// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection_logger.h" #include #include #include "base/bind.h" #include "base/callback.h" #include "base/metrics/histogram.h" #include "base/metrics/sparse_histogram.h" #include "base/strings/string_number_conversions.h" #include "base/values.h" #include "net/base/net_log.h" #include "net/base/net_util.h" #include "net/quic/crypto/crypto_handshake_message.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/quic_address_mismatch.h" #include "net/quic/quic_socket_address_coder.h" using base::StringPiece; using std::string; namespace net { namespace { // We have ranges-of-buckets in the cumulative histogram (covering 21 packet // sequences) of length 2, 3, 4, ... 22. // Hence the largest sample is bounded by the sum of those numbers. const int kBoundingSampleInCumulativeHistogram = ((2 + 22) * 21) / 2; base::Value* NetLogQuicPacketCallback(const IPEndPoint* self_address, const IPEndPoint* peer_address, size_t packet_size, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetString("self_address", self_address->ToString()); dict->SetString("peer_address", peer_address->ToString()); dict->SetInteger("size", packet_size); return dict; } base::Value* NetLogQuicPacketSentCallback( QuicPacketSequenceNumber sequence_number, EncryptionLevel level, TransmissionType transmission_type, size_t packet_size, WriteResult result, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("encryption_level", level); dict->SetInteger("transmission_type", transmission_type); dict->SetString("packet_sequence_number", base::Uint64ToString(sequence_number)); dict->SetInteger("size", packet_size); if (result.status != WRITE_STATUS_OK) { dict->SetInteger("net_error", result.error_code); } return dict; } base::Value* NetLogQuicPacketRetransmittedCallback( QuicPacketSequenceNumber old_sequence_number, QuicPacketSequenceNumber new_sequence_number, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetString("old_packet_sequence_number", base::Uint64ToString(old_sequence_number)); dict->SetString("new_packet_sequence_number", base::Uint64ToString(new_sequence_number)); return dict; } base::Value* NetLogQuicPacketHeaderCallback(const QuicPacketHeader* header, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetString("connection_id", base::Uint64ToString(header->public_header.connection_id)); dict->SetInteger("reset_flag", header->public_header.reset_flag); dict->SetInteger("version_flag", header->public_header.version_flag); dict->SetString("packet_sequence_number", base::Uint64ToString(header->packet_sequence_number)); dict->SetInteger("entropy_flag", header->entropy_flag); dict->SetInteger("fec_flag", header->fec_flag); dict->SetInteger("fec_group", header->fec_group); return dict; } base::Value* NetLogQuicStreamFrameCallback(const QuicStreamFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("stream_id", frame->stream_id); dict->SetBoolean("fin", frame->fin); dict->SetString("offset", base::Uint64ToString(frame->offset)); dict->SetInteger("length", frame->data.TotalBufferSize()); return dict; } base::Value* NetLogQuicAckFrameCallback(const QuicAckFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); base::DictionaryValue* sent_info = new base::DictionaryValue(); dict->Set("sent_info", sent_info); sent_info->SetString("least_unacked", base::Uint64ToString(frame->sent_info.least_unacked)); base::DictionaryValue* received_info = new base::DictionaryValue(); dict->Set("received_info", received_info); received_info->SetString( "largest_observed", base::Uint64ToString(frame->received_info.largest_observed)); received_info->SetBoolean("truncated", frame->received_info.is_truncated); base::ListValue* missing = new base::ListValue(); received_info->Set("missing_packets", missing); const