// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection.h" #include #include #include #include #include #include #include #include #include "base/format_macros.h" #include "base/logging.h" #include "base/memory/ref_counted.h" #include "base/profiler/scoped_tracker.h" #include "base/stl_util.h" #include "base/strings/stringprintf.h" #include "net/base/net_errors.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/proto/cached_network_parameters.pb.h" #include "net/quic/quic_bandwidth.h" #include "net/quic/quic_config.h" #include "net/quic/quic_fec_group.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_packet_generator.h" #include "net/quic/quic_utils.h" using base::StringPiece; using base::StringPrintf; using base::hash_map; using base::hash_set; using std::list; using std::make_pair; using std::max; using std::min; using std::numeric_limits; using std::set; using std::string; using std::vector; namespace net { class QuicDecrypter; class QuicEncrypter; namespace { // The largest gap in packets we'll accept without closing the connection. // This will likely have to be tuned. const QuicPacketNumber kMaxPacketGap = 5000; // Limit the number of FEC groups to two. If we get enough out of order packets // that this becomes limiting, we can revisit. const size_t kMaxFecGroups = 2; // Maximum number of acks received before sending an ack in response. const QuicPacketCount kMaxPacketsReceivedBeforeAckSend = 20; bool Near(QuicPacketNumber a, QuicPacketNumber b) { QuicPacketNumber delta = (a > b) ? a - b : b - a; return delta <= kMaxPacketGap; } // An alarm that is scheduled to send an ack if a timeout occurs. class AckAlarm : public QuicAlarm::Delegate { public: explicit AckAlarm(QuicConnection* connection) : connection_(connection) { } QuicTime OnAlarm() override { connection_->SendAck(); return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(AckAlarm); }; // This alarm will be scheduled any time a data-bearing packet is sent out. // When the alarm goes off, the connection checks to see if the oldest packets // have been acked, and retransmit them if they have not. class RetransmissionAlarm : public QuicAlarm::Delegate { public: explicit RetransmissionAlarm(QuicConnection* connection) : connection_(connection) { } QuicTime OnAlarm() override { connection_->OnRetransmissionTimeout(); return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(RetransmissionAlarm); }; // An alarm that is scheduled when the SentPacketManager requires a delay // before sending packets and fires when the packet may be sent. class SendAlarm : public QuicAlarm::Delegate { public: explicit SendAlarm(QuicConnection* connection) : connection_(connection) { } QuicTime OnAlarm() override { connection_->WriteIfNotBlocked(); // Never reschedule the alarm, since CanWrite does that. return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(SendAlarm); }; class TimeoutAlarm : public QuicAlarm::Delegate { public: explicit TimeoutAlarm(QuicConnection* connection) : connection_(connection) { } QuicTime OnAlarm() override { connection_->CheckForTimeout(); // Never reschedule the alarm, since CheckForTimeout does that. return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(TimeoutAlarm); }; class PingAlarm : public QuicAlarm::Delegate { public: explicit PingAlarm(QuicConnection* connection) : connection_(connection) { } QuicTime OnAlarm() override { connection_->SendPing(); return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(PingAlarm); }; class MtuDiscoveryAlarm : public QuicAlarm::Delegate { public: explicit MtuDiscoveryAlarm(QuicConnection* connection) : connection_(connection) {} QuicTime OnAlarm() override { connection_->DiscoverMtu(); // DiscoverMtu() handles rescheduling the alarm by itself. return QuicTime::Zero(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(MtuDiscoveryAlarm); }; // This alarm may be scheduled when an FEC protected packet is sent out. class FecAlarm : public QuicAlarm::Delegate { public: explicit FecAlarm(QuicPacketGenerator* packet_generator) : packet_generator_(packet_generator) {} QuicTime OnAlarm() override { packet_generator_->OnFecTimeout(); return QuicTime::Zero(); } private: QuicPacketGenerator* packet_generator_; DISALLOW_COPY_AND_ASSIGN(FecAlarm); }; // Listens for acks of MTU discovery packets and raises the maximum packet size // of the connection if the probe succeeds. class MtuDiscoveryAckListener : public QuicAckNotifier::DelegateInterface { public: MtuDiscoveryAckListener(QuicConnection* connection, QuicByteCount probe_size) : connection_(connection), probe_size_(probe_size) {} void OnAckNotification(int /*num_retransmittable_packets*/, int /*num_retransmittable_bytes*/, QuicTime::Delta /*delta_largest_observed*/) override { // Since the probe was successful, increase the maximum packet size to that. if (probe_size_ > connection_->max_packet_length()) { connection_->SetMaxPacketLength(probe_size_); } } protected: // MtuDiscoveryAckListener is ref counted. ~MtuDiscoveryAckListener() override {} private: QuicConnection* connection_; QuicByteCount probe_size_; DISALLOW_COPY_AND_ASSIGN(MtuDiscoveryAckListener); }; } // namespace QuicConnection::QueuedPacket::QueuedPacket(SerializedPacket packet, EncryptionLevel level) : serialized_packet(packet), encryption_level(level), transmission_type(NOT_RETRANSMISSION), original_packet_number(0) {} QuicConnection::QueuedPacket::QueuedPacket( SerializedPacket packet, EncryptionLevel level, TransmissionType transmission_type, QuicPacketNumber original_packet_number) : serialized_packet(packet), encryption_level(level), transmission_type(transmission_type), original_packet_number(original_packet_number) {} #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") QuicConnection::QuicConnection(QuicConnectionId connection_id, IPEndPoint address, QuicConnectionHelperInterface* helper, const PacketWriterFactory& writer_factory, bool owns_writer, Perspective perspective, bool is_secure, const QuicVersionVector& supported_versions) : framer_(supported_versions, helper->GetClock()->ApproximateNow(), perspective), helper_(helper), writer_(writer_factory.Create(this)), owns_writer_(owns_writer), encryption_level_(ENCRYPTION_NONE), has_forward_secure_encrypter_(false), first_required_forward_secure_packet_(0), clock_(helper->GetClock()), random_generator_(helper->GetRandomGenerator()), connection_id_(connection_id), peer_address_(address), migrating_peer_port_(0), last_packet_decrypted_(false), last_packet_revived_(false), last_size_(0), last_decrypted_packet_level_(ENCRYPTION_NONE), should_last_packet_instigate_acks_(false), largest_seen_packet_with_ack_(0), largest_seen_packet_with_stop_waiting_(0), max_undecryptable_packets_(0), pending_version_negotiation_packet_(false), silent_close_enabled_(false), received_packet_manager_(&stats_), ack_queued_(false), num_packets_received_since_last_ack_sent_(0), stop_waiting_count_(0), delay_setting_retransmission_alarm_(false), pending_retransmission_alarm_(false), ack_alarm_(helper->CreateAlarm(new AckAlarm(this))), retransmission_alarm_(helper->CreateAlarm(new RetransmissionAlarm(this))), send_alarm_(helper->CreateAlarm(new SendAlarm(this))), resume_writes_alarm_(helper->CreateAlarm(new SendAlarm(this))), timeout_alarm_(helper->CreateAlarm(new TimeoutAlarm(this))), ping_alarm_(helper->CreateAlarm(new PingAlarm(this))), mtu_discovery_alarm_(helper->CreateAlarm(new MtuDiscoveryAlarm(this))), visitor_(nullptr), debug_visitor_(nullptr), packet_generator_(connection_id_, &framer_, random_generator_, this), fec_alarm_(helper->CreateAlarm(new FecAlarm(&packet_generator_))), idle_network_timeout_(QuicTime::Delta::Infinite()), overall_connection_timeout_(QuicTime::Delta::Infinite()), time_of_last_received_packet_(clock_->ApproximateNow()), time_of_last_sent_new_packet_(clock_->ApproximateNow()), packet_number_of_last_sent_packet_(0), sent_packet_manager_( perspective, clock_, &stats_, FLAGS_quic_use_bbr_congestion_control ? kBBR : kCubic, FLAGS_quic_use_time_loss_detection ? kTime : kNack, is_secure), version_negotiation_state_(START_NEGOTIATION), perspective_(perspective), connected_(true), peer_ip_changed_(false), peer_port_changed_(false), self_ip_changed_(false), self_port_changed_(false), can_truncate_connection_ids_(true), is_secure_(is_secure), mtu_discovery_target_(0), mtu_probe_count_(0), packets_between_mtu_probes_(kPacketsBetweenMtuProbesBase), next_mtu_probe_at_(kPacketsBetweenMtuProbesBase), largest_received_packet_size_(0), goaway_sent_(false), goaway_received_(false) { DVLOG(1) << ENDPOINT << "Created connection with connection_id: " << connection_id; framer_.set_visitor(this); framer_.set_received_entropy_calculator(&received_packet_manager_); last_stop_waiting_frame_.least_unacked = 0; stats_.connection_creation_time = clock_->ApproximateNow(); sent_packet_manager_.set_network_change_visitor(this); // Allow the packet writer to potentially reduce the packet size to a value // even smaller than kDefaultMaxPacketSize. SetMaxPacketLength(perspective_ == Perspective::IS_SERVER ? kDefaultServerMaxPacketSize : kDefaultMaxPacketSize); } QuicConnection::~QuicConnection() { if (owns_writer_) { delete writer_; } STLDeleteElements(&undecryptable_packets_); STLDeleteValues(&group_map_); ClearQueuedPackets(); } void QuicConnection::ClearQueuedPackets() { for (QueuedPacketList::iterator it = queued_packets_.begin(); it != queued_packets_.end(); ++it) { delete it->serialized_packet.retransmittable_frames; delete it->serialized_packet.packet; } queued_packets_.clear(); } void QuicConnection::SetFromConfig(const QuicConfig& config) { if (config.negotiated()) { SetNetworkTimeouts(QuicTime::Delta::Infinite(), config.IdleConnectionStateLifetime()); if (config.SilentClose()) { silent_close_enabled_ = true; } } else { SetNetworkTimeouts(config.max_time_before_crypto_handshake(), config.max_idle_time_before_crypto_handshake()); } sent_packet_manager_.SetFromConfig(config); if (config.HasReceivedBytesForConnectionId() && can_truncate_connection_ids_) { packet_generator_.SetConnectionIdLength( config.ReceivedBytesForConnectionId()); } max_undecryptable_packets_ = config.max_undecryptable_packets(); if (config.HasClientSentConnectionOption(kFSPA, perspective_)) { packet_generator_.set_fec_send_policy(FecSendPolicy::FEC_ALARM_TRIGGER); } if (config.HasClientSentConnectionOption(kFRTT, perspective_)) { // TODO(rtenneti): Delete this code after the 0.25 RTT FEC experiment. const float kFecTimeoutRttMultiplier = 0.25; packet_generator_.set_rtt_multiplier_for_fec_timeout( kFecTimeoutRttMultiplier); } if (config.HasClientSentConnectionOption(kMTUH, perspective_)) { SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeHigh); } if (config.HasClientSentConnectionOption(kMTUL, perspective_)) { SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeLow); } } void QuicConnection::OnSendConnectionState( const CachedNetworkParameters& cached_network_params) { if (debug_visitor_ != nullptr) { debug_visitor_->OnSendConnectionState(cached_network_params); } } void QuicConnection::ResumeConnectionState( const CachedNetworkParameters& cached_network_params, bool max_bandwidth_resumption) { if (debug_visitor_ != nullptr) { debug_visitor_->OnResumeConnectionState(cached_network_params); } sent_packet_manager_.ResumeConnectionState(cached_network_params, max_bandwidth_resumption); } void QuicConnection::SetNumOpenStreams(size_t num_streams) { sent_packet_manager_.SetNumOpenStreams(num_streams); } bool QuicConnection::SelectMutualVersion( const QuicVersionVector& available_versions) { // Try to find the highest mutual version by iterating over supported // versions, starting with the highest, and breaking out of the loop once we // find a matching version in the provided available_versions vector. const QuicVersionVector& supported_versions = framer_.supported_versions(); for (size_t i = 0; i < supported_versions.size(); ++i) { const QuicVersion& version = supported_versions[i]; if (std::find(available_versions.begin(), available_versions.end(), version) != available_versions.end()) { framer_.set_version(version); return true; } } return false; } void QuicConnection::OnError(QuicFramer* framer) { // Packets that we can not or have not decrypted are dropped. // TODO(rch): add stats to measure this. if (!connected_ || last_packet_decrypted_ == false) { return; } SendConnectionCloseWithDetails(framer->error(), framer->detailed_error()); } void QuicConnection::MaybeSetFecAlarm(QuicPacketNumber packet_number) { if (fec_alarm_->IsSet()) { return; } QuicTime::Delta timeout = packet_generator_.GetFecTimeout(packet_number); if (!timeout.IsInfinite()) { fec_alarm_->Update(clock_->ApproximateNow().Add(timeout), QuicTime::Delta::FromMilliseconds(1)); } } void QuicConnection::OnPacket() { last_packet_decrypted_ = false; last_packet_revived_ = false; } void QuicConnection::OnPublicResetPacket(const QuicPublicResetPacket& packet) { // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. (Check for a bug regression.) DCHECK_EQ(connection_id_, packet.public_header.connection_id); if (debug_visitor_ != nullptr) { debug_visitor_->OnPublicResetPacket(packet); } CloseConnection(QUIC_PUBLIC_RESET, true); DVLOG(1) << ENDPOINT << "Connection " << connection_id() << " closed via QUIC_PUBLIC_RESET from peer."; } bool QuicConnection::OnProtocolVersionMismatch(QuicVersion received_version) { DVLOG(1) << ENDPOINT << "Received packet with mismatched version " << received_version; // TODO(satyamshekhar): Implement no server state in this mode. if (perspective_ == Perspective::IS_CLIENT) { LOG(DFATAL) << ENDPOINT << "Framer called OnProtocolVersionMismatch. " << "Closing connection."; CloseConnection(QUIC_INTERNAL_ERROR, false); return false; } DCHECK_NE(version(), received_version); if (debug_visitor_ != nullptr) { debug_visitor_->OnProtocolVersionMismatch(received_version); } switch (version_negotiation_state_) { case START_NEGOTIATION: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; return false; } break; case NEGOTIATION_IN_PROGRESS: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); return false; } break; case NEGOTIATED_VERSION: // Might be old packets that were sent by the client before the version // was negotiated. Drop these. return false; default: DCHECK(false); } version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(received_version); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(received_version); } DVLOG(1) << ENDPOINT << "version negotiated " << received_version; // Store the new version. framer_.set_version(received_version); // TODO(satyamshekhar): Store the packet number of this packet and close the // connection if we ever received a packet with incorrect version and whose // packet number is greater. return true; } // Handles version negotiation for client connection. void QuicConnection::OnVersionNegotiationPacket( const QuicVersionNegotiationPacket& packet) { // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. (Check for a bug regression.) DCHECK_EQ(connection_id_, packet.connection_id); if (perspective_ == Perspective::IS_SERVER) { LOG(DFATAL) << ENDPOINT << "Framer parsed VersionNegotiationPacket." << " Closing connection."; CloseConnection(QUIC_INTERNAL_ERROR, false); return; } if (debug_visitor_ != nullptr) { debug_visitor_->OnVersionNegotiationPacket(packet); } if (version_negotiation_state_ != START_NEGOTIATION) { // Possibly a duplicate version negotiation packet. return; } if (std::find(packet.versions.begin(), packet.versions.end(), version()) != packet.versions.end()) { DLOG(WARNING) << ENDPOINT << "The server already supports our version. " << "It should have accepted our connection."; // Just drop the connection. CloseConnection(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, false); return; } if (!SelectMutualVersion(packet.versions)) { SendConnectionCloseWithDetails(QUIC_INVALID_VERSION, "no common version found"); return; } DVLOG(1) << ENDPOINT << "Negotiated version: " << QuicVersionToString(version()); server_supported_versions_ = packet.versions; version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); } void QuicConnection::OnRevivedPacket() { } bool QuicConnection::OnUnauthenticatedPublicHeader( const QuicPacketPublicHeader& header) { if (header.connection_id == connection_id_) { return true; } ++stats_.packets_dropped; DVLOG(1) << ENDPOINT << "Ignoring packet from unexpected ConnectionId: " << header.connection_id << " instead of " << connection_id_; if (debug_visitor_ != nullptr) { debug_visitor_->OnIncorrectConnectionId(header.connection_id); } // If this is a server, the dispatcher routes each packet to the // QuicConnection responsible for the packet's connection ID. So if control // arrives here and this is a server, the dispatcher must be malfunctioning. DCHECK_NE(Perspective::IS_SERVER, perspective_); return false; } bool QuicConnection::OnUnauthenticatedHeader(const QuicPacketHeader& header) { if (debug_visitor_ != nullptr) { debug_visitor_->OnUnauthenticatedHeader(header); } // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. DCHECK_EQ(connection_id_, header.public_header.connection_id); return true; } void QuicConnection::OnDecryptedPacket(EncryptionLevel level) { last_decrypted_packet_level_ = level; last_packet_decrypted_ = true; // If this packet was foward-secure encrypted and the forward-secure encrypter // is not being used, start using it. if (encryption_level_ != ENCRYPTION_FORWARD_SECURE && has_forward_secure_encrypter_ && level == ENCRYPTION_FORWARD_SECURE) { SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } } bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) { if (debug_visitor_ != nullptr) { debug_visitor_->OnPacketHeader(header); } if (!ProcessValidatedPacket()) { return false; } // Will be decremented below if we fall through to return true. ++stats_.packets_dropped; if (!Near(header.packet_packet_number, last_header_.packet_packet_number)) { DVLOG(1) << ENDPOINT << "Packet " << header.packet_packet_number << " out of bounds. Discarding"; SendConnectionCloseWithDetails(QUIC_INVALID_PACKET_HEADER, "packet number out of bounds"); return false; } // If this packet has already been