// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // An Interval is a data structure used to represent a contiguous, mutable // range over an ordered type T. Supported operations include testing a value to // see whether it is included in the interval, comparing two intervals, and // performing their union, intersection, and difference. For the purposes of // this library, an "ordered type" is any type that induces a total order on its // values via its less-than operator (operator<()). Examples of such types are // basic arithmetic types like int and double as well as class types like // string. // // An Interval is represented using the usual C++ STL convention, namely as // the half-open interval [min, max). A point p is considered to be contained in // the interval iff p >= min && p < max. One consequence of this definition is // that for any non-empty interval, min is contained in the interval but max is // not. There is no canonical representation for the empty interval; rather, any // interval where max <= min is regarded as empty. As a consequence, two empty // intervals will still compare as equal despite possibly having different // underlying min() or max() values. Also beware of the terminology used here: // the library uses the terms "min" and "max" rather than "begin" and "end" as // is conventional for the STL. // // T is required to be default- and copy-constructable, to have an assignment // operator, and the full complement of comparison operators (<, <=, ==, !=, >=, // >). A difference operator (operator-()) is required if Interval::Length // is used. // // For equality comparisons, Interval supports an Equals() method and an // operator==() which delegates to it. Two intervals are considered equal if // either they are both empty or if their corresponding min and max fields // compare equal. For ordered comparisons, Interval also provides the // comparator Interval::Less and an operator<() which delegates to it. // Unfortunately this comparator is currently buggy because its behavior is // inconsistent with Equals(): two empty ranges with different representations // may be regarded as equivalent by Equals() but regarded as different by // the comparator. Bug 9240050 has been created to address this. // // This class is thread-compatible if T is thread-compatible. (See // go/thread-compatible). // // Examples: // Interval r1(0, 100); // The interval [0, 100). // EXPECT_TRUE(r1.Contains(0)); // EXPECT_TRUE(r1.Contains(50)); // EXPECT_FALSE(r1.Contains(100)); // 100 is just outside the interval. // // Interval r2(50, 150); // The interval [50, 150). // EXPECT_TRUE(r1.Intersects(r2)); // EXPECT_FALSE(r1.Contains(r2)); // EXPECT_TRUE(r1.IntersectWith(r2)); // Mutates r1. // EXPECT_EQ(Interval(50, 100), r1); // r1 is now [50, 100). // // Interval r3(1000, 2000); // The interval [1000, 2000). // EXPECT_TRUE(r1.IntersectWith(r3)); // Mutates r1. // EXPECT_TRUE(r1.Empty()); // Now r1 is empty. // EXPECT_FALSE(r1.Contains(r1.min())); // e.g. doesn't contain its own min. #ifndef NET_QUIC_INTERVAL_H_ #define NET_QUIC_INTERVAL_H_ #include #include #include #include #include #include namespace net { template class Interval { private: // TODO(rtenneti): Implement after suupport for std::decay. #if 0 // Type trait for deriving the return type for Interval::Length. If // operator-() is not defined for T, then the return type is void. This makes // the signature for Length compile so that the class can be used for such T, // but code that calls Length would still generate a compilation error. template class DiffTypeOrVoid { private: template static auto f(const V* v) -> decltype(*v - *v); template static void f(...); public: using type = typename std::decay(0))>::type; }; #endif public: // Compatibility alias. using Less = std::less; // Construct an Interval representing an empty interval. Interval() : min_(), max_() {} // Construct an Interval representing the interval [min, max). If min < max, // the constructed object will represent the non-empty interval containing all // values from min up to (but not including) max. On the other hand, if min >= // max, the constructed object will represent the empty interval. Interval(const T& min, const T& max) : min_(min), max_(max) {} const T& min() const { return min_; } const T& max() const { return max_; } void SetMin(const T& t) { min_ = t; } void SetMax(const T& t) { max_ = t; } void Set(const T& min, const T& max) { SetMin(min); SetMax(max); } void Clear() { *this = {}; } void CopyFrom(const Interval& i) { *this = i; } bool Equals(const Interval& i) const { return *this == i; } bool Empty() const { return min() >= max(); } // Returns the length of this interval. The value returned is zero if // IsEmpty() is true; otherwise the value returned is max() - min(). const T Length() const { return (min_ >= max_ ? min_ : max_) - min_; } // Returns true iff t >= min() && t < max(). bool Contains(const T& t) const { return min() <= t && max() > t; } // Returns true iff *this and i are non-empty, and *this includes i. "*this // includes i" means that for all t, if i.Contains(t) then this->Contains(t). // Note the unintuitive consequence of this definition: this method always // returns false when i is the empty interval. bool Contains(const Interval& i) const { return !Empty() && !i.Empty() && min() <= i.min() && max() >= i.max(); } // Returns true iff there exists some point t for which this->Contains(t) && // i.Contains(t) evaluates to true, i.e. if the intersection is non-empty. bool Intersects(const Interval& i) const { return !Empty() && !i.Empty() && min() < i.max() && max() > i.min(); } // Returns true iff there exists some point t for which this->Contains(t) && // i.Contains(t) evaluates to true, i.e. if the intersection is non-empty. // Furthermore, if the intersection is non-empty and the intersection pointer // is not null, this method stores the calculated intersection in // *intersection. bool Intersects(const Interval& i, Interval* out) const; // Sets *this to be the intersection of itself with i. Returns true iff // *this was modified. bool