SequenceNumberSet& missing_packets = frame->received_info.missing_packets; for (SequenceNumberSet::const_iterator it = missing_packets.begin(); it != missing_packets.end(); ++it) { missing->AppendString(base::Uint64ToString(*it)); } return dict; } base::Value* NetLogQuicCongestionFeedbackFrameCallback( const QuicCongestionFeedbackFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); switch (frame->type) { case kInterArrival: { dict->SetString("type", "InterArrival"); base::ListValue* received = new base::ListValue(); dict->Set("received_packets", received); for (TimeMap::const_iterator it = frame->inter_arrival.received_packet_times.begin(); it != frame->inter_arrival.received_packet_times.end(); ++it) { string value = base::Uint64ToString(it->first) + "@" + base::Uint64ToString(it->second.ToDebuggingValue()); received->AppendString(value); } break; } case kFixRate: dict->SetString("type", "FixRate"); dict->SetInteger("bitrate_in_bytes_per_second", frame->fix_rate.bitrate.ToBytesPerSecond()); break; case kTCP: dict->SetString("type", "TCP"); dict->SetInteger("receive_window", frame->tcp.receive_window); break; } return dict; } base::Value* NetLogQuicRstStreamFrameCallback( const QuicRstStreamFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("stream_id", frame->stream_id); dict->SetInteger("quic_rst_stream_error", frame->error_code); dict->SetString("details", frame->error_details); return dict; } base::Value* NetLogQuicConnectionCloseFrameCallback( const QuicConnectionCloseFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("quic_error", frame->error_code); dict->SetString("details", frame->error_details); return dict; } base::Value* NetLogQuicWindowUpdateFrameCallback( const QuicWindowUpdateFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("stream_id", frame->stream_id); dict->SetString("byte_offset", base::Uint64ToString(frame->byte_offset)); return dict; } base::Value* NetLogQuicBlockedFrameCallback( const QuicBlockedFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("stream_id", frame->stream_id); return dict; } base::Value* NetLogQuicStopWaitingFrameCallback( const QuicStopWaitingFrame* frame, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); base::DictionaryValue* sent_info = new base::DictionaryValue(); dict->Set("sent_info", sent_info); sent_info->SetString("least_unacked", base::Uint64ToString(frame->least_unacked)); return dict; } base::Value* NetLogQuicVersionNegotiationPacketCallback( const QuicVersionNegotiationPacket* packet, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); base::ListValue* versions = new base::ListValue(); dict->Set("versions", versions); for (QuicVersionVector::const_iterator it = packet->versions.begin(); it != packet->versions.end(); ++it) { versions->AppendString(QuicVersionToString(*it)); } return dict; } base::Value* NetLogQuicCryptoHandshakeMessageCallback( const CryptoHandshakeMessage* message, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetString("quic_crypto_handshake_message", message->DebugString()); return dict; } base::Value* NetLogQuicOnConnectionClosedCallback( QuicErrorCode error, bool from_peer, NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("quic_error", error); dict->SetBoolean("from_peer", from_peer); return dict; } void UpdatePacketGapSentHistogram(size_t num_consecutive_missing_packets) { UMA_HISTOGRAM_COUNTS("Net.QuicSession.PacketGapSent", num_consecutive_missing_packets); } void UpdatePublicResetAddressMismatchHistogram( const IPEndPoint& server_hello_address, const IPEndPoint& public_reset_address) { int sample = GetAddressMismatch(server_hello_address, public_reset_address); // We are seemingly talking to an older server that does