT_NEAR(expected_delay.ToMilliseconds(), sender_->RetransmissionDelay().ToMilliseconds(), 1); EXPECT_EQ(static_cast( sender_->GetCongestionWindow() * kNumMicrosPerSecond / sender_->rtt_stats_.smoothed_rtt().ToMicroseconds()), sender_->BandwidthEstimate().ToBytesPerSecond()); } TEST_F(TcpCubicSenderTest, SlowStartMaxSendWindow) { const QuicPacketCount kMaxCongestionWindowTCP = 50; const int kNumberOfAcks = 100; sender_.reset( new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP)); for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } QuicByteCount expected_send_window = kMaxCongestionWindowTCP * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, TcpRenoMaxCongestionWindow) { const QuicPacketCount kMaxCongestionWindowTCP = 50; const int kNumberOfAcks = 1000; sender_.reset( new TcpCubicSenderPeer(&clock_, true, kMaxCongestionWindowTCP)); SendAvailableSendWindow(); AckNPackets(2); // Make sure we fall out of slow start. LoseNPackets(1); for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } QuicByteCount expected_send_window = kMaxCongestionWindowTCP * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, TcpCubicMaxCongestionWindow) { const QuicPacketCount kMaxCongestionWindowTCP = 50; // Set to 10000 to compensate for small cubic alpha. const int kNumberOfAcks = 10000; sender_.reset( new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP)); SendAvailableSendWindow(); AckNPackets(2); // Make sure we fall out of slow start. LoseNPackets(1); for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } QuicByteCount expected_send_window = kMaxCongestionWindowTCP * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, MultipleLossesInOneWindow) { SendAvailableSendWindow(); const QuicByteCount initial_window = sender_->GetCongestionWindow(); LosePacket(acked_sequence_number_ + 1); const QuicByteCount post_loss_window = sender_->GetCongestionWindow(); EXPECT_GT(initial_window, post_loss_window); LosePacket(acked_sequence_number_ + 3); EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); LosePacket(sequence_number_ - 1); EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); // Lose a later packet and ensure the window decreases. LosePacket(sequence_number_); EXPECT_GT(post_loss_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, DontTrackAckPackets) { // Send a packet with no retransmittable data, and ensure it's not tracked. EXPECT_FALSE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++, kDefaultTCPMSS, NO_RETRANSMITTABLE_DATA)); // Send a data packet with retransmittable data, and ensure it is tracked. EXPECT_TRUE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++, kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA)); } TEST_F(TcpCubicSenderTest, ConfigureMaxInitialWindow) { QuicConfig config; // Verify that kCOPT: kIW10 forces the congestion window to the default of 10. QuicTagVector options; options.push_back(kIW10); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, /* is_server= */ true, /* using_pacing= */ false); EXPECT_EQ(10u, sender_->congestion_window()); } TEST_F(TcpCubicSenderTest, DisableAckTrainDetectionWithPacing) { EXPECT_TRUE(sender_->hybrid_slow_start().ack_train_detection()); QuicConfig config; sender_->SetFromConfig(config, /* is_server= */ true, /* using_pacing= */ true); EXPECT_FALSE(sender_->hybrid_slow_start().ack_train_detection()); } TEST_F(TcpCubicSenderTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) { sender_->SetNumEmulatedConnections(2); // Ack 10 packets in 5 acks to raise the CWND to 20. const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); // We should now have fallen out of slow start with a reduced window. expected_send_window = expected_send_window * sender_->GetRenoBeta(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // No congestion window growth should occur in recovery phase, i.e., until the // currently outstanding 20 packets are acked. for (int i = 0; i < 10; ++i) { // Send our full send window. SendAvailableSendWindow(); EXPECT_TRUE(sender_->InRecovery()); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } EXPECT_FALSE(sender_->InRecovery()); // Out of recovery now. Congestion window should not grow for half an RTT. size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS; SendAvailableSendWindow(); AckNPackets(packets_in_send_window / 2 - 2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Next ack should increase congestion window by 1MSS. SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; packets_in_send_window += 1; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Congestion window should remain steady again for half an RTT. SendAvailableSendWindow(); AckNPackets(packets_in_send_window / 2 - 1); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // Next ack should cause congestion window to grow by 1MSS. SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) { sender_->SetNumEmulatedConnections(1); // Ack 10 packets in 5 acks to raise the CWND to 20. const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); // We should now have fallen out of slow start with a reduced window. expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); // No congestion window growth should occur in recovery phase, i.e., until the // currently outstanding 20 packets are acked. for (int i = 0; i < 10; ++i) { // Send our full send window. SendAvailableSendWindow(); EXPECT_TRUE(sender_->InRecovery()); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } EXPECT_FALSE(sender_->InRecovery()); // Out of recovery now. Congestion window should not grow during RTT. for (uint64 i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) { // Send our full send window. SendAvailableSendWindow(); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } // Next ack should cause congestion window to grow by 1MSS. SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderTest, BandwidthResumption) { // Test that when provided with CachedNetworkParameters and opted in to the // bandwidth resumption experiment, that the TcpCubicSender sets initial CWND // appropriately. // Set some common values. CachedNetworkParameters cached_network_params; const QuicPacketCount kNumberOfPackets = 123; const int kBandwidthEstimateBytesPerSecond = kNumberOfPackets * kMaxPacketSize; cached_network_params.set_bandwidth_estimate_bytes_per_second( kBandwidthEstimateBytesPerSecond); cached_network_params.set_min_rtt_ms(1000); // Ensure that an old estimate is not used for bandwidth resumption. cached_network_params.set_timestamp(clock_.WallNow().ToUNIXSeconds() - (kNumSecondsPerHour + 1)); EXPECT_FALSE(sender_->ResumeConnectionState(cached_network_params)); EXPECT_EQ(10u, sender_->congestion_window()); // If the estimate is new enough, make sure it is used. cached_network_params.set_timestamp(clock_.WallNow().ToUNIXSeconds() - (kNumSecondsPerHour - 1)); EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params)); EXPECT_EQ(kNumberOfPackets, sender_->congestion_window()); // Resumed CWND is limited to be in a sensible range. cached_network_params.set_bandwidth_estimate_bytes_per_second( (kMaxTcpCongestionWindow + 1) * kMaxPacketSize); EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params)); EXPECT_EQ(kMaxTcpCongestionWindow, sender_->congestion_window()); cached_network_params.set_bandwidth_estimate_bytes_per_second( (kMinCongestionWindowForBandwidthResumption - 1) * kMaxPacketSize); EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params)); EXPECT_EQ(kMinCongestionWindowForBandwidthResumption, sender_->congestion_window()); } } // namespace test } // namespace net