// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection.h" #include #include "base/bind.h" #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "base/stl_util.h" #include "net/base/ip_address.h" #include "net/base/net_errors.h" #include "net/quic/congestion_control/loss_detection_interface.h" #include "net/quic/congestion_control/send_algorithm_interface.h" #include "net/quic/crypto/null_encrypter.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_simple_buffer_allocator.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/mock_clock.h" #include "net/quic/test_tools/mock_random.h" #include "net/quic/test_tools/quic_config_peer.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_framer_peer.h" #include "net/quic/test_tools/quic_packet_creator_peer.h" #include "net/quic/test_tools/quic_packet_generator_peer.h" #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/quic/test_tools/simple_quic_framer.h" #include "net/test/gtest_util.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using base::StringPiece; using std::map; using std::ostream; using std::string; using std::vector; using testing::AnyNumber; using testing::AtLeast; using testing::Contains; using testing::DoAll; using testing::InSequence; using testing::InvokeWithoutArgs; using testing::NiceMock; using testing::Ref; using testing::Return; using testing::SaveArg; using testing::SetArgPointee; using testing::StrictMock; using testing::_; namespace net { namespace test { namespace { const char data1[] = "foo"; const char data2[] = "bar"; const bool kFin = true; const bool kEntropyFlag = true; const bool kHasStopWaiting = true; const QuicPacketEntropyHash kTestEntropyHash = 76; const int kDefaultRetransmissionTimeMs = 500; const IPEndPoint kPeerAddress = IPEndPoint(Loopback6(), /*port=*/12345); const IPEndPoint kSelfAddress = IPEndPoint(Loopback6(), /*port=*/443); // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. class TaggingEncrypter : public QuicEncrypter { public: explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {} ~TaggingEncrypter() override {} // QuicEncrypter interface. bool SetKey(StringPiece key) override { return true; } bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } bool EncryptPacket(QuicPathId path_id, QuicPacketNumber packet_number, StringPiece associated_data, StringPiece plaintext, char* output, size_t* output_length, size_t max_output_length) override { const size_t len = plaintext.size() + kTagSize; if (max_output_length < len) { return false; } // Memmove is safe for inplace encryption. memmove(output, plaintext.data(), plaintext.size()); output += plaintext.size(); memset(output, tag_, kTagSize); *output_length = len; return true; } size_t GetKeySize() const override { return 0; } size_t GetNoncePrefixSize() const override { return 0; } size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { return ciphertext_size - kTagSize; } size_t GetCiphertextSize(size_t plaintext_size) const override { return plaintext_size + kTagSize; } StringPiece GetKey() const override { return StringPiece(); } StringPiece GetNoncePrefix() const override { return StringPiece(); } private: enum { kTagSize = 12, }; const uint8_t tag_; DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter); }; // TaggingDecrypter ensures that the final kTagSize bytes of the message all // have the same value and then removes them. class TaggingDecrypter : public QuicDecrypter { public: ~TaggingDecrypter() override {} // QuicDecrypter interface bool SetKey(StringPiece key) override { return true; } bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } bool DecryptPacket(QuicPathId path_id, QuicPacketNumber packet_number, StringPiece associated_data, StringPiece ciphertext, char* output, size_t* output_length, size_t max_output_length) override { if (ciphertext.size() < kTagSize) { return false; } if (!CheckTag(ciphertext, GetTag(ciphertext))) { return false; } *output_length = ciphertext.size() - kTagSize; memcpy(output, ciphertext.data(), *output_length); return true; } StringPiece GetKey() const override { return StringPiece(); } StringPiece GetNoncePrefix() const override { return StringPiece(); } const char* cipher_name() const override { return "Tagging"; } // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. uint32_t cipher_id() const override { return 0xFFFFFFF0; } protected: virtual uint8_t GetTag(StringPiece ciphertext) { return ciphertext.data()[ciphertext.size() - 1]; } private: enum { kTagSize = 12, }; bool CheckTag(StringPiece ciphertext, uint8_t tag) { for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { if (ciphertext.data()[i] != tag) { return false; } } return true; } }; // StringTaggingDecrypter ensures that the final kTagSize bytes of the message // match the expected value. class StrictTaggingDecrypter : public TaggingDecrypter { public: explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {} ~StrictTaggingDecrypter() override {} // TaggingQuicDecrypter uint8_t GetTag(StringPiece ciphertext) override { return tag_; } const char* cipher_name() const override { return "StrictTagging"; } // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. uint32_t cipher_id() const override { return 0xFFFFFFF1; } private: const uint8_t tag_; }; class TestConnectionHelper : public QuicConnectionHelperInterface { public: class TestAlarm : public QuicAlarm { public: explicit TestAlarm(QuicArenaScopedPtr delegate) : QuicAlarm(std::move(delegate)) {} void SetImpl() override {} void CancelImpl() override {} using QuicAlarm::Fire; }; TestConnectionHelper(MockClock* clock, MockRandom* random_generator) : clock_(clock), random_generator_(random_generator) { clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); } // QuicConnectionHelperInterface const QuicClock* GetClock() const override { return clock_; } QuicRandom* GetRandomGenerator() override { return random_generator_; } QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { return new TestAlarm(QuicArenaScopedPtr(delegate)); } QuicArenaScopedPtr CreateAlarm( QuicArenaScopedPtr delegate, QuicConnectionArena* arena) override { return arena->New(std::move(delegate)); } QuicBufferAllocator* GetBufferAllocator() override { return &buffer_allocator_; } private: MockClock* clock_; MockRandom* random_generator_; SimpleBufferAllocator buffer_allocator_; DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); }; class TestPacketWriter : public