not support the // feature, so we can't report the results in the histogram. if (sample < 0) { return; } UMA_HISTOGRAM_ENUMERATION("Net.QuicSession.PublicResetAddressMismatch", sample, QUIC_ADDRESS_MISMATCH_MAX); } const char* GetConnectionDescriptionString() { NetworkChangeNotifier::ConnectionType type = NetworkChangeNotifier::GetConnectionType(); const char* description = NetworkChangeNotifier::ConnectionTypeToString(type); // Most platforms don't distingish Wifi vs Etherenet, and call everything // CONNECTION_UNKNOWN :-(. We'll tease out some details when we are on WiFi, // and hopefully leave only ethernet (with no WiFi available) in the // CONNECTION_UNKNOWN category. This *might* err if there is both ethernet, // as well as WiFi, where WiFi was not being used that much. // This function only seems usefully defined on Windows currently. if (type == NetworkChangeNotifier::CONNECTION_UNKNOWN || type == NetworkChangeNotifier::CONNECTION_WIFI) { WifiPHYLayerProtocol wifi_type = GetWifiPHYLayerProtocol(); switch (wifi_type) { case WIFI_PHY_LAYER_PROTOCOL_NONE: // No wifi support or no associated AP. break; case WIFI_PHY_LAYER_PROTOCOL_ANCIENT: // An obsolete modes introduced by the original 802.11, e.g. IR, FHSS. description = "CONNECTION_WIFI_ANCIENT"; break; case WIFI_PHY_LAYER_PROTOCOL_A: // 802.11a, OFDM-based rates. description = "CONNECTION_WIFI_802.11a"; break; case WIFI_PHY_LAYER_PROTOCOL_B: // 802.11b, DSSS or HR DSSS. description = "CONNECTION_WIFI_802.11b"; break; case WIFI_PHY_LAYER_PROTOCOL_G: // 802.11g, same rates as 802.11a but compatible with 802.11b. description = "CONNECTION_WIFI_802.11g"; break; case WIFI_PHY_LAYER_PROTOCOL_N: // 802.11n, HT rates. description = "CONNECTION_WIFI_802.11n"; break; case WIFI_PHY_LAYER_PROTOCOL_UNKNOWN: // Unclassified mode or failure to identify. break; } } return description; } } // namespace QuicConnectionLogger::QuicConnectionLogger(const BoundNetLog& net_log) : net_log_(net_log), last_received_packet_sequence_number_(0), last_received_packet_size_(0), largest_received_packet_sequence_number_(0), largest_received_missing_packet_sequence_number_(0), num_out_of_order_received_packets_(0), num_packets_received_(0), num_truncated_acks_sent_(0), num_truncated_acks_received_(0), num_frames_received_(0), num_duplicate_frames_received_(0), connection_description_(GetConnectionDescriptionString()) { } QuicConnectionLogger::~QuicConnectionLogger() { UMA_HISTOGRAM_COUNTS("Net.QuicSession.OutOfOrderPacketsReceived", num_out_of_order_received_packets_); UMA_HISTOGRAM_COUNTS("Net.QuicSession.TruncatedAcksSent", num_truncated_acks_sent_); UMA_HISTOGRAM_COUNTS("Net.QuicSession.TruncatedAcksReceived", num_truncated_acks_received_); if (num_frames_received_ > 0) { int duplicate_stream_frame_per_thousand = num_duplicate_frames_received_ * 1000 / num_frames_received_; if (num_packets_received_ < 100) { UMA_HISTOGRAM_CUSTOM_COUNTS( "Net.QuicSession.StreamFrameDuplicatedShortConnection", duplicate_stream_frame_per_thousand, 1, 1000, 75); } else { UMA_HISTOGRAM_CUSTOM_COUNTS( "Net.QuicSession.StreamFrameDuplicatedLongConnection", duplicate_stream_frame_per_thousand, 1, 1000, 75); } } RecordLossHistograms(); } void QuicConnectionLogger::OnFrameAddedToPacket(const QuicFrame& frame) { switch (frame.type) { case PADDING_FRAME: break; case STREAM_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_STREAM_FRAME_SENT, base::Bind(&NetLogQuicStreamFrameCallback, frame.stream_frame)); break; case ACK_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_ACK_FRAME_SENT, base::Bind(&NetLogQuicAckFrameCallback, frame.ack_frame)); if (frame.ack_frame->received_info.is_truncated) ++num_truncated_acks_sent_; break; case