IntersectWith(const Interval& i); // Calculates the smallest interval containing both *this i, and updates *this // to represent that interval, and returns true iff *this was modified. bool SpanningUnion(const Interval& i); // Determines the difference between two intervals by finding all points that // are contained in *this but not in i, coalesces those points into the // largest possible contiguous intervals, and appends those intervals to the // *difference vector. Intuitively this can be thought of as "erasing" i from // *this. This will either completely erase *this (leaving nothing behind), // partially erase some of *this from the left or right side (leaving some // residual behind), or erase a hole in the middle of *this (leaving behind an // interval on either side). Therefore, 0, 1, or 2 intervals will be appended // to *difference. The method returns true iff the intersection of *this and i // is non-empty. The caller owns the vector and the Interval* pointers // inside it. The difference vector is required to be non-null. bool Difference(const Interval& i, std::vector* difference) const; // Determines the difference between two intervals as in // Difference(Interval&, vector*), but stores the results directly in out // parameters rather than dynamically allocating an Interval* and appending // it to a vector. If two results are generated, the one with the smaller // value of min() will be stored in *lo and the other in *hi. Otherwise (if // fewer than two results are generated), unused arguments will be set to the // empty interval (it is possible that *lo will be empty and *hi non-empty). // The method returns true iff the intersection of *this and i is non-empty. bool Difference(const Interval& i, Interval* lo, Interval* hi) const; friend bool operator==(const Interval& a, const Interval& b) { bool ae = a.Empty(); bool be = b.Empty(); if (ae && be) return true; // All empties are equal. if (ae != be) return false; // Empty cannot equal nonempty. return a.min() == b.min() && a.max() == b.max(); } friend bool operator!=(const Interval& a, const Interval& b) { return !(a == b); } // Defines a comparator which can be used to induce an order on Intervals, so // that, for example, they can be stored in an ordered container such as // std::set. The ordering is arbitrary, but does provide the guarantee that, // for non-empty intervals X and Y, if X contains Y, then X <= Y. // TODO(kosak): The current implementation of this comparator has a problem // because the ordering it induces is inconsistent with that of Equals(). In // particular, this comparator does not properly consider all empty intervals // equivalent. Bug b/9240050 has been created to track this. friend bool operator<(const Interval& a, const Interval& b) { return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max()); } friend std::ostream& operator<<(std::ostream& out, const Interval& i) { return out << "[" << i.min() << ", " << i.max() << ")"; } private: T min_; // Inclusive lower bound. T max_; // Exclusive upper bound. }; //============================================================================== // Implementation details: Clients can stop reading here. template bool Interval::Intersects(const Interval& i, Interval* out) const { if (!Intersects(i)) return false; if (out != nullptr) { *out = Interval(std::max(min(), i.min()), std::min(max(), i.max())); } return true; } template bool Interval::IntersectWith(const Interval& i) { if (Empty()) return false; bool modified = false; if (i.min() > min()) { SetMin(i.min()); modified = true; } if (i.max() < max()) { SetMax(i.max()); modified = true; } return modified; } template bool Interval::SpanningUnion(const Interval& i) { if (i.Empty()) return false; if (Empty()) { *this = i; return true; } bool modified = false; if (i.min() < min()) { SetMin(i.min()); modified = true; } if (i.max() > max()) { SetMax(i.max()); modified = true; } return modified; } template bool Interval::Difference(const Interval& i, std::vector* difference) const { if (Empty()) { // - = return false; } if (i.Empty()) { // - = difference->push_back(new Interval(*this)); return false; } if (min() < i.max() && min() >= i.min() && max() > i.max()) { // [------ this ------) // [------ i ------) // [-- result ---) difference->push_back(new Interval(i.max(), max())); return true; } if (max() > i.min() && max() <= i.max() && min() < i.min()) { // [------ this ------) // [------ i ------) // [- result -) difference->push_back(new Interval(min(), i.min())); return true; } if (min() < i.min() && max() > i.max()) { // [------- this --------) // [---- i ----) // [ R1 ) [ R2 ) // There are two results: R1 and R2. difference->push_back(new Interval(min(), i.min())); difference->push_back(new Interval(i.max(), max())); return true; } if (min() >= i.min() && max() <= i.max()) { // [--- this ---) // [------ i --------) // Intersection is , so difference yields the empty interval. // Nothing is appended to *difference. return true; } // No intersection. Append . difference->push_back(new Interval(*this)); return false; } template bool Interval::Difference(const Interval& i, Interval* lo, Interval* hi) const { // Initialize *lo and *hi to empty *lo = {}; *hi = {}; if (Empty()) return false; if (i.Empty()) { *lo = *this; return false; } if (min() < i.max() && min() >= i.min() && max() > i.max()) { // [------ this ------) // [------ i ------) // [-- result ---) *hi = Interval(i.max(), max()); return true; } if (max() > i.min() && max() <= i.max() && min() < i.min()) { // [------ this ------) // [------ i ------) // [- result -) *lo = Interval(min(), i.min()); return true; } if (min() < i.min() && max() > i.max()) { // [------- this --------) // [---- i ----) // [ R1 ) [ R2 ) // There are two results: R1 and R2. *lo = Interval(min(), i.min()); *hi = Interval(i.max(), max()); return true; } if (min() >= i.min() && max() <= i.max()) { // [--- this ---) // [------ i --------) // Intersection is , so difference yields the empty interval. return true; } *lo = *this; // No intersection. return false; } } // namespace net #endif // NET_QUIC_INTERVAL_H_