seen, or the sender has told us that it // will not be retransmitted, then stop processing the packet. if (!received_packet_manager_.IsAwaitingPacket(header.packet_packet_number)) { DVLOG(1) << ENDPOINT << "Packet " << header.packet_packet_number << " no longer being waited for. Discarding."; if (debug_visitor_ != nullptr) { debug_visitor_->OnDuplicatePacket(header.packet_packet_number); } return false; } if (version_negotiation_state_ != NEGOTIATED_VERSION) { if (perspective_ == Perspective::IS_SERVER) { if (!header.public_header.version_flag) { DLOG(WARNING) << ENDPOINT << "Packet " << header.packet_packet_number << " without version flag before version negotiated."; // Packets should have the version flag till version negotiation is // done. CloseConnection(QUIC_INVALID_VERSION, false); return false; } else { DCHECK_EQ(1u, header.public_header.versions.size()); DCHECK_EQ(header.public_header.versions[0], version()); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(version()); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(version()); } } } else { DCHECK(!header.public_header.version_flag); // If the client gets a packet without the version flag from the server // it should stop sending version since the version negotiation is done. packet_generator_.StopSendingVersion(); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(version()); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(version()); } } } DCHECK_EQ(NEGOTIATED_VERSION, version_negotiation_state_); --stats_.packets_dropped; DVLOG(1) << ENDPOINT << "Received packet header: " << header; last_header_ = header; DCHECK(connected_); return true; } void QuicConnection::OnFecProtectedPayload(StringPiece payload) { DCHECK_EQ(IN_FEC_GROUP, last_header_.is_in_fec_group); DCHECK_NE(0u, last_header_.fec_group); QuicFecGroup* group = GetFecGroup(); if (group != nullptr) { group->Update(last_decrypted_packet_level_, last_header_, payload); } } bool QuicConnection::OnStreamFrame(const QuicStreamFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnStreamFrame(frame); } if (frame.stream_id != kCryptoStreamId && last_decrypted_packet_level_ == ENCRYPTION_NONE) { DLOG(WARNING) << ENDPOINT << "Received an unencrypted data frame: closing connection"; SendConnectionClose(QUIC_UNENCRYPTED_STREAM_DATA); return false; } visitor_->OnStreamFrame(frame); stats_.stream_bytes_received += frame.data.size(); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnAckFrame(const QuicAckFrame& incoming_ack) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnAckFrame(incoming_ack); } DVLOG(1) << ENDPOINT << "OnAckFrame: " << incoming_ack; if (last_header_.packet_packet_number <= largest_seen_packet_with_ack_) { DVLOG(1) << ENDPOINT << "Received an old ack frame: ignoring"; return true; } if (!ValidateAckFrame(incoming_ack)) { SendConnectionClose(QUIC_INVALID_ACK_DATA); return false; } ProcessAckFrame(incoming_ack); if (incoming_ack.is_truncated) { should_last_packet_instigate_acks_ = true; } // If the peer is still waiting for a packet that we are no longer planning to // send, send an ack to raise the high water mark. if (!incoming_ack.missing_packets.Empty() && GetLeastUnacked() > incoming_ack.missing_packets.Min()) { ++stop_waiting_count_; } else { stop_waiting_count_ = 0; } return connected_; } void QuicConnection::ProcessAckFrame(const QuicAckFrame& incoming_ack) { largest_seen_packet_with_ack_ = last_header_.packet_packet_number; sent_packet_manager_.OnIncomingAck(incoming_ack, time_of_last_received_packet_); sent_entropy_manager_.ClearEntropyBefore( sent_packet_manager_.least_packet_awaited_by_peer() - 1); // Always reset the retransmission alarm when an ack comes in, since we now // have a better estimate of the current rtt than when it was set. SetRetransmissionAlarm(); } void QuicConnection::ProcessStopWaitingFrame( const QuicStopWaitingFrame& stop_waiting) { largest_seen_packet_with_stop_waiting_ = last_header_.packet_packet_number; received_packet_manager_.UpdatePacketInformationSentByPeer(stop_waiting); // Possibly close any FecGroups which are now irrelevant. CloseFecGroupsBefore(stop_waiting.least_unacked + 1); } bool QuicConnection::OnStopWaitingFrame(const QuicStopWaitingFrame& frame) { DCHECK(connected_); if (last_header_.packet_packet_number <= largest_seen_packet_with_stop_waiting_) { DVLOG(1) << ENDPOINT << "Received an old stop waiting frame: ignoring"; return true; } if (!ValidateStopWaitingFrame(frame)) { SendConnectionClose(QUIC_INVALID_STOP_WAITING_DATA); return false; } if (debug_visitor_ != nullptr) { debug_visitor_->OnStopWaitingFrame(frame); } last_stop_waiting_frame_ = frame; return connected_; } bool QuicConnection::OnPingFrame(const QuicPingFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnPingFrame(frame); } should_last_packet_instigate_acks_ = true; return true; } bool QuicConnection::ValidateAckFrame(const QuicAckFrame& incoming_ack) { if (incoming_ack.largest_observed > packet_generator_.packet_number()) { DLOG(ERROR) << ENDPOINT << "Peer's observed unsent packet:" << incoming_ack.largest_observed << " vs " << packet_generator_.packet_number(); // We got an error for data we have not sent. Error out. return false; } if (incoming_ack.largest_observed < sent_packet_manager_.largest_observed()) { DLOG(ERROR) << ENDPOINT << "Peer's largest_observed packet decreased:" << incoming_ack.largest_observed << " vs " << sent_packet_manager_.largest_observed(); // A new ack has a diminished largest_observed value. Error out. // If this was an old packet, we wouldn't even have checked. return false; } if (!incoming_ack.missing_packets.Empty() && incoming_ack.missing_packets.Max() > incoming_ack.largest_observed) { DLOG(ERROR) << ENDPOINT << "Peer sent missing packet: " << incoming_ack.missing_packets.Max() << " which is greater than largest observed: " << incoming_ack.largest_observed; return false; } if (!incoming_ack.missing_packets.Empty() && incoming_ack.missing_packets.Min() < sent_packet_manager_.least_packet_awaited_by_peer()) { DLOG(ERROR) << ENDPOINT << "Peer sent missing packet: " << incoming_ack.missing_packets.Min() << " which is smaller than least_packet_awaited_by_peer_: " << sent_packet_manager_.least_packet_awaited_by_peer(); return false; } if (!sent_entropy_manager_.IsValidEntropy( incoming_ack.largest_observed, incoming_ack.missing_packets, incoming_ack.entropy_hash)) { DLOG(ERROR) << ENDPOINT << "Peer sent invalid entropy."; return false; } for (QuicPacketNumber revived_packet : incoming_ack.revived_packets) { if (!incoming_ack.missing_packets.Contains(revived_packet)) { DLOG(ERROR) << ENDPOINT << "Peer specified revived packet which was not missing."; return false; } } return true; } bool QuicConnection::ValidateStopWaitingFrame( const QuicStopWaitingFrame& stop_waiting) { if (stop_waiting.least_unacked < received_packet_manager_.peer_least_packet_awaiting_ack()) { DLOG(ERROR) << ENDPOINT << "Peer's sent low least_unacked: " << stop_waiting.least_unacked << " vs " << received_packet_manager_.peer_least_packet_awaiting_ack(); // We never process old ack frames, so this number should only increase. return false; } if (stop_waiting.least_unacked > last_header_.packet_packet_number) { DLOG(ERROR) << ENDPOINT << "Peer sent least_unacked:" << stop_waiting.least_unacked << " greater than the enclosing packet number:" << last_header_.packet_packet_number; return false; } return true; } void QuicConnection::OnFecData(const QuicFecData& fec) { DCHECK_EQ(IN_FEC_GROUP, last_header_.is_in_fec_group); DCHECK_NE(0u, last_header_.fec_group); QuicFecGroup* group = GetFecGroup(); if (group != nullptr) { group->UpdateFec(last_decrypted_packet_level_, last_header_.packet_packet_number, fec); } } bool QuicConnection::OnRstStreamFrame(const QuicRstStreamFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnRstStreamFrame(frame); } DVLOG(1) << ENDPOINT << "RST_STREAM_FRAME received for stream: " << frame.stream_id << " with error: " << QuicUtils::StreamErrorToString(frame.error_code); visitor_->OnRstStream(frame); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnConnectionCloseFrame(frame); } DVLOG(1) << ENDPOINT << "CONNECTION_CLOSE_FRAME received for connection: " << connection_id() << " with error: " << QuicUtils::ErrorToString(frame.error_code) << " " << frame.error_details; CloseConnection(frame.error_code, true); return connected_; } bool QuicConnection::OnGoAwayFrame(const QuicGoAwayFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnGoAwayFrame(frame); } DVLOG(1) << ENDPOINT << "GOAWAY_FRAME received with last good stream: " << frame.last_good_stream_id << " and error: " << QuicUtils::ErrorToString(frame.error_code) << " and reason: " << frame.reason_phrase; goaway_received_ = true; visitor_->OnGoAway(frame); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnWindowUpdateFrame(frame); } DVLOG(1) << ENDPOINT << "WINDOW_UPDATE_FRAME received for stream: " << frame.stream_id << " with byte offset: " << frame.byte_offset; visitor_->OnWindowUpdateFrame(frame); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnBlockedFrame(const