QuicPacketWriter { public: TestPacketWriter(QuicVersion version, MockClock* clock) : version_(version), framer_(SupportedVersions(version_)), last_packet_size_(0), write_blocked_(false), write_should_fail_(false), block_on_next_write_(false), is_write_blocked_data_buffered_(false), final_bytes_of_last_packet_(0), final_bytes_of_previous_packet_(0), use_tagging_decrypter_(false), packets_write_attempts_(0), clock_(clock), write_pause_time_delta_(QuicTime::Delta::Zero()), max_packet_size_(kMaxPacketSize) {} // QuicPacketWriter interface WriteResult WritePacket(const char* buffer, size_t buf_len, const IPAddress& self_address, const IPEndPoint& peer_address, PerPacketOptions* options) override { QuicEncryptedPacket packet(buffer, buf_len); ++packets_write_attempts_; if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, sizeof(final_bytes_of_last_packet_)); } if (use_tagging_decrypter_) { framer_.framer()->SetDecrypter(ENCRYPTION_NONE, new TaggingDecrypter); } EXPECT_TRUE(framer_.ProcessPacket(packet)); if (block_on_next_write_) { write_blocked_ = true; block_on_next_write_ = false; } if (IsWriteBlocked()) { return WriteResult(WRITE_STATUS_BLOCKED, -1); } if (ShouldWriteFail()) { return WriteResult(WRITE_STATUS_ERROR, 0); } last_packet_size_ = packet.length(); if (!write_pause_time_delta_.IsZero()) { clock_->AdvanceTime(write_pause_time_delta_); } return WriteResult(WRITE_STATUS_OK, last_packet_size_); } bool IsWriteBlockedDataBuffered() const override { return is_write_blocked_data_buffered_; } bool ShouldWriteFail() { return write_should_fail_; } bool IsWriteBlocked() const override { return write_blocked_; } void SetWritable() override { write_blocked_ = false; } void SetShouldWriteFail() { write_should_fail_ = true; } QuicByteCount GetMaxPacketSize( const IPEndPoint& /*peer_address*/) const override { return max_packet_size_; } void BlockOnNextWrite() { block_on_next_write_ = true; } // Sets the amount of time that the writer should before the actual write. void SetWritePauseTimeDelta(QuicTime::Delta delta) { write_pause_time_delta_ = delta; } const QuicPacketHeader& header() { return framer_.header(); } size_t frame_count() const { return framer_.num_frames(); } const vector& ack_frames() const { return framer_.ack_frames(); } const vector& stop_waiting_frames() const { return framer_.stop_waiting_frames(); } const vector& connection_close_frames() const { return framer_.connection_close_frames(); } const vector& rst_stream_frames() const { return framer_.rst_stream_frames(); } const vector& stream_frames() const { return framer_.stream_frames(); } const vector& ping_frames() const { return framer_.ping_frames(); } size_t last_packet_size() { return last_packet_size_; } const QuicVersionNegotiationPacket* version_negotiation_packet() { return framer_.version_negotiation_packet(); } void set_is_write_blocked_data_buffered(bool buffered) { is_write_blocked_data_buffered_ = buffered; } void set_perspective(Perspective perspective) { // We invert perspective here, because the framer needs to parse packets // we send. perspective = perspective == Perspective::IS_CLIENT ? Perspective::IS_SERVER : Perspective::IS_CLIENT; QuicFramerPeer::SetPerspective(framer_.framer(), perspective); } // final_bytes_of_last_packet_ returns the last four bytes of the previous // packet as a little-endian, uint32_t. This is intended to be used with a // TaggingEncrypter so that tests can determine which encrypter was used for // a given packet. uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } // Returns the final bytes of the second to last packet. uint32_t final_bytes_of_previous_packet() { return final_bytes_of_previous_packet_; } void use_tagging_decrypter() { use_tagging_decrypter_ = true; } uint32_t packets_write_attempts() { return packets_write_attempts_; } void Reset() { framer_.Reset(); } void SetSupportedVersions(const QuicVersionVector& versions) { framer_.SetSupportedVersions(versions); } void set_max_packet_size(QuicByteCount max_packet_size) { max_packet_size_ = max_packet_size; } private: QuicVersion version_; SimpleQuicFramer framer_; size_t last_packet_size_; bool write_blocked_; bool write_should_fail_; bool block_on_next_write_; bool is_write_blocked_data_buffered_; uint32_t final_bytes_of_last_packet_; uint32_t final_bytes_of_previous_packet_; bool use_tagging_decrypter_; uint32_t packets_write_attempts_; MockClock* clock_; // If non-zero, the clock will pause during WritePacket for this amount of // time. QuicTime::Delta write_pause_time_delta_; QuicByteCount max_packet_size_; DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); }; class TestConnection : public QuicConnection { public: TestConnection(QuicConnectionId connection_id, IPEndPoint address, TestConnectionHelper* helper, TestPacketWriter* writer, Perspective perspective, QuicVersion version) : QuicConnection(connection_id, address, helper, writer, /* owns_writer= */ false, perspective, SupportedVersions(version)) { writer->set_perspective(perspective); } void SendAck() { QuicConnectionPeer::SendAck(this); } void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); } void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { QuicSentPacketManagerPeer::SetLossAlgorithm( QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm); } void SendPacket(EncryptionLevel level, QuicPathId path_id, QuicPacketNumber packet_number, QuicPacket* packet, QuicPacketEntropyHash entropy_hash, HasRetransmittableData retransmittable, bool has_ack, bool has_pending_frames) { char buffer[kMaxPacketSize]; size_t encrypted_length = QuicConnectionPeer::GetFramer(this)->EncryptPayload( ENCRYPTION_NONE, path_id, packet_number, *packet, buffer, kMaxPacketSize); delete packet; SerializedPacket serialized_packet( kDefaultPathId, packet_number, PACKET_6BYTE_PACKET_NUMBER, buffer, encrypted_length, entropy_hash, has_ack, has_pending_frames); if (retransmittable == HAS_RETRANSMITTABLE_DATA) { serialized_packet.retransmittable_frames.push_back( QuicFrame(new QuicStreamFrame())); } OnSerializedPacket(&serialized_packet); } QuicConsumedData SendStreamDataWithString( QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicAckListenerInterface* listener) { struct iovec iov; QuicIOVector data_iov(MakeIOVector(data, &iov)); return QuicConnection::SendStreamData(id, data_iov, offset, fin, listener); } QuicConsumedData