CONGESTION_FEEDBACK_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CONGESTION_FEEDBACK_FRAME_SENT, base::Bind(&NetLogQuicCongestionFeedbackFrameCallback, frame.congestion_feedback_frame)); break; case RST_STREAM_FRAME: UMA_HISTOGRAM_SPARSE_SLOWLY("Net.QuicSession.RstStreamErrorCodeClient", frame.rst_stream_frame->error_code); net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_RST_STREAM_FRAME_SENT, base::Bind(&NetLogQuicRstStreamFrameCallback, frame.rst_stream_frame)); break; case CONNECTION_CLOSE_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CONNECTION_CLOSE_FRAME_SENT, base::Bind(&NetLogQuicConnectionCloseFrameCallback, frame.connection_close_frame)); break; case GOAWAY_FRAME: break; case WINDOW_UPDATE_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_WINDOW_UPDATE_FRAME_SENT, base::Bind(&NetLogQuicWindowUpdateFrameCallback, frame.window_update_frame)); break; case BLOCKED_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_BLOCKED_FRAME_SENT, base::Bind(&NetLogQuicBlockedFrameCallback, frame.blocked_frame)); break; case STOP_WAITING_FRAME: net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_STOP_WAITING_FRAME_SENT, base::Bind(&NetLogQuicStopWaitingFrameCallback, frame.stop_waiting_frame)); break; default: DCHECK(false) << "Illegal frame type: " << frame.type; } } void QuicConnectionLogger::OnPacketSent( QuicPacketSequenceNumber sequence_number, EncryptionLevel level, TransmissionType transmission_type, const QuicEncryptedPacket& packet, WriteResult result) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_PACKET_SENT, base::Bind(&NetLogQuicPacketSentCallback, sequence_number, level, transmission_type, packet.length(), result)); } void QuicConnectionLogger:: OnPacketRetransmitted( QuicPacketSequenceNumber old_sequence_number, QuicPacketSequenceNumber new_sequence_number) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_PACKET_RETRANSMITTED, base::Bind(&NetLogQuicPacketRetransmittedCallback, old_sequence_number, new_sequence_number)); } void QuicConnectionLogger::OnPacketReceived(const IPEndPoint& self_address, const IPEndPoint& peer_address, const QuicEncryptedPacket& packet) { last_received_packet_size_ = packet.length(); net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_PACKET_RECEIVED, base::Bind(&NetLogQuicPacketCallback, &self_address, &peer_address, packet.length())); } void QuicConnectionLogger::OnProtocolVersionMismatch( QuicVersion received_version) { // TODO(rtenneti): Add logging. } void QuicConnectionLogger::OnPacketHeader(const QuicPacketHeader& header) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_PACKET_HEADER_RECEIVED, base::Bind(&NetLogQuicPacketHeaderCallback, &header)); ++num_packets_received_; if (largest_received_packet_sequence_number_ < header.packet_sequence_number) { QuicPacketSequenceNumber delta = header.packet_sequence_number - largest_received_packet_sequence_number_; if (delta > 1) { // There is a gap between the largest packet previously received and // the current packet. This indicates either loss, or out-of-order // delivery. UMA_HISTOGRAM_COUNTS("Net.QuicSession.PacketGapReceived", delta - 1); } largest_received_packet_sequence_number_ = header.packet_sequence_number; } if (header.packet_sequence_number < received_packets_.size()) received_packets_[header.packet_sequence_number] = true; if (header.packet_sequence_number < last_received_packet_sequence_number_) { ++num_out_of_order_received_packets_; UMA_HISTOGRAM_COUNTS("Net.QuicSession.OutOfOrderGapReceived", last_received_packet_sequence_number_ - header.packet_sequence_number); } last_received_packet_sequence_number_ = header.packet_sequence_number; } void QuicConnectionLogger::OnStreamFrame(const