QuicBlockedFrame& frame) { DCHECK(connected_); if (debug_visitor_ != nullptr) { debug_visitor_->OnBlockedFrame(frame); } DVLOG(1) << ENDPOINT << "BLOCKED_FRAME received for stream: " << frame.stream_id; visitor_->OnBlockedFrame(frame); should_last_packet_instigate_acks_ = true; return connected_; } void QuicConnection::OnPacketComplete() { // Don't do anything if this packet closed the connection. if (!connected_) { ClearLastFrames(); return; } DVLOG(1) << ENDPOINT << (last_packet_revived_ ? "Revived" : "Got") << " packet " << last_header_.packet_packet_number << "for " << last_header_.public_header.connection_id; ++num_packets_received_since_last_ack_sent_; // Call MaybeQueueAck() before recording the received packet, since we want // to trigger an ack if the newly received packet was previously missing. MaybeQueueAck(); // Record received or revived packet to populate ack info correctly before // processing stream frames, since the processing may result in a response // packet with a bundled ack. if (last_packet_revived_) { received_packet_manager_.RecordPacketRevived( last_header_.packet_packet_number); } else { received_packet_manager_.RecordPacketReceived( last_size_, last_header_, time_of_last_received_packet_); } // Continue to process stop waiting frames later, because the packet needs // to be considered 'received' before the entropy can be updated. if (last_stop_waiting_frame_.least_unacked > 0) { ProcessStopWaitingFrame(last_stop_waiting_frame_); if (!connected_) { return; } } // If there are new missing packets to report, send an ack immediately. if (ShouldLastPacketInstigateAck() && received_packet_manager_.HasNewMissingPackets()) { ack_queued_ = true; ack_alarm_->Cancel(); } ClearLastFrames(); MaybeCloseIfTooManyOutstandingPackets(); } void QuicConnection::MaybeQueueAck() { // If the last packet is an ack, don't ack it. if (!ShouldLastPacketInstigateAck()) { return; } // If the incoming packet was missing, send an ack immediately. ack_queued_ = received_packet_manager_.IsMissing(last_header_.packet_packet_number); if (!ack_queued_) { if (ack_alarm_->IsSet()) { ack_queued_ = true; } else { ack_alarm_->Set( clock_->ApproximateNow().Add(sent_packet_manager_.DelayedAckTime())); DVLOG(1) << "Ack timer set; next packet or timer will trigger ACK."; } } if (ack_queued_) { ack_alarm_->Cancel(); } } void QuicConnection::ClearLastFrames() { should_last_packet_instigate_acks_ = false; last_stop_waiting_frame_.least_unacked = 0; } void QuicConnection::MaybeCloseIfTooManyOutstandingPackets() { // This occurs if we don't discard old packets we've sent fast enough. // It's possible largest observed is less than least unacked. if (sent_packet_manager_.largest_observed() > (sent_packet_manager_.GetLeastUnacked() + kMaxTrackedPackets)) { SendConnectionCloseWithDetails( QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, StringPrintf("More than %" PRIu64 " outstanding.", kMaxTrackedPackets)); } // This occurs if there are received packet gaps and the peer does not raise // the least unacked fast enough. if (received_packet_manager_.NumTrackedPackets() > kMaxTrackedPackets) { SendConnectionCloseWithDetails( QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS, StringPrintf("More than %" PRIu64 " outstanding.", kMaxTrackedPackets)); } } void QuicConnection::PopulateAckFrame(QuicAckFrame* ack) { received_packet_manager_.UpdateReceivedPacketInfo(ack, clock_->ApproximateNow()); } void QuicConnection::PopulateStopWaitingFrame( QuicStopWaitingFrame* stop_waiting) { stop_waiting->least_unacked = GetLeastUnacked(); stop_waiting->entropy_hash = sent_entropy_manager_.GetCumulativeEntropy( stop_waiting->least_unacked - 1); } bool QuicConnection::ShouldLastPacketInstigateAck() const { if (should_last_packet_instigate_acks_) { return true; } // Always send an ack every 20 packets in order to allow the peer to discard // information from the SentPacketManager and provide an RTT measurement. if (num_packets_received_since_last_ack_sent_ >= kMaxPacketsReceivedBeforeAckSend) { return true; } return false; } QuicPacketNumber QuicConnection::GetLeastUnacked() const { return sent_packet_manager_.GetLeastUnacked(); } void QuicConnection::MaybeSendInResponseToPacket() { if (!connected_) { return; } ScopedPacketBundler bundler(this, ack_queued_ ? SEND_ACK : NO_ACK); // Now that we have received an ack, we might be able to send packets which // are queued locally, or drain streams which are blocked. WriteIfNotBlocked(); } void QuicConnection::SendVersionNegotiationPacket() { // TODO(alyssar): implement zero server state negotiation. pending_version_negotiation_packet_ = true; if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return; } DVLOG(1) << ENDPOINT << "Sending version negotiation packet: {" << QuicVersionVectorToString(framer_.supported_versions()) << "}"; scoped_ptr version_packet( packet_generator_.SerializeVersionNegotiationPacket( framer_.supported_versions())); WriteResult result = writer_->WritePacket( version_packet->data(), version_packet->length(), self_address().address(), peer_address()); if (result.status == WRITE_STATUS_ERROR) { // We can't send an error as the socket is presumably borked. CloseConnection(QUIC_PACKET_WRITE_ERROR, false); return; } if (result.status == WRITE_STATUS_BLOCKED) { visitor_->OnWriteBlocked(); if (writer_->IsWriteBlockedDataBuffered()) { pending_version_negotiation_packet_ = false; } return; } pending_version_negotiation_packet_ = false; } QuicConsumedData QuicConnection::SendStreamData( QuicStreamId id, const QuicIOVector& iov, QuicStreamOffset offset, bool fin, FecProtection fec_protection, QuicAckNotifier::DelegateInterface* delegate) { if (!fin && iov.total_length == 0) { LOG(DFATAL) << "Attempt to send empty stream frame"; return QuicConsumedData(0, false); } // Opportunistically bundle an ack with every outgoing packet. // Particularly, we want to bundle with handshake packets since we don't know // which decrypter will be used on an ack packet following a handshake // packet (a handshake packet from client to server could result in a REJ or a // SHLO from the server, leading to two different decrypters at the server.) // // TODO(jri): Note that ConsumeData may cause a response packet to be sent. // We may end up sending stale ack information if there are undecryptable // packets hanging around and/or there are revivable packets which may get // handled after this packet is sent. Change ScopedPacketBundler to do the // right thing: check ack_queued_, and then check undecryptable packets and // also if there is possibility of revival. Only bundle an ack if there's no // processing left that may cause received_info_ to change. ScopedRetransmissionScheduler alarm_delayer(this); ScopedPacketBundler ack_bundler(this, BUNDLE_PENDING_ACK); return packet_generator_.ConsumeData(id, iov, offset, fin, fec_protection, delegate); } void QuicConnection::SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error, QuicStreamOffset bytes_written) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, BUNDLE_PENDING_ACK); packet_generator_.AddControlFrame(QuicFrame(new QuicRstStreamFrame( id, AdjustErrorForVersion(error, version()), bytes_written))); sent_packet_manager_.CancelRetransmissionsForStream(id); // Remove all queued packets which only contain data for the reset stream. QueuedPacketList::iterator packet_iterator = queued_packets_.begin(); while (packet_iterator != queued_packets_.end()) { RetransmittableFrames* retransmittable_frames = packet_iterator->serialized_packet.retransmittable_frames; if (!retransmittable_frames) { ++packet_iterator; continue; } retransmittable_frames->RemoveFramesForStream(id); if (!retransmittable_frames->frames().empty()) { ++packet_iterator; continue; } delete packet_iterator->serialized_packet.retransmittable_frames; delete packet_iterator->serialized_packet.packet; packet_iterator->serialized_packet.retransmittable_frames = nullptr; packet_iterator->serialized_packet.packet = nullptr; packet_iterator = queued_packets_.erase(packet_iterator); } } void QuicConnection::SendWindowUpdate(QuicStreamId id, QuicStreamOffset byte_offset) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, BUNDLE_PENDING_ACK); packet_generator_.AddControlFrame( QuicFrame(new QuicWindowUpdateFrame(id, byte_offset))); } void QuicConnection::SendBlocked(QuicStreamId id) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, BUNDLE_PENDING_ACK); packet_generator_.AddControlFrame(QuicFrame(new QuicBlockedFrame(id))); } const QuicConnectionStats& QuicConnection::GetStats() { const RttStats* rtt_stats = sent_packet_manager_.GetRttStats(); // Update rtt and estimated bandwidth. QuicTime::Delta min_rtt = rtt_stats->min_rtt(); if (min_rtt.IsZero()) { // If min RTT has not been set, use initial RTT instead. min_rtt = QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); } stats_.min_rtt_us = min_rtt.ToMicroseconds(); QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); if (srtt.IsZero()) { // If SRTT has not been set, use initial RTT instead. srtt = QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); } stats_.srtt_us = srtt.ToMicroseconds(); stats_.estimated_bandwidth = sent_packet_manager_.BandwidthEstimate(); stats_.max_packet_size = packet_generator_.GetMaxPacketLength(); stats_.max_received_packet_size = largest_received_packet_size_; return stats_; } void QuicConnection::ProcessUdpPacket(const IPEndPoint& self_address, const IPEndPoint& peer_address, const QuicEncryptedPacket& packet) { if (!connected_) { return; } // TODO(rtenneti): Remove ScopedTracker below once crbug.com/462789 is fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION( "462789 QuicConnection::ProcessUdpPacket")); if (debug_visitor_ != nullptr) { debug_visitor_->OnPacketReceived(self_address, peer_address, packet); } last_size_ = packet.length(); CheckForAddressMigration(self_address, peer_address); stats_.bytes_received += packet.length(); ++stats_.packets_received; ScopedRetransmissionScheduler alarm_delayer(this); if (!framer_.ProcessPacket(packet)) { // If we are unable to decrypt this packet, it might be // because the CHLO or SHLO packet was lost. if (framer_.error() == QUIC_DECRYPTION_FAILURE) { if (encryption_level_ != ENCRYPTION_FORWARD_SECURE && undecryptable_packets_.size() < max_undecryptable_packets_) { QueueUndecryptablePacket(packet); } else if (debug_visitor_ != nullptr) { debug_visitor_->OnUndecryptablePacket(); } } DVLOG(1) << ENDPOINT << "Unable to process packet. Last packet processed: " << last_header_.packet_packet_number; return; } ++stats_.packets_processed; MaybeProcessUndecryptablePackets(); MaybeProcessRevivedPacket(); MaybeSendInResponseToPacket(); SetPingAlarm(); } void QuicConnection::CheckForAddressMigration( const IPEndPoint& self_address, const IPEndPoint& peer_address) { peer_ip_changed_ = false; peer_port_changed_ = false; self_ip_changed_ = false; self_port_changed_ = false; if (peer_address_.address().empty()) { peer_address_ = peer_address; } if (self_address_.address().empty()) { self_address_ = self_address; } if (!peer_address.address().empty() && !peer_address_.address().empty()) { peer_ip_changed_ = (peer_address.address() != peer_address_.address()); peer_port_changed_ = (peer_address.port() != peer_address_.port()); // Store in case we want to migrate connection in ProcessValidatedPacket. migrating_peer_ip_ = peer_address.address(); migrating_peer_port_ = peer_address.port(); } if (!self_address.address().empty() && !self_address_.address().empty()) { self_ip_changed_ = (self_address.address() != self_address_.address()); self_port_changed_ = (self_address.port() != self_address_.port()); } // TODO(vasilvv): reset maximum packet size on connection migration. Whenever // the connection is migrated, it usually ends up being on a different path, // with possibly smaller MTU. This means the max packet size has to be reset // and MTU discovery mechanism re-initialized. The main reason the code does // not do it now is that the retransmission code currently cannot deal with // the case when it needs to resend a packet created with larger MTU (see // b/22172803). } void QuicConnection::OnCanWrite() { DCHECK(!writer_->IsWriteBlocked()); WriteQueuedPackets(); WritePendingRetransmissions(); // Sending queued packets may have caused the socket to become write blocked, // or the congestion manager to prohibit sending. If we've sent everything // we had queued and we're still not blocked, let the visitor know it can // write more. if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { return; } { // Limit the scope of the bundler. ACK inclusion happens elsewhere. ScopedPacketBundler bundler(this, NO_ACK); visitor_->OnCanWrite(); } // After the visitor writes, it may have caused the socket to become write // blocked or the congestion manager to prohibit sending, so check again. if (visitor_->WillingAndAbleToWrite() && !resume_writes_alarm_->IsSet() && CanWrite(HAS_RETRANSMITTABLE_DATA)) { // We're not write blocked, but some stream didn't write out all of its // bytes. Register for 'immediate' resumption so we'll keep writing after // other connections and events have had a chance to use the thread. resume_writes_alarm_->Set(clock_->ApproximateNow()); } } void QuicConnection::WriteIfNotBlocked() { if (!writer_->IsWriteBlocked()) { OnCanWrite(); } } bool QuicConnection::ProcessValidatedPacket() { if (self_ip_changed_ || self_port_changed_) { SendConnectionCloseWithDetails(QUIC_ERROR_MIGRATING_ADDRESS, "Self address migration is not supported."); return false; } if (peer_ip_changed_ || peer_port_changed_) { IPEndPoint old_peer_address = peer_address_; peer_address_ = IPEndPoint( peer_ip_changed_ ? migrating_peer_ip_ : peer_address_.address(), peer_port_changed_ ? migrating_peer_port_ : peer_address_.port()); DVLOG(1) << ENDPOINT << "Peer's ip:port changed from " << old_peer_address.ToString() << " to " << peer_address_.ToString() << ", migrating connection."; if (FLAGS_send_goaway_after_client_migration) { visitor_->OnConnectionMigration(); } } time_of_last_received_packet_ = clock_->Now(); DVLOG(1) << ENDPOINT << "time of last received packet: " << time_of_last_received_packet_.ToDebuggingValue(); if (last_size_ > largest_received_packet_size_) { largest_received_packet_size_ = last_size_; } if (perspective_ == Perspective::IS_SERVER && encryption_level_ == ENCRYPTION_NONE && last_size_ > packet_generator_.GetMaxPacketLength()) { SetMaxPacketLength(last_size_); } return true; } void QuicConnection::WriteQueuedPackets() { DCHECK(!writer_->IsWriteBlocked()); if (pending_version_negotiation_packet_) { SendVersionNegotiationPacket(); } QueuedPacketList::iterator packet_iterator = queued_packets_.begin(); while (packet_iterator != queued_packets_.end() && WritePacket(&(*packet_iterator))) { packet_iterator = queued_packets_.erase(packet_iterator); } } void QuicConnection::WritePendingRetransmissions() { // Keep writing as long as there's a pending retransmission which can be // written. while (sent_packet_manager_.HasPendingRetransmissions()) { const QuicSentPacketManager::PendingRetransmission pending = sent_packet_manager_.NextPendingRetransmission(); if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { break; } // Re-packetize the frames with a new packet number for retransmission. // Retransmitted data packets do not use FEC, even when it's enabled. // Retransmitted packets use the same packet number length as the // original. // Flush the packet generator before making a new packet. // TODO(ianswett): Implement ReserializeAllFrames as a separate path that // does not require the creator to be flushed. packet_generator_.FlushAllQueuedFrames(); char buffer[kMaxPacketSize]; SerializedPacket serialized_packet = packet_generator_.ReserializeAllFrames( pending.retransmittable_frames, pending.packet_number_length, buffer, kMaxPacketSize); if (serialized_packet.packet == nullptr) { // We failed to serialize the packet, so close the connection. // CloseConnection does not send close packet, so no infinite loop here. CloseConnection(QUIC_ENCRYPTION_FAILURE, false); return; } DVLOG(1) << ENDPOINT << "Retransmitting " << pending.packet_number << " as " << serialized_packet.packet_number; SendOrQueuePacket(QueuedPacket( serialized_packet, pending.retransmittable_frames.encryption_level(), pending.transmission_type, pending.packet_number)); } } void QuicConnection::RetransmitUnackedPackets( TransmissionType retransmission_type) { sent_packet_manager_.RetransmitUnackedPackets(retransmission_type); WriteIfNotBlocked(); } void QuicConnection::NeuterUnencryptedPackets() { sent_packet_manager_.NeuterUnencryptedPackets(); // This may have changed the retransmission timer, so re-arm it. SetRetransmissionAlarm(); } bool QuicConnection::ShouldGeneratePacket( HasRetransmittableData retransmittable, IsHandshake handshake) { // We should serialize handshake packets immediately to ensure that they // end up sent at the right encryption level. if (handshake == IS_HANDSHAKE) { return true; } return CanWrite(retransmittable); } bool QuicConnection::CanWrite(HasRetransmittableData retransmittable) { if (!connected_) { return false; } if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return false; } QuicTime now = clock_->Now(); QuicTime::Delta delay = sent_packet_manager_.TimeUntilSend( now, retransmittable); if (delay.IsInfinite()) { send_alarm_->Cancel(); return false; } // If the scheduler requires a delay, then we can not send this packet now. if (!delay.IsZero()) { send_alarm_->Update(now.Add(delay), QuicTime::Delta::FromMilliseconds(1)); DVLOG(1) << ENDPOINT << "Delaying sending " << delay.ToMilliseconds() << "ms"; return false; } send_alarm_->Cancel(); return true; } bool QuicConnection::WritePacket(QueuedPacket* packet) { if (!WritePacketInner(packet)) { return false; } delete packet->serialized_packet.retransmittable_frames; delete packet->serialized_packet.packet; packet->serialized_packet.retransmittable_frames = nullptr; packet->serialized_packet.packet = nullptr; return true; } bool QuicConnection::WritePacketInner(QueuedPacket* packet) { if (FLAGS_quic_close_connection_out_of_order_sending && packet->serialized_packet.packet_number < sent_packet_manager_.largest_sent_packet()) { LOG(DFATAL) << "Attempt to write packet:" << packet->serialized_packet.packet_number << " after:" << sent_packet_manager_.largest_sent_packet(); SendConnectionCloseWithDetails(QUIC_INTERNAL_ERROR, "Packet written out of order."); return true; } if (ShouldDiscardPacket(*packet)) { ++stats_.packets_discarded; return true; } // Connection close packets are encrypted and saved, so don't exit early. const bool is_connection_close = IsConnectionClose(*packet); if (writer_->IsWriteBlocked() && !is_connection_close) { return false; } QuicPacketNumber packet_number = packet->serialized_packet.packet_number; DCHECK_LE(packet_number_of_last_sent_packet_, packet_number); packet_number_of_last_sent_packet_ = packet_number; QuicEncryptedPacket* encrypted = packet->serialized_packet.packet; // Connection close packets are eventually owned by TimeWaitListManager. // Others are deleted at the end of this call. if (is_connection_close) { DCHECK(connection_close_packet_.get() == nullptr); // Clone the packet so it's owned in the future. connection_close_packet_.reset(encrypted->Clone()); // This assures we won't try to write *forced* packets when blocked. // Return true to stop processing. if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return true; } } if (!FLAGS_quic_allow_oversized_packets_for_test) { DCHECK_LE(encrypted->length(), kMaxPacketSize); } DCHECK_LE(encrypted->length(), packet_generator_.GetMaxPacketLength()); DVLOG(1) << ENDPOINT << "Sending packet " << packet_number << " : " << (packet->serialized_packet.is_fec_packet ? "FEC " : (IsRetransmittable(*packet) == HAS_RETRANSMITTABLE_DATA ? "data bearing " : " ack only ")) << ", encryption level: " << QuicUtils::EncryptionLevelToString(packet->encryption_level) << ", encrypted length:" << encrypted->length(); DVLOG(2) << ENDPOINT << "packet(" << packet_number << "): " << std::endl << QuicUtils::StringToHexASCIIDump(encrypted->AsStringPiece()); // Measure the RTT from before the write begins to avoid underestimating the // min_rtt_, especially in cases where the thread blocks or gets swapped out // during the WritePacket below. QuicTime packet_send_time = clock_->Now(); WriteResult result = writer_->WritePacket(encrypted->data(), encrypted->length(), self_address().address(), peer_address()); if (result.error_code == ERR_IO_PENDING) { DCHECK_EQ(WRITE_STATUS_BLOCKED, result.status); } if (result.status == WRITE_STATUS_BLOCKED) { visitor_->OnWriteBlocked(); // If the socket buffers the the data, then the packet should not // be queued and sent again, which would result in an unnecessary // duplicate packet being sent. The helper must call OnCanWrite // when the write completes, and OnWriteError if an error occurs. if (!writer_->IsWriteBlockedDataBuffered()) { return false; } } if (result.status != WRITE_STATUS_ERROR && debug_visitor_ != nullptr) { // Pass the write result to the visitor. debug_visitor_->OnPacketSent( packet->serialized_packet, packet->original_packet_number, packet->encryption_level, packet->transmission_type, *encrypted, packet_send_time); } if (packet->transmission_type == NOT_RETRANSMISSION) { time_of_last_sent_new_packet_ = packet_send_time; } SetPingAlarm(); MaybeSetFecAlarm(packet_number); MaybeSetMtuAlarm(); DVLOG(1) << ENDPOINT << "time we began writing last sent packet: " << packet_send_time.ToDebuggingValue(); // TODO(ianswett): Change the packet number length and other packet creator // options by a more explicit API than setting a struct value directly, // perhaps via the NetworkChangeVisitor. packet_generator_.UpdateSequenceNumberLength( sent_packet_manager_.least_packet_awaited_by_peer(), sent_packet_manager_.EstimateMaxPacketsInFlight(max_packet_length())); bool reset_retransmission_alarm = sent_packet_manager_.OnPacketSent( &packet->serialized_packet, packet->original_packet_number, packet_send_time, encrypted->length(), packet->transmission_type, IsRetransmittable(*packet)); if (reset_retransmission_alarm || !retransmission_alarm_->IsSet()) { SetRetransmissionAlarm(); } stats_.bytes_sent += result.bytes_written; ++stats_.packets_sent; if (packet->transmission_type != NOT_RETRANSMISSION) { stats_.bytes_retransmitted += result.bytes_written; ++stats_.packets_retransmitted; } if (result.status == WRITE_STATUS_ERROR) { OnWriteError(result.error_code); DLOG(ERROR) << ENDPOINT << "failed writing " << encrypted->length() << " bytes " << " from host " << self_address().ToStringWithoutPort() << " to address " << peer_address().ToString(); return false; } return true; } bool QuicConnection::ShouldDiscardPacket(const QueuedPacket& packet) { if (!connected_) { DVLOG(1) << ENDPOINT << "Not sending packet as connection is disconnected."; return true; } QuicPacketNumber packet_number = packet.serialized_packet.packet_number; if (encryption_level_ == ENCRYPTION_FORWARD_SECURE && packet.encryption_level == ENCRYPTION_NONE) { // Drop packets that are NULL encrypted since the peer won't accept them // anymore. DVLOG(1) << ENDPOINT << "Dropping NULL encrypted packet: " << packet_number << " since the connection is forward secure."; return true; } // If a retransmission has been acked before sending, don't send it. // This occurs if a packet gets serialized, queued, then discarded. if (packet.transmission_type != NOT_RETRANSMISSION && (!sent_packet_manager_.IsUnacked(packet.original_packet_number) || !sent_packet_manager_.HasRetransmittableFrames( packet.original_packet_number))) { DVLOG(1) << ENDPOINT << "Dropping unacked packet: " << packet_number << " A previous transmission was acked while write blocked."; return true; } return false; } void QuicConnection::OnWriteError(int error_code) { DVLOG(1) << ENDPOINT << "Write failed with error: " << error_code << " (" << ErrorToString(error_code) << ")"; // We can't send an error as the socket is presumably borked. CloseConnection(QUIC_PACKET_WRITE_ERROR, false); } void QuicConnection::OnSerializedPacket( const SerializedPacket& serialized_packet) { if (serialized_packet.packet == nullptr) { // We failed to serialize the packet, so close the connection. // CloseConnection does not send close packet, so no infinite loop here. CloseConnection(QUIC_ENCRYPTION_FAILURE, false); return; } sent_packet_manager_.OnSerializedPacket(serialized_packet); if (serialized_packet.is_fec_packet && fec_alarm_->IsSet()) { // If an FEC packet is serialized with the FEC alarm set, cancel the alarm. fec_alarm_->Cancel(); } SendOrQueuePacket(QueuedPacket(serialized_packet, encryption_level_)); } void QuicConnection::OnResetFecGroup() { if (!fec_alarm_->IsSet()) { return; } // If an FEC Group is closed with the FEC alarm set, cancel the alarm. fec_alarm_->Cancel(); } void QuicConnection::OnCongestionWindowChange() { packet_generator_.OnCongestionWindowChange( sent_packet_manager_.EstimateMaxPacketsInFlight(max_packet_length())); visitor_->OnCongestionWindowChange(clock_->ApproximateNow()); } void QuicConnection::OnRttChange() { // Uses the connection's smoothed RTT. If zero, uses initial_rtt. QuicTime::Delta rtt = sent_packet_manager_.GetRttStats()->smoothed_rtt(); if (rtt.IsZero()) { rtt = QuicTime::Delta::FromMicroseconds( sent_packet_manager_.GetRttStats()->initial_rtt_us()); } if (debug_visitor_) debug_visitor_->OnRttChanged(rtt); packet_generator_.OnRttChange(rtt); } void QuicConnection::OnHandshakeComplete() { sent_packet_manager_.SetHandshakeConfirmed(); // The client should immediately ack the SHLO to confirm the handshake is // complete with the server. if (perspective_ == Perspective::IS_CLIENT && !ack_queued_) { ack_alarm_->Cancel(); ack_alarm_->Set(clock_->ApproximateNow()); } } void QuicConnection::SendOrQueuePacket(QueuedPacket packet) { // The caller of this function is responsible for checking CanWrite(). if (packet.serialized_packet.packet == nullptr) { LOG(DFATAL) << "packet.serialized_packet.packet == nullptr in to SendOrQueuePacket"; return; } sent_entropy_manager_.RecordPacketEntropyHash( packet.serialized_packet.packet_number, packet.serialized_packet.entropy_hash); // If there are already queued packets, queue this one immediately to ensure // it's written in sequence number order. if (!queued_packets_.empty() || !WritePacket(&packet)) { // Take ownership of the underlying encrypted packet. if (!packet.serialized_packet.packet->owns_buffer()) { scoped_ptr encrypted_deleter( packet.serialized_packet.packet); packet.serialized_packet.packet = packet.serialized_packet.packet->Clone(); } queued_packets_.push_back(packet); } // If a forward-secure encrypter is available but is not being used and the // next packet number is the first packet which requires // forward security, start using the forward-secure encrypter. if (encryption_level_ != ENCRYPTION_FORWARD_SECURE && has_forward_secure_encrypter_ && packet.serialized_packet.packet_number >= first_required_forward_secure_packet_ - 1) { SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } } void QuicConnection::SendPing() { if (retransmission_alarm_->IsSet()) { return; } packet_generator_.AddControlFrame(QuicFrame(new