SendStreamData3() { return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin, nullptr); } QuicConsumedData SendStreamData5() { return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin, nullptr); } // Ensures the connection can write stream data before writing. QuicConsumedData EnsureWritableAndSendStreamData5() { EXPECT_TRUE(CanWriteStreamData()); return SendStreamData5(); } // The crypto stream has special semantics so that it is not blocked by a // congestion window limitation, and also so that it gets put into a separate // packet (so that it is easier to reason about a crypto frame not being // split needlessly across packet boundaries). As a result, we have separate // tests for some cases for this stream. QuicConsumedData SendCryptoStreamData() { return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr); } void set_version(QuicVersion version) { QuicConnectionPeer::GetFramer(this)->set_version(version); } void SetSupportedVersions(const QuicVersionVector& versions) { QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); writer()->SetSupportedVersions(versions); } void set_perspective(Perspective perspective) { writer()->set_perspective(perspective); QuicConnectionPeer::SetPerspective(this, perspective); } // Enable path MTU discovery. Assumes that the test is performed from the // client perspective and the higher value of MTU target is used. void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) { ASSERT_EQ(Perspective::IS_CLIENT, perspective()); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kMTUH); config.SetConnectionOptionsToSend(connection_options); EXPECT_CALL(*send_algorithm, SetFromConfig(_, _)); SetFromConfig(config); // Normally, the pacing would be disabled in the test, but calling // SetFromConfig enables it. Set nearly-infinite bandwidth to make the // pacing algorithm work. EXPECT_CALL(*send_algorithm, PacingRate()) .WillRepeatedly(Return(QuicBandwidth::FromKBytesPerSecond(10000))); } TestConnectionHelper::TestAlarm* GetAckAlarm() { return reinterpret_cast( QuicConnectionPeer::GetAckAlarm(this)); } TestConnectionHelper::TestAlarm* GetPingAlarm() { return reinterpret_cast( QuicConnectionPeer::GetPingAlarm(this)); } TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() { return reinterpret_cast( QuicConnectionPeer::GetResumeWritesAlarm(this)); } TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { return reinterpret_cast( QuicConnectionPeer::GetRetransmissionAlarm(this)); } TestConnectionHelper::TestAlarm* GetSendAlarm() { return reinterpret_cast( QuicConnectionPeer::GetSendAlarm(this)); } TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { return reinterpret_cast( QuicConnectionPeer::GetTimeoutAlarm(this)); } TestConnectionHelper::TestAlarm* GetMtuDiscoveryAlarm() { return reinterpret_cast( QuicConnectionPeer::GetMtuDiscoveryAlarm(this)); } void DisableTailLossProbe() { QuicSentPacketManagerPeer::SetMaxTailLossProbes( QuicConnectionPeer::GetSentPacketManager(this), 0); } using QuicConnection::SelectMutualVersion; using QuicConnection::set_defer_send_in_response_to_packets; private: TestPacketWriter* writer() { return static_cast(QuicConnection::writer()); } DISALLOW_COPY_AND_ASSIGN(TestConnection); }; enum class AckResponse { kDefer, kImmediate }; // Run tests with combinations of {QuicVersion, AckResponse}. struct TestParams { TestParams(QuicVersion version, AckResponse ack_response) : version(version), ack_response(ack_response) {} friend ostream& operator<<(ostream& os, const TestParams& p) { os << "{ client_version: " << QuicVersionToString(p.version) << " ack_response: " << (p.ack_response == AckResponse::kDefer ? "defer" : "immediate") << " }"; return os; } QuicVersion version; AckResponse ack_response; }; // Constructs various test permutations. vector GetTestParams() { vector params; QuicVersionVector all_supported_versions = QuicSupportedVersions(); for (size_t i = 0; i < all_supported_versions.size(); ++i) { for (AckResponse ack_response : {AckResponse::kDefer, AckResponse::kImmediate}) { params.push_back(TestParams(all_supported_versions[i], ack_response)); } } return params; } class QuicConnectionTest : public ::testing::TestWithParam { protected: QuicConnectionTest() : connection_id_(42), framer_(SupportedVersions(version()), QuicTime::Zero(), Perspective::IS_CLIENT), send_algorithm_(new StrictMock), loss_algorithm_(new MockLossAlgorithm()), helper_(new TestConnectionHelper(&clock_, &random_generator_)), peer_creator_(connection_id_, &framer_, &random_generator_, &buffer_allocator_, /*delegate=*/nullptr), writer_(new TestPacketWriter(version(), &clock_)), connection_(connection_id_, kPeerAddress, helper_.get(), writer_.get(), Perspective::IS_CLIENT, version()), creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)), manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)), frame1_(1, false, 0, StringPiece(data1)), frame2_(1, false, 3, StringPiece(data2)), packet_number_length_(PACKET_6BYTE_PACKET_NUMBER), connection_id_length_(PACKET_8BYTE_CONNECTION_ID) { connection_.set_defer_send_in_response_to_packets(GetParam().ack_response == AckResponse::kDefer); FLAGS_quic_always_log_bugs_for_tests = true; connection_.set_visitor(&visitor_); connection_.SetSendAlgorithm(send_algorithm_); connection_.SetLossAlgorithm(loss_algorithm_); framer_.set_received_entropy_calculator(&entropy_calculator_); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) .WillRepeatedly(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(kDefaultTCPMSS)); EXPECT_CALL(*send_algorithm_, PacingRate()) .WillRepeatedly(Return(QuicBandwidth::Zero())); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) .Times(AnyNumber()) .WillRepeatedly(Return(QuicBandwidth::Zero())); EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); EXPECT_CALL(visitor_, PostProcessAfterData()).Times(AnyNumber()); EXPECT_CALL(visitor_, HasOpenDynamicStreams()) .WillRepeatedly(Return(false)); EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) .WillRepeatedly(Return(QuicTime::Zero())); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)).Times(AnyNumber()); // TODO(ianswett): Fix QuicConnectionTests so they don't attempt to write // non-crypto stream data at ENCRYPTION_NONE. FLAGS_quic_never_write_unencrypted_data = false; } QuicVersion version() { return GetParam().version; } QuicAckFrame* outgoing_ack() { if (FLAGS_quic_dont_copy_acks) { QuicFrame ack_frame = QuicConnectionPeer::GetUpdatedAckFrame(&connection_); ack_ = *ack_frame.ack_frame; } else { QuicConnectionPeer::PopulateAckFrame(&connection_, &ack_); } return &ack_; } QuicStopWaitingFrame* stop_waiting() { QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_); return &stop_waiting_; } QuicPacketNumber least_unacked() { if (writer_->stop_waiting_frames().empty()) { return 0; } return writer_->stop_waiting_frames()[0].least_unacked; } void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } void ProcessPacket(QuicPathId path_id, QuicPacketNumber number) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacket(path_id, number, !kEntropyFlag); if (connection_.GetSendAlarm()->IsSet()) { connection_.GetSendAlarm()->Fire(); } } QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { return ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); } QuicPacketEntropyHash ProcessFramePacketWithAddresses( QuicFrame frame, IPEndPoint self_address, IPEndPoint peer_address) { QuicFrames frames; frames.push_back(QuicFrame(frame)); QuicPacketCreatorPeer::SetSendVersionInPacket( &peer_creator_, connection_.perspective() == Perspective::IS_SERVER); char buffer[kMaxPacketSize]; SerializedPacket serialized_packet = QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames, buffer, kMaxPacketSize); connection_.ProcessUdpPacket( self_address, peer_address, QuicReceivedPacket(serialized_packet.encrypted_buffer, serialized_packet.encrypted_length, clock_.Now())); if (connection_.GetSendAlarm()->IsSet()) { connection_.GetSendAlarm()->Fire(); } return serialized_packet.entropy_hash; } QuicPacketEntropyHash ProcessFramePacketAtLevel(QuicPathId path_id, QuicPacketNumber number, QuicFrame frame, EncryptionLevel level) { QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.packet_number_length = packet_number_length_; header.public_header.connection_id_length = connection_id_length_; header.public_header.multipath_flag = path_id != kDefaultPathId; header.path_id = path_id; header.packet_number = number; QuicFrames frames; frames.push_back(frame); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( level, path_id, number, *packet, buffer, kMaxPacketSize); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); return base::checked_cast(encrypted_length); } size_t ProcessDataPacket(QuicPathId path_id, QuicPacketNumber number, bool entropy_flag) { return ProcessDataPacketAtLevel(path_id, number, entropy_flag, false, ENCRYPTION_NONE); } size_t ProcessDataPacketAtLevel(QuicPathId path_id, QuicPacketNumber number, bool entropy_flag, bool has_stop_waiting, EncryptionLevel level) { scoped_ptr packet( ConstructDataPacket(path_id, number, entropy_flag, has_stop_waiting)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( level, path_id, number, *packet, buffer, kMaxPacketSize); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); if (connection_.GetSendAlarm()->IsSet()) { connection_.GetSendAlarm()->Fire(); } return encrypted_length; } void ProcessClosePacket(QuicPathId path_id, QuicPacketNumber number) { scoped_ptr packet(ConstructClosePacket(number)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, path_id, number, *packet, buffer, kMaxPacketSize); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); } QuicByteCount SendStreamDataToPeer(QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicPacketNumber* last_packet) { QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(id, data, offset, fin, nullptr); if (last_packet != nullptr) { *last_packet = creator_->packet_number(); } EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); return packet_size; } void SendAckPacketToPeer() { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendAck(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); } void ProcessAckPacket(QuicPacketNumber packet_number, QuicAckFrame* frame) { QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1); ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessStopWaitingPacketAtLevel( QuicPathId path_id, QuicPacketNumber number, QuicStopWaitingFrame* frame, EncryptionLevel level) { return ProcessFramePacketAtLevel(path_id, number, QuicFrame(frame), ENCRYPTION_INITIAL); } QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessPathClosePacket(QuicPathCloseFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } bool IsMissing(QuicPacketNumber number) { return IsAwaitingPacket(*outgoing_ack(), number); } QuicPacket* ConstructPacket(QuicPacketHeader header, QuicFrames frames) { QuicPacket* packet = BuildUnsizedDataPacket(&framer_, header, frames); EXPECT_NE(nullptr, packet); return packet; } QuicPacket* ConstructDataPacket(QuicPathId path_id, QuicPacketNumber number, bool entropy_flag, bool has_stop_waiting) { QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.packet_number_length = packet_number_length_; header.public_header.connection_id_length = connection_id_length_; header.public_header.multipath_flag = path_id != kDefaultPathId; header.entropy_flag = entropy_flag; header.path_id = path_id; header.packet_number = number; header.is_in_fec_group = NOT_IN_FEC_GROUP; header.fec_group = 0; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); if (has_stop_waiting) { frames.push_back(QuicFrame(&stop_waiting_)); } return ConstructPacket(header, frames); } QuicPacket* ConstructClosePacket(QuicPacketNumber number) { QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.packet_number = number; header.is_in_fec_group = NOT_IN_FEC_GROUP; header.fec_group = 0; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrames frames; frames.push_back(QuicFrame(&qccf)); return ConstructPacket(header, frames); } QuicTime::Delta DefaultRetransmissionTime() { return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } QuicTime::Delta DefaultDelayedAckTime() { return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs); } // Initialize a frame acknowledging all packets up to largest_observed. const QuicAckFrame InitAckFrame(QuicPacketNumber largest_observed) { QuicAckFrame frame(MakeAckFrame(largest_observed)); if (largest_observed > 0) { frame.