QuicStreamFrame& frame) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_STREAM_FRAME_RECEIVED, base::Bind(&NetLogQuicStreamFrameCallback, &frame)); } void QuicConnectionLogger::OnAckFrame(const QuicAckFrame& frame) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_ACK_FRAME_RECEIVED, base::Bind(&NetLogQuicAckFrameCallback, &frame)); const size_t kApproximateLargestSoloAckBytes = 100; if (last_received_packet_sequence_number_ < received_acks_.size() && last_received_packet_size_ < kApproximateLargestSoloAckBytes) received_acks_[last_received_packet_sequence_number_] = true; if (frame.received_info.is_truncated) ++num_truncated_acks_received_; if (frame.received_info.missing_packets.empty()) return; SequenceNumberSet missing_packets = frame.received_info.missing_packets; SequenceNumberSet::const_iterator it = missing_packets.lower_bound( largest_received_missing_packet_sequence_number_); if (it == missing_packets.end()) return; if (*it == largest_received_missing_packet_sequence_number_) { ++it; if (it == missing_packets.end()) return; } // Scan through the list and log consecutive ranges of missing packets. size_t num_consecutive_missing_packets = 0; QuicPacketSequenceNumber previous_missing_packet = *it - 1; while (it != missing_packets.end()) { if (previous_missing_packet == *it - 1) { ++num_consecutive_missing_packets; } else { DCHECK_NE(0u, num_consecutive_missing_packets); UpdatePacketGapSentHistogram(num_consecutive_missing_packets); // Make sure this packet it included in the count. num_consecutive_missing_packets = 1; } previous_missing_packet = *it; ++it; } if (num_consecutive_missing_packets != 0) { UpdatePacketGapSentHistogram(num_consecutive_missing_packets); } largest_received_missing_packet_sequence_number_ = *missing_packets.rbegin(); } void QuicConnectionLogger::OnCongestionFeedbackFrame( const QuicCongestionFeedbackFrame& frame) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CONGESTION_FEEDBACK_FRAME_RECEIVED, base::Bind(&NetLogQuicCongestionFeedbackFrameCallback, &frame)); } void QuicConnectionLogger::OnStopWaitingFrame( const QuicStopWaitingFrame& frame) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_STOP_WAITING_FRAME_RECEIVED, base::Bind(&NetLogQuicStopWaitingFrameCallback, &frame)); } void QuicConnectionLogger::OnRstStreamFrame(const QuicRstStreamFrame& frame) { UMA_HISTOGRAM_SPARSE_SLOWLY("Net.QuicSession.RstStreamErrorCodeServer", frame.error_code); net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_RST_STREAM_FRAME_RECEIVED, base::Bind(&NetLogQuicRstStreamFrameCallback, &frame)); } void QuicConnectionLogger::OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CONNECTION_CLOSE_FRAME_RECEIVED, base::Bind(&NetLogQuicConnectionCloseFrameCallback, &frame)); } void QuicConnectionLogger::OnPublicResetPacket( const QuicPublicResetPacket& packet) { net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_PUBLIC_RESET_PACKET_RECEIVED); UpdatePublicResetAddressMismatchHistogram(client_address_, packet.client_address); } void QuicConnectionLogger::OnVersionNegotiationPacket( const QuicVersionNegotiationPacket& packet) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_VERSION_NEGOTIATION_PACKET_RECEIVED, base::Bind(&NetLogQuicVersionNegotiationPacketCallback, &packet)); } void QuicConnectionLogger::OnRevivedPacket( const QuicPacketHeader& revived_header, base::StringPiece payload) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_PACKET_HEADER_REVIVED, base::Bind(&NetLogQuicPacketHeaderCallback, &revived_header)); } void QuicConnectionLogger::OnCryptoHandshakeMessageReceived( const CryptoHandshakeMessage& message) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CRYPTO_HANDSHAKE_MESSAGE_RECEIVED, base::Bind(&NetLogQuicCryptoHandshakeMessageCallback, &message)); if (message.tag() == kSHLO) { StringPiece