QuicPingFrame)); } void QuicConnection::SendAck() { ack_alarm_->Cancel(); ack_queued_ = false; stop_waiting_count_ = 0; num_packets_received_since_last_ack_sent_ = 0; packet_generator_.SetShouldSendAck(true); } void QuicConnection::OnRetransmissionTimeout() { if (!sent_packet_manager_.HasUnackedPackets()) { return; } sent_packet_manager_.OnRetransmissionTimeout(); WriteIfNotBlocked(); // A write failure can result in the connection being closed, don't attempt to // write further packets, or to set alarms. if (!connected_) { return; } // In the TLP case, the SentPacketManager gives the connection the opportunity // to send new data before retransmitting. if (sent_packet_manager_.MaybeRetransmitTailLossProbe()) { // Send the pending retransmission now that it's been queued. WriteIfNotBlocked(); } // Ensure the retransmission alarm is always set if there are unacked packets // and nothing waiting to be sent. // This happens if the loss algorithm invokes a timer based loss, but the // packet doesn't need to be retransmitted. if (!HasQueuedData() && !retransmission_alarm_->IsSet()) { SetRetransmissionAlarm(); } } void QuicConnection::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { packet_generator_.SetEncrypter(level, encrypter); if (level == ENCRYPTION_FORWARD_SECURE) { has_forward_secure_encrypter_ = true; first_required_forward_secure_packet_ = packet_number_of_last_sent_packet_ + // 3 times the current congestion window (in slow start) should cover // about two full round trips worth of packets, which should be // sufficient. 3 * sent_packet_manager_.EstimateMaxPacketsInFlight( max_packet_length()); } } void QuicConnection::SetDefaultEncryptionLevel(EncryptionLevel level) { encryption_level_ = level; packet_generator_.set_encryption_level(level); } void QuicConnection::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) { framer_.SetDecrypter(level, decrypter); } void QuicConnection::SetAlternativeDecrypter(EncryptionLevel level, QuicDecrypter* decrypter, bool latch_once_used) { framer_.SetAlternativeDecrypter(level, decrypter, latch_once_used); } const QuicDecrypter* QuicConnection::decrypter() const { return framer_.decrypter(); } const QuicDecrypter* QuicConnection::alternative_decrypter() const { return framer_.alternative_decrypter(); } void QuicConnection::QueueUndecryptablePacket( const QuicEncryptedPacket& packet) { DVLOG(1) << ENDPOINT << "Queueing undecryptable packet."; undecryptable_packets_.push_back(packet.Clone()); } void QuicConnection::MaybeProcessUndecryptablePackets() { if (undecryptable_packets_.empty() || encryption_level_ == ENCRYPTION_NONE) { return; } while (connected_ && !undecryptable_packets_.empty()) { DVLOG(1) << ENDPOINT << "Attempting to process undecryptable packet"; QuicEncryptedPacket* packet = undecryptable_packets_.front(); if (!framer_.ProcessPacket(*packet) && framer_.error() == QUIC_DECRYPTION_FAILURE) { DVLOG(1) << ENDPOINT << "Unable to process undecryptable packet..."; break; } DVLOG(1) << ENDPOINT << "Processed undecryptable packet!"; ++stats_.packets_processed; delete packet; undecryptable_packets_.pop_front(); } // Once forward secure encryption is in use, there will be no // new keys installed and hence any undecryptable packets will // never be able to be decrypted. if (encryption_level_ == ENCRYPTION_FORWARD_SECURE) { if (debug_visitor_ != nullptr) { // TODO(rtenneti): perhaps more efficient to pass the number of // undecryptable packets as the argument to OnUndecryptablePacket so that // we just need to call OnUndecryptablePacket once? for (size_t i = 0; i < undecryptable_packets_.size(); ++i) { debug_visitor_->OnUndecryptablePacket(); } } STLDeleteElements(&undecryptable_packets_); } } void QuicConnection::MaybeProcessRevivedPacket() { QuicFecGroup* group = GetFecGroup(); if (!connected_ || group == nullptr || !group->CanRevive()) { return; } QuicPacketHeader revived_header; char revived_payload[kMaxPacketSize]; size_t len = group->Revive(&revived_header, revived_payload, kMaxPacketSize); revived_header.public_header.connection_id = connection_id_; revived_header.public_header.connection_id_length = last_header_.public_header.connection_id_length; revived_header.public_header.version_flag = false; revived_header.public_header.reset_flag = false; revived_header.public_header.packet_number_length = last_header_.public_header.packet_number_length; revived_header.fec_flag = false; revived_header.is_in_fec_group = NOT_IN_FEC_GROUP; revived_header.fec_group = 0; group_map_.erase(last_header_.fec_group); last_decrypted_packet_level_ = group->effective_encryption_level(); DCHECK_LT(last_decrypted_packet_level_, NUM_ENCRYPTION_LEVELS); delete group; last_packet_revived_ = true; if (debug_visitor_ != nullptr) { debug_visitor_->OnRevivedPacket(revived_header, StringPiece(revived_payload, len)); } ++stats_.packets_revived; framer_.ProcessRevivedPacket(&revived_header, StringPiece(revived_payload, len)); } QuicFecGroup* QuicConnection::GetFecGroup() { QuicFecGroupNumber fec_group_num = last_header_.fec_group; if (fec_group_num == 0) { return nullptr; } if (!ContainsKey(group_map_, fec_group_num)) { if (group_map_.size() >= kMaxFecGroups) { // Too many groups if (fec_group_num < group_map_.begin()->first) { // The group being requested is a group we've seen before and deleted. // Don't recreate it. return nullptr; } // Clear the lowest group number. delete group_map_.begin()->second; group_map_.erase(group_map_.begin()); } group_map_[fec_group_num] = new QuicFecGroup(); } return group_map_[fec_group_num]; } void QuicConnection::SendConnectionClose(QuicErrorCode error) { SendConnectionCloseWithDetails(error, string()); } void QuicConnection::SendConnectionCloseWithDetails(QuicErrorCode error, const string& details) { // If we're write blocked, WritePacket() will not send, but will capture the // serialized packet. SendConnectionClosePacket(error, details); CloseConnection(error, false); } void QuicConnection::SendConnectionClosePacket(QuicErrorCode error, const string& details) { DVLOG(1) << ENDPOINT << "Force closing " << connection_id() << " with error " << QuicUtils::ErrorToString(error) << " (" << error << ") " << details; // Don't send explicit connection close packets for timeouts. // This is particularly important on mobile, where connections are short. if (silent_close_enabled_ && error == QuicErrorCode::QUIC_CONNECTION_TIMED_OUT) { return; } ClearQueuedPackets(); ScopedPacketBundler ack_bundler(this, SEND_ACK); QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame(); frame->error_code = error; frame->error_details = details; packet_generator_.AddControlFrame(QuicFrame(frame)); packet_generator_.FlushAllQueuedFrames(); } void QuicConnection::CloseConnection(QuicErrorCode error, bool from_peer) { if (!connected_) { DVLOG(1) << "Connection is already closed."; return; } connected_ = false; if (debug_visitor_ != nullptr) { debug_visitor_->OnConnectionClosed(error, from_peer); } DCHECK(visitor_ != nullptr); visitor_->OnConnectionClosed(error, from_peer); // Cancel the alarms so they don't trigger any action now that the // connection is closed. ack_alarm_->Cancel(); ping_alarm_->Cancel(); fec_alarm_->Cancel(); resume_writes_alarm_->Cancel(); retransmission_alarm_->Cancel(); send_alarm_->Cancel(); timeout_alarm_->Cancel(); mtu_discovery_alarm_->Cancel(); } void QuicConnection::SendGoAway(QuicErrorCode error, QuicStreamId last_good_stream_id, const string& reason) { if (goaway_sent_) { return; } goaway_sent_ = true; DVLOG(1) << ENDPOINT << "Going away with error " << QuicUtils::ErrorToString(error) << " (" << error << ")"; // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, BUNDLE_PENDING_ACK); packet_generator_.AddControlFrame( QuicFrame(new QuicGoAwayFrame(error, last_good_stream_id, reason))); } void QuicConnection::CloseFecGroupsBefore(QuicPacketNumber packet_number) { FecGroupMap::iterator it = group_map_.begin(); while (it != group_map_.end()) { // If this is the current group or the group doesn't protect this packet // we can ignore it. if (last_header_.fec_group == it->first || !it->second->ProtectsPacketsBefore(packet_number)) { ++it; continue; } QuicFecGroup* fec_group = it->second; DCHECK(!fec_group->CanRevive()); FecGroupMap::iterator next = it; ++next; group_map_.erase(it); delete fec_group; it = next; } } QuicByteCount QuicConnection::max_packet_length() const { return packet_generator_.GetMaxPacketLength(); } void QuicConnection::SetMaxPacketLength(QuicByteCount length) { return packet_generator_.SetMaxPacketLength(LimitMaxPacketSize(length), /*force=*/false); } bool QuicConnection::HasQueuedData() const { return pending_version_negotiation_packet_ || !queued_packets_.empty() || packet_generator_.HasQueuedFrames(); } bool QuicConnection::CanWriteStreamData() { // Don't write stream data if there are negotiation or queued data packets // to send. Otherwise, continue and bundle as many frames as possible. if (pending_version_negotiation_packet_ || !queued_packets_.empty()) { return false; } IsHandshake pending_handshake = visitor_->HasPendingHandshake() ? IS_HANDSHAKE : NOT_HANDSHAKE; // Sending queued packets may have caused the socket to become write blocked, // or the congestion manager to prohibit sending. If we've sent everything // we had queued and we're still not blocked, let the visitor know it can // write more. return ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, pending_handshake); } void QuicConnection::SetNetworkTimeouts(QuicTime::Delta overall_timeout, QuicTime::Delta idle_timeout) { LOG_IF(DFATAL, idle_timeout > overall_timeout) << "idle_timeout:" << idle_timeout.ToMilliseconds() << " overall_timeout:" << overall_timeout.ToMilliseconds(); // Adjust the idle timeout on client and server to prevent clients from // sending requests to servers which have already closed the connection. if (perspective_ == Perspective::IS_SERVER) { idle_timeout = idle_timeout.Add(QuicTime::Delta::FromSeconds(3)); } else if (idle_timeout > QuicTime::Delta::FromSeconds(1)) { idle_timeout = idle_timeout.Subtract(QuicTime::Delta::FromSeconds(1)); } overall_connection_timeout_ = overall_timeout; idle_network_timeout_ = idle_timeout; SetTimeoutAlarm(); } void QuicConnection::CheckForTimeout() { QuicTime now = clock_->ApproximateNow(); QuicTime time_of_last_packet = max(time_of_last_received_packet_, time_of_last_sent_new_packet_); // |delta| can be < 0 as |now| is approximate time but |time_of_last_packet| // is accurate time. However, this should not change the behavior of // timeout handling. QuicTime::Delta idle_duration = now.Subtract(time_of_last_packet); DVLOG(1) << ENDPOINT << "last packet " << time_of_last_packet.ToDebuggingValue() << " now:" << now.ToDebuggingValue() << " idle_duration:" << idle_duration.ToMicroseconds() << " idle_network_timeout: " << idle_network_timeout_.ToMicroseconds(); if (idle_duration >= idle_network_timeout_) { DVLOG(1) << ENDPOINT << "Connection timedout due to no network activity."; SendConnectionClose(QUIC_CONNECTION_TIMED_OUT); return; } if (!overall_connection_timeout_.IsInfinite()) { QuicTime::Delta connected_duration = now.Subtract(stats_.connection_creation_time); DVLOG(1) << ENDPOINT << "connection time: " << connected_duration.ToMicroseconds() << " overall timeout: " << overall_connection_timeout_.ToMicroseconds(); if (connected_duration >= overall_connection_timeout_) { DVLOG(1) << ENDPOINT << "Connection timedout due to overall connection timeout."; SendConnectionClose(QUIC_CONNECTION_OVERALL_TIMED_OUT); return; } } SetTimeoutAlarm(); } void QuicConnection::SetTimeoutAlarm() { QuicTime time_of_last_packet = max(time_of_last_received_packet_, time_of_last_sent_new_packet_); QuicTime deadline = time_of_last_packet.Add(idle_network_timeout_); if (!overall_connection_timeout_.IsInfinite()) { deadline = min(deadline, stats_.connection_creation_time.Add( overall_connection_timeout_)); } timeout_alarm_->Cancel(); timeout_alarm_->Set(deadline); } void QuicConnection::SetPingAlarm() { if (perspective_ == Perspective::IS_SERVER) { // Only clients send pings. return; } if (!visitor_->HasOpenDynamicStreams()) { ping_alarm_->Cancel(); // Don't send a ping unless there are open streams. return; } QuicTime::Delta ping_timeout = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); ping_alarm_->Update(clock_->ApproximateNow().Add(ping_timeout), QuicTime::Delta::FromSeconds(1)); } void QuicConnection::SetRetransmissionAlarm() { if (delay_setting_retransmission_alarm_) { pending_retransmission_alarm_ = true; return; } QuicTime retransmission_time = sent_packet_manager_.GetRetransmissionTime(); retransmission_alarm_->Update(retransmission_time, QuicTime::Delta::FromMilliseconds(1)); } void QuicConnection::MaybeSetMtuAlarm() { // Do not set the alarm if the target size is less than the current size. // This covers the case when |mtu_discovery_target_| is at its default value, // zero. if (mtu_discovery_target_ <= max_packet_length()) { return; } if (mtu_probe_count_ >= kMtuDiscoveryAttempts) { return; } if (mtu_discovery_alarm_->IsSet()) { return; } if (packet_number_of_last_sent_packet_ >= next_mtu_probe_at_) { // Use an alarm to send the MTU probe to ensure that no ScopedPacketBundlers // are active. mtu_discovery_alarm_->Set(clock_->ApproximateNow()); } } QuicConnection::ScopedPacketBundler::ScopedPacketBundler( QuicConnection* connection, AckBundling send_ack) : connection_(connection), already_in_batch_mode_(connection != nullptr && connection->packet_generator_.InBatchMode()) { if (connection_ == nullptr) { return; } // Move generator into batch mode. If caller wants us to include an ack, // check the delayed-ack timer to see if there's ack info to be sent. if (!already_in_batch_mode_) { DVLOG(1) << "Entering Batch Mode."; connection_->packet_generator_.StartBatchOperations(); } // Bundle an ack if the alarm is set or with every second packet if we need to // raise the peer's least unacked. bool ack_pending = connection_->ack_alarm_->IsSet() || connection_->stop_waiting_count_ > 1; if (send_ack == SEND_ACK || (send_ack == BUNDLE_PENDING_ACK && ack_pending)) { DVLOG(1) << "Bundling ack with outgoing packet."; connection_->SendAck(); } } QuicConnection::ScopedPacketBundler::~ScopedPacketBundler() { if (connection_ == nullptr) { return; } // If we changed the generator's batch state, restore original batch state. if (!already_in_batch_mode_) { DVLOG(1) << "Leaving Batch Mode."; connection_->packet_generator_.FinishBatchOperations(); } DCHECK_EQ(already_in_batch_mode_, connection_->packet_generator_.InBatchMode()); } QuicConnection::ScopedRetransmissionScheduler::ScopedRetransmissionScheduler( QuicConnection* connection) : connection_(connection), already_delayed_(connection_->delay_setting_retransmission_alarm_) { connection_->delay_setting_retransmission_alarm_ = true; } QuicConnection::ScopedRetransmissionScheduler:: ~ScopedRetransmissionScheduler() { if (already_delayed_) { return; } connection_->delay_setting_retransmission_alarm_ = false; if (connection_->pending_retransmission_alarm_) { connection_->SetRetransmissionAlarm(); connection_->pending_retransmission_alarm_ = false; } } HasRetransmittableData QuicConnection::IsRetransmittable( const QueuedPacket& packet) { // Retransmitted packets retransmittable frames are owned by the unacked // packet map, but are not present in the serialized packet. if (packet.transmission_type != NOT_RETRANSMISSION || packet.serialized_packet.retransmittable_frames != nullptr) { return HAS_RETRANSMITTABLE_DATA; } else { return NO_RETRANSMITTABLE_DATA; } } bool QuicConnection::IsConnectionClose(const QueuedPacket& packet) { const RetransmittableFrames* retransmittable_frames = packet.serialized_packet.retransmittable_frames; if (retransmittable_frames == nullptr) { return false; } for (const QuicFrame& frame : retransmittable_frames->frames()) { if (frame.type == CONNECTION_CLOSE_FRAME) { return true; } } return false; } void QuicConnection::SetMtuDiscoveryTarget(QuicByteCount target) { mtu_discovery_target_ = LimitMaxPacketSize(target); } QuicByteCount QuicConnection::LimitMaxPacketSize( QuicByteCount suggested_max_packet_size) { if (FLAGS_quic_allow_oversized_packets_for_test) { return suggested_max_packet_size; } if (peer_address_.address().empty()) { LOG(DFATAL) << "Attempted to use a connection without a valid peer address"; return suggested_max_packet_size; } const QuicByteCount writer_limit = writer_->GetMaxPacketSize(peer_address()); QuicByteCount max_packet_size = suggested_max_packet_size; if (max_packet_size > writer_limit) { max_packet_size = writer_limit; } if (max_packet_size > kMaxPacketSize) { max_packet_size = kMaxPacketSize; } return max_packet_size; } void QuicConnection::SendMtuDiscoveryPacket(QuicByteCount target_mtu) { // Currently, this limit is ensured by the caller. DCHECK_EQ(target_mtu, LimitMaxPacketSize(target_mtu)); // Create a listener for the new probe. The ownership of the listener is // transferred to the AckNotifierManager. The notifier will get destroyed // before the connection (because it's stored in one of the connection's // subfields), hence |this| pointer is guaranteed to stay valid at all times. scoped_refptr last_mtu_discovery_ack_listener( new MtuDiscoveryAckListener(this, target_mtu)); // Send the probe. packet_generator_.GenerateMtuDiscoveryPacket( target_mtu, last_mtu_discovery_ack_listener.get()); } void QuicConnection::DiscoverMtu() { DCHECK(!mtu_discovery_alarm_->IsSet()); // Chcek if the MTU has been already increased. if (mtu_discovery_target_ <= max_packet_length()) { return; } // Schedule the next probe *before* sending the current one. This is // important, otherwise, when SendMtuDiscoveryPacket() is called, // MaybeSetMtuAlarm() will not realize that the probe has been just sent, and // will reschedule this probe again. packets_between_mtu_probes_ *= 2; next_mtu_probe_at_ = packet_number_of_last_sent_packet_ + packets_between_mtu_probes_ + 1; ++mtu_probe_count_; DVLOG(2) << "Sending a path MTU discovery packet #" << mtu_probe_count_; SendMtuDiscoveryPacket(mtu_discovery_target_); DCHECK(!mtu_discovery_alarm_->IsSet()); } } // namespace net