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( &connection_, largest_observed); } return frame; } const QuicStopWaitingFrame InitStopWaitingFrame( QuicPacketNumber least_unacked) { QuicStopWaitingFrame frame; frame.least_unacked = least_unacked; return frame; } // Explicitly nack a packet. void NackPacket(QuicPacketNumber missing, QuicAckFrame* frame) { frame->missing_packets.Add(missing); frame->entropy_hash ^= QuicConnectionPeer::PacketEntropy(&connection_, missing); } // Undo nacking a packet within the frame. void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) { EXPECT_TRUE(frame->missing_packets.Contains(arrived)); frame->missing_packets.Remove(arrived); frame->entropy_hash ^= QuicConnectionPeer::PacketEntropy(&connection_, arrived); } void TriggerConnectionClose() { // Send an erroneous packet to close the connection. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, ConnectionCloseSource::FROM_SELF)); // Call ProcessDataPacket rather than ProcessPacket, as we should not get a // packet call to the visitor. ProcessDataPacket(kDefaultPathId, 6000, !kEntropyFlag); EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == nullptr); } void BlockOnNextWrite() { writer_->BlockOnNextWrite(); EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); } void SetWritePauseTimeDelta(QuicTime::Delta delta) { writer_->SetWritePauseTimeDelta(delta); } void CongestionBlockWrites() { EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::FromSeconds(1))); } void CongestionUnblockWrites() { EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); } QuicConnectionId connection_id_; QuicFramer framer_; MockEntropyCalculator entropy_calculator_; MockSendAlgorithm* send_algorithm_; MockLossAlgorithm* loss_algorithm_; MockClock clock_; MockRandom random_generator_; SimpleBufferAllocator buffer_allocator_; scoped_ptr helper_; QuicPacketCreator peer_creator_; scoped_ptr writer_; TestConnection connection_; QuicPacketCreator* creator_; QuicPacketGenerator* generator_; QuicSentPacketManager* manager_; StrictMock visitor_; QuicStreamFrame frame1_; QuicStreamFrame frame2_; QuicAckFrame ack_; QuicStopWaitingFrame stop_waiting_; QuicPacketNumberLength packet_number_length_; QuicConnectionIdLength connection_id_length_; private: DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); }; // Run all end to end tests with all supported versions. INSTANTIATE_TEST_CASE_P(SupportedVersion, QuicConnectionTest, ::testing::ValuesIn(GetTestParams())); TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); EXPECT_TRUE(connection_.connected()); QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); EXPECT_CALL(visitor_, OnStreamFrame(_)); ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, kPeerAddress); // Cause change in self_address. IPEndPoint self_address(IPAddress(1, 1, 1, 1), 123); EXPECT_CALL(visitor_, OnStreamFrame(_)); ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address, kPeerAddress); EXPECT_TRUE(connection_.connected()); } TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.set_perspective(Perspective::IS_SERVER); QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); EXPECT_TRUE(connection_.connected()); QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); EXPECT_CALL(visitor_, OnStreamFrame(_)); ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, kPeerAddress); // Cause change in self_address. IPEndPoint self_address(IPAddress(1, 1, 1, 1), 123); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_ERROR_MIGRATING_ADDRESS, _)); ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address, kPeerAddress); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, MaxPacketSize) { EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); EXPECT_EQ(1350u, connection_.max_packet_length()); } TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) { QuicConnectionId connection_id = 42; TestConnection connection(connection_id, kPeerAddress, helper_.get(), writer_.get(), Perspective::IS_SERVER, version()); EXPECT_EQ(Perspective::IS_SERVER, connection.perspective()); EXPECT_EQ(1000u, connection.max_packet_length()); } TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.set_perspective(Perspective::IS_SERVER); connection_.SetMaxPacketLength(1000); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.version_flag = true; header.path_id = kDefaultPathId; header.packet_number = 1; QuicFrames frames; QuicPaddingFrame padding; frames.push_back(QuicFrame(&frame1_)); frames.push_back(QuicFrame(padding)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); EXPECT_EQ(kMaxPacketSize, encrypted_length); framer_.set_version(version()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); EXPECT_EQ(kMaxPacketSize, connection_.max_packet_length()); } TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); const QuicByteCount lower_max_packet_size = 1240; writer_->set_max_packet_size(lower_max_packet_size); connection_.set_perspective(Perspective::IS_SERVER); connection_.SetMaxPacketLength(1000); EXPECT_EQ(1000u, connection_.max_packet_length()); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.version_flag = true; header.path_id = kDefaultPathId; header.packet_number = 1; QuicFrames frames; QuicPaddingFrame padding; frames.push_back(QuicFrame(&frame1_)); frames.push_back(QuicFrame(padding)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); EXPECT_EQ(kMaxPacketSize, encrypted_length); framer_.set_version(version()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); // Here, the limit imposed by the writer is lower than the size of the packet // received, so the writer max packet size is used. EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); } TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) { const QuicByteCount lower_max_packet_size = 1240; writer_->set_max_packet_size(lower_max_packet_size); static_assert(lower_max_packet_size < kDefaultMaxPacketSize, "Default maximum packet size is too low"); connection_.SetMaxPacketLength(kDefaultMaxPacketSize); EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); } TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) { const QuicConnectionId connection_id = 17; const QuicByteCount lower_max_packet_size = 1240; writer_->set_max_packet_size(lower_max_packet_size); TestConnection connection(connection_id, kPeerAddress, helper_.get(), writer_.get(), Perspective::IS_CLIENT, version()); EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective()); EXPECT_EQ(lower_max_packet_size, connection.max_packet_length()); } TEST_P(QuicConnectionTest, PacketsInOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); EXPECT_EQ(1u, outgoing_ack()->largest_observed); EXPECT_TRUE(outgoing_ack()->missing_packets.Empty()); ProcessPacket(kDefaultPathId, 