address; QuicSocketAddressCoder decoder; if (message.GetStringPiece(kCADR, &address) && decoder.Decode(address.data(), address.size())) { client_address_ = IPEndPoint(decoder.ip(), decoder.port()); } } } void QuicConnectionLogger::OnCryptoHandshakeMessageSent( const CryptoHandshakeMessage& message) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CRYPTO_HANDSHAKE_MESSAGE_SENT, base::Bind(&NetLogQuicCryptoHandshakeMessageCallback, &message)); } void QuicConnectionLogger::OnConnectionClosed(QuicErrorCode error, bool from_peer) { net_log_.AddEvent( NetLog::TYPE_QUIC_SESSION_CLOSED, base::Bind(&NetLogQuicOnConnectionClosedCallback, error, from_peer)); } void QuicConnectionLogger::OnSuccessfulVersionNegotiation( const QuicVersion& version) { string quic_version = QuicVersionToString(version); net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_VERSION_NEGOTIATED, NetLog::StringCallback("version", &quic_version)); } void QuicConnectionLogger::UpdateReceivedFrameCounts( QuicStreamId stream_id, int num_frames_received, int num_duplicate_frames_received) { if (stream_id != kCryptoStreamId) { num_frames_received_ += num_frames_received; num_duplicate_frames_received_ += num_duplicate_frames_received; } } base::HistogramBase* QuicConnectionLogger::GetPacketSequenceNumberHistogram( const char* statistic_name) const { string prefix("Net.QuicSession.PacketReceived_"); return base::LinearHistogram::FactoryGet( prefix + statistic_name + connection_description_, 1, received_packets_.size(), received_packets_.size() + 1, base::HistogramBase::kUmaTargetedHistogramFlag); } base::HistogramBase* QuicConnectionLogger::Get6PacketHistogram( const char* which_6) const { // This histogram takes a binary encoding of the 6 consecutive packets // received. As a result, there are 64 possible sample-patterns. string prefix("Net.QuicSession.6PacketsPatternsReceived_"); return base::LinearHistogram::FactoryGet( prefix + which_6 + connection_description_, 1, 64, 65, base::HistogramBase::kUmaTargetedHistogramFlag); } base::HistogramBase* QuicConnectionLogger::Get21CumulativeHistogram( const char* which_21) const { // This histogram contains, for each sequence of 21 packets, the results from // 21 distinct questions about that sequence. Conceptually the histogtram is // broken into 21 distinct ranges, and one sample is added into each of those // ranges whenever we process a set of 21 packets. // There is a little rendundancy, as each "range" must have the same number // of samples, all told, but the histogram is a tad easier to read this way. // The questions are: // Was the first packet present (bucket 0==>no; bucket 1==>yes) // Of the first two packets, how many were present? (bucket 2==> none; // bucket 3==> 1 of 2; bucket 4==> 2 of 2) // Of the first three packets, how many were present? (bucket 5==>none; // bucket 6==> 1 of 3; bucket 7==> 2 of 3; bucket 8==> 3 of 3). // etc. string prefix("Net.QuicSession.21CumulativePacketsReceived_"); return base::LinearHistogram::FactoryGet( prefix + which_21 + connection_description_, 1, kBoundingSampleInCumulativeHistogram, kBoundingSampleInCumulativeHistogram + 1, base::HistogramBase::kUmaTargetedHistogramFlag); } // static void QuicConnectionLogger::AddTo21CumulativeHistogram( base::HistogramBase* histogram, int bit_mask_of_packets, int valid_bits_in_mask) { DCHECK_LE(valid_bits_in_mask, 21); DCHECK_LT(bit_mask_of_packets, 1 << 21); const int blank_bits_in_mask = 21 - valid_bits_in_mask; DCHECK_EQ(bit_mask_of_packets & ((1 << blank_bits_in_mask) - 1), 0); bit_mask_of_packets >>= blank_bits_in_mask; int bits_so_far = 0; int range_start = 0; for (int i = 1; i <= valid_bits_in_mask; ++i) { bits_so_far += bit_mask_of_packets & 1; bit_mask_of_packets >>= 1; DCHECK_LT(range_start + bits_so_far, kBoundingSampleInCumulativeHistogram); histogram->Add(range_start + bits_so_far); range_start += i + 1; } } void QuicConnectionLogger::RecordAggregatePacketLossRate() const { // For short connections under 22 packets in length, we'll rely on the // Net.QuicSession.21CumulativePacketsReceived_* histogram to indicate packet // loss rates. This way we avoid tremendously anomalous contributions to our // histogram. (e.g., if we only got 5 packets, but lost 1, we'd otherwise // record a 20% loss in this histogram!). We may still get some strange data // (1 loss in 22 is still high :-/). if (largest_received_packet_sequence_number_ <= 21) return; QuicPacketSequenceNumber divisor = largest_received_packet_sequence_number_; QuicPacketSequenceNumber numerator = divisor - num_packets_received_; if (divisor < 100000) numerator *= 1000; else divisor /= 1000; string prefix("Net.QuicSession.PacketLossRate_"); base::HistogramBase* histogram = base::Histogram::FactoryGet( prefix + connection_description_, 1, 1000, 75, base::HistogramBase::kUmaTargetedHistogramFlag); histogram->Add(numerator / divisor); } void QuicConnectionLogger::RecordLossHistograms() const { if (largest_received_packet_sequence_number_ == 0) return; // Connection was never used. RecordAggregatePacketLossRate(); base::HistogramBase* is_not_ack_histogram = GetPacketSequenceNumberHistogram("IsNotAck_"); base::HistogramBase* is_an_ack_histogram = GetPacketSequenceNumberHistogram("IsAnAck_"); base::HistogramBase* packet_arrived_histogram = GetPacketSequenceNumberHistogram("Ack_"); base::HistogramBase* packet_missing_histogram = GetPacketSequenceNumberHistogram("Nack_"); base::HistogramBase* ongoing_cumulative_packet_histogram = Get21CumulativeHistogram("Some21s_"); base::HistogramBase* first_cumulative_packet_histogram = Get21CumulativeHistogram("First21_"); base::HistogramBase* six_packet_histogram = Get6PacketHistogram("Some6s_"); DCHECK_EQ(received_packets_.size(), received_acks_.size()); const QuicPacketSequenceNumber last_index = std::min(received_packets_.size() - 1, largest_received_packet_sequence_number_); const QuicPacketSequenceNumber index_of_first_21_contribution = std::min(21, last_index); // Bit pattern of consecutively received packets that is maintained as we scan // through the received_packets_ vector. Less significant bits correspond to // less recent packets, and only the low order 21 bits are ever defined. // Bit is 1 iff corresponding packet was received. int packet_pattern_21 = 0; // Zero is an invalid packet sequence number. DCHECK(!received_packets_[0]); for (size_t i = 1; i <= last_index; ++i) { if (received_acks_[i]) is_an_ack_histogram->Add(i); else is_not_ack_histogram->Add(i); packet_pattern_21 >>= 1; if (received_packets_[i]) { packet_arrived_histogram->Add(i); packet_pattern_21 |= (1 << 20); // Turn on the 21st bit. } else { packet_missing_histogram->Add(i); } if (i == index_of_first_21_contribution) { AddTo21CumulativeHistogram(first_cumulative_packet_histogram, packet_pattern_21, i); } // We'll just record for non-overlapping ranges, to reduce histogramming // cost for now. Each call does 21 separate histogram additions. if (i > 21 || i % 21 == 0) { AddTo21CumulativeHistogram(ongoing_cumulative_packet_histogram, packet_pattern_21, 21); } if (i < 6) continue; // Not enough packets to do any pattern recording. int recent_6_mask = packet_pattern_21 >> 15; DCHECK_LT(recent_6_mask, 64); if (i == 6) { Get6PacketHistogram("First6_")->Add(recent_6_mask); continue; } // Record some overlapping patterns, to get a better picture, since this is // not very expensive. if (i % 3 == 0) six_packet_histogram->Add(recent_6_mask); } } } // namespace net