2); EXPECT_EQ(2u, outgoing_ack()->largest_observed); EXPECT_TRUE(outgoing_ack()->missing_packets.Empty()); ProcessPacket(kDefaultPathId, 3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(outgoing_ack()->missing_packets.Empty()); } TEST_P(QuicConnectionTest, PacketsOutOfOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(kDefaultPathId, 2); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(kDefaultPathId, 1); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_FALSE(IsMissing(1)); } TEST_P(QuicConnectionTest, DuplicatePacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); // Send packet 3 again, but do not set the expectation that // the visitor OnStreamFrame() will be called. ProcessDataPacket(kDefaultPathId, 3, !kEntropyFlag); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); } TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(kDefaultPathId, 2); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(1)); ProcessPacket(kDefaultPathId, 5); EXPECT_EQ(5u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(1)); EXPECT_TRUE(IsMissing(4)); // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a // packet the peer will not retransmit. It indicates this by sending 'least // awaiting' is 4. The connection should then realize 1 will not be // retransmitted, and will remove it from the missing list. QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _)); ProcessAckPacket(6, &frame); // Force an ack to be sent. SendAckPacketToPeer(); EXPECT_TRUE(IsMissing(4)); } TEST_P(QuicConnectionTest, RejectPacketTooFarOut) { EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, ConnectionCloseSource::FROM_SELF)); // Call ProcessDataPacket rather than ProcessPacket, as we should not get a // packet call to the visitor. ProcessDataPacket(kDefaultPathId, 6000, !kEntropyFlag); EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == nullptr); } TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { // Process an unencrypted packet from the non-crypto stream. frame1_.stream_id = 3; EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, ConnectionCloseSource::FROM_SELF)); EXPECT_DFATAL(ProcessDataPacket(kDefaultPathId, 1, !kEntropyFlag), ""); EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == nullptr); const vector& connection_close_frames = writer_->connection_close_frames(); EXPECT_EQ(1u, connection_close_frames.size()); EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA, connection_close_frames[0].error_code); } TEST_P(QuicConnectionTest, TruncatedAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketNumber num_packets = 256 * 2 + 1; for (QuicPacketNumber i = 0; i < num_packets; ++i) { SendStreamDataToPeer(3, "foo", i * 3, !kFin, nullptr); } QuicAckFrame frame = InitAckFrame(num_packets); PacketNumberSet lost_packets; // Create an ack with 256 nacks, none adjacent to one another. for (QuicPacketNumber i = 1; i <= 256; ++i) { NackPacket(i * 2, &frame); if (i < 256) { // Last packet is nacked, but not lost. lost_packets.insert(i * 2); } } EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(entropy_calculator_, EntropyHash(511)) .WillOnce(Return(static_cast(0))); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); // A truncated ack will not have the true largest observed. EXPECT_GT(num_packets, manager_->largest_observed()); AckPacket(192, &frame); // Removing one missing packet allows us to ack 192 and one more range, but // 192 has already been declared lost, so it doesn't register as an ack. EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); EXPECT_EQ(num_packets, manager_->largest_observed()); } TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); // Delay sending, then queue up an ack. QuicConnectionPeer::SendAck(&connection_); // Process an ack with a least unacked of the received ack. // This causes an ack to be sent when TimeUntilSend returns 0. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); // Skip a packet and then record an ack. QuicAckFrame frame = InitAckFrame(0); ProcessAckPacket(3, &frame); } TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 3); // Should ack immediately since we have missing packets. EXPECT_EQ(1u, writer_->packets_write_attempts()); ProcessPacket(kDefaultPathId, 2); // Should ack immediately since we have missing packets. EXPECT_EQ(2u, writer_->packets_write_attempts()); ProcessPacket(kDefaultPathId, 1); // Should ack immediately, since this fills the last hole. EXPECT_EQ(3u, writer_->packets_write_attempts()); ProcessPacket(kDefaultPathId, 4); // Should not cause an ack. EXPECT_EQ(3u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); EXPECT_EQ(2u, writer_->packets_write_attempts()); QuicAckFrame ack1 = InitAckFrame(1); QuicAckFrame ack2 = InitAckFrame(2); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(2, &ack2); // Should ack immediately since we have missing packets. EXPECT_EQ(2u, writer_->packets_write_attempts()); ProcessAckPacket(1, &ack1); // Should not ack an ack filling a missing packet. EXPECT_EQ(2u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketNumber original; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce( DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); QuicAckFrame frame = InitAckFrame(original); NackPacket(original, &frame); // First nack triggers early retransmit. SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicPacketNumber retransmission; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)) .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true))); ProcessAckPacket(&frame); QuicAckFrame frame2 = InitAckFrame(retransmission); NackPacket(original, &frame2); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); ProcessAckPacket(&frame2); // Now if the peer sends an ack which still reports the retransmitted packet // as missing, that will bundle an ack with data after two acks in a row // indicate the high water mark needs to be raised. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); // No ack sent. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); // No more packet loss for the rest of the test. EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)).Times(AnyNumber()); ProcessAckPacket(&frame2); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); // Ack bundled. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(writer_->ack_frames().empty()); // But an ack with no missing packets will not send an ack. AckPacket(original, &frame2); ProcessAckPacket(&frame2); ProcessAckPacket(&frame2); } TEST_P(QuicConnectionTest, 20AcksCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); // But an ack with no missing packets will not send an ack. QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); for (int i = 0; i < 19; ++i) { ProcessAckPacket(&frame); EXPECT_FALSE(ack_alarm->IsSet()); } EXPECT_EQ(1u, writer_->packets_write_attempts()); // The 20th ack packet will cause an ack to be sent. ProcessAckPacket(&frame); EXPECT_EQ(2u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, LeastUnackedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); // Start out saying the least unacked is 2. QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); QuicStopWaitingFrame frame = InitStopWaitingFrame(2); ProcessStopWaitingPacket(&frame); // Change it to 1, but lower the packet number to fake out-of-order packets. // This should be fine. QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); // The scheduler will not process out of order acks, but all packet processing // causes the connection to try to write. EXPECT_CALL(visitor_, OnCanWrite()); QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1); ProcessStopWaitingPacket(&frame2); // Now claim it's one, but set the ordering so it was sent "after" the first // one. This should cause a connection error. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, ConnectionCloseSource::FROM_SELF)); QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1); ProcessStopWaitingPacket(&frame3); } TEST_P(QuicConnectionTest, TooManySentPackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); const int num_packets = kMaxTrackedPackets + 100; for (int i = 0; i < num_packets; ++i) { SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr); } // Ack packet 1, which leaves more than the limit outstanding. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, ConnectionCloseSource::FROM_SELF)); // We're receive buffer limited, so the connection won't try to write more. EXPECT_CALL(visitor_, OnCanWrite()).Times(0); // Nack the first packet and ack the rest, leaving a huge gap. QuicAckFrame frame1 = InitAckFrame(num_packets); NackPacket(1, &frame1); ProcessAckPacket(&frame1); } TEST_P(QuicConnectionTest, TooManyReceivedPackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS, ConnectionCloseSource::FROM_SELF)); // Miss 99 of every 100 packets for 5500 packets. for (QuicPacketNumber i = 1; i < kMaxTrackedPackets + 500; i += 100) { ProcessPacket(kDefaultPathId, i); if (!connection_.connected()) { break; } } } TEST_P(QuicConnectionTest, LargestObservedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Start out saying the largest observed is 2. QuicAckFrame frame1 = InitAckFrame(1); QuicAckFrame frame2 = InitAckFrame(2); ProcessAckPacket(&frame2); // Now change it to 1, and it should cause a connection error. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame1); } TEST_P(QuicConnectionTest, AckUnsentData) { // Ack a packet which has not been sent. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicAckFrame frame(MakeAckFrame(1)); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckAll) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); QuicAckFrame frame1 = InitAckFrame(0); ProcessAckPacket(&frame1); } TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { QuicPacketNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 256)); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(2u, last_packet); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); // The 1 packet lag is due to the packet number length being recalculated in // QuicConnection after a packet is sent. EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 256 * 256)); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(3u, last_packet); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 256 * 256 * 256)); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(4u, last_packet); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 256 * 256 * 256 * 256)); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(5u, last_packet); EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); } // TODO(ianswett): Re-enable this test by finding a good way to test different // packet number lengths without sending packets with giant gaps. TEST_P(QuicConnectionTest, DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) { QuicPacketNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 100); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 100 * 256); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 100 * 256 * 256); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 100 * 256 * 256 * 256); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::NextPacketNumberLength(creator_)); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, writer_->header().public_header.packet_number_length); } TEST_P(QuicConnectionTest, BasicSending) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendAckPacketToPeer(); // Packet 2 EXPECT_EQ(1u, least_unacked()); SendAckPacketToPeer(); // Packet 3 EXPECT_EQ(1u, least_unacked()); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(1u, least_unacked()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Peer acks up to packet 3. QuicAckFrame frame = InitAckFrame(3); ProcessAckPacket(&frame); SendAckPacketToPeer(); // Packet 6 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of // ack for 4. EXPECT_EQ(4u, least_unacked()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Peer acks up to packet 4, the last packet. QuicAckFrame frame2 = InitAckFrame(6); ProcessAckPacket(&frame2); // Acks don't instigate acks. // Verify that we did not send an ack. EXPECT_EQ(6u, writer_->header().packet_number); // So the last ack has not changed. EXPECT_EQ(4u, least_unacked()); // If we force an ack, we shouldn't change our retransmit state. SendAckPacketToPeer(); // Packet 7 EXPECT_EQ(7u, least_unacked()); // But if we send more data it should. SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8 EXPECT_EQ(8u, last_packet); SendAckPacketToPeer(); // Packet 9 EXPECT_EQ(7u, least_unacked()); } // QuicConnection should record the the packet sent-time prior to sending the // packet. TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { // We're using a MockClock for the tests, so we have complete control over the // time. // Our recorded timestamp for the last packet sent time will be passed in to // the send_algorithm. Make sure that it is set to the correct value. QuicTime actual_recorded_send_time = QuicTime::Zero(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); // First send without any pause and check the result. QuicTime expected_recorded_send_time = clock_.Now(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); // Now pause during the write, and check the results. actual_recorded_send_time = QuicTime::Zero(); const QuicTime::Delta write_pause_time_delta = QuicTime::Delta::FromMilliseconds(5000); SetWritePauseTimeDelta(write_pause_time_delta); expected_recorded_send_time = clock_.Now(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); } TEST_P(QuicConnectionTest, FramePacking) { // Send an ack and two stream frames in 1 packet by queueing them. { QuicConnection::ScopedPacketBundler bundler(&connection_, QuicConnection::SEND_ACK); connection_.SendStreamData3(); connection_.SendStreamData5(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); } EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(4u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); ASSERT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); } TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 // packets by queueing them. { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); QuicConnection::ScopedPacketBundler bundler(&connection_, QuicConnection::SEND_ACK); connection_.SendStreamData3(); connection_.SendCryptoStreamData(); } EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the crypto stream frame. EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0]->stream_id); } TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { // Send an ack and two stream frames (one crypto, then one non-crypto) in 2 // packets by queueing them. { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); QuicConnection::ScopedPacketBundler bundler(&connection_, QuicConnection::SEND_ACK); connection_.SendCryptoStreamData(); connection_.SendStreamData3(); } EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the stream frame from stream 3. EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); } TEST_P(QuicConnectionTest, FramePackingAckResponse) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Process a data packet to queue up a pending ack. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag); EXPECT_CALL(visitor_, OnCanWrite()) .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData5)))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); // Process an ack to cause the visitor's OnCanWrite to be invoked. QuicAckFrame ack_one = InitAckFrame(0); ProcessAckPacket(3, &ack_one); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(4u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); ASSERT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); } TEST_P(QuicConnectionTest, FramePackingSendv) { // Send data in 1 packet by writing multiple blocks in a single iovector // using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); char data[] = "ABCD"; struct iovec iov[2]; iov[0].iov_base = data; iov[0].iov_len = 2; iov[1].iov_base = data + 2; iov[1].iov_len = 2; connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure multiple iovector blocks have // been packed into a single stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); QuicStreamFrame* frame = writer_->stream_frames()[0]; EXPECT_EQ(1u, frame->stream_id); EXPECT_EQ("ABCD", StringPiece(frame->frame_buffer, frame->frame_length)); } TEST_P(QuicConnectionTest, FramePackingSendvQueued) { // Try to send two stream frames in 1 packet by using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); BlockOnNextWrite(); char data[] = "ABCD"; struct iovec iov[2]; iov[0].iov_base = data; iov[0].iov_len = 2; iov[1].iov_base = data + 2; iov[1].iov_len = 2; connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_TRUE(connection_.HasQueuedData()); // Unblock the writes and actually send. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(1u, writer_->stream_frames()[0]->stream_id); } TEST_P(QuicConnectionTest, SendingZeroBytes) { // Send a zero byte write with a fin using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicIOVector empty_iov(nullptr, 0, 0); connection_.SendStreamData(1, empty_iov, 0, kFin, nullptr); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(1u, writer_->stream_frames()[0]->stream_id); EXPECT_TRUE(writer_->stream_frames()[0]->fin); } TEST_P(QuicConnectionTest, OnCanWrite) { // Visitor's OnCanWrite will send data, but will have more pending writes. EXPECT_CALL(visitor_, OnCanWrite()) .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData5)))); EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); connection_.OnCanWrite(); // Parse the last packet and ensure it's the two stream frames from // two different streams. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); } TEST_P(QuicConnectionTest, RetransmitOnNack) { QuicPacketNumber last_packet; QuicByteCount second_packet_size; SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1 second_packet_size = SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't lose a packet on an ack, and nothing is retransmitted. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack_one = InitAckFrame(1); ProcessAckPacket(&ack_one); // Lose a packet and ensure it triggers retransmission. QuicAckFrame nack_two = InitAckFrame(3); NackPacket(2, &nack_two); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)) .Times(1); ProcessAckPacket(&nack_two); } TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) { // Block the connection to queue the packet. BlockOnNextWrite(); QuicStreamId stream_id = 2; connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr); // Now that there is a queued packet, reset the stream. connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); // Unblock the connection and verify that only the RST_STREAM is sent. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->rst_stream_frames().size()); } TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) { // Block the connection to queue the packet. BlockOnNextWrite(); QuicStreamId stream_id = 2; connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr); // Now that there is a queued packet, reset the stream. connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); // Unblock the connection and verify that the RST_STREAM is sent and the data // packet is sent on QUIC_VERSION_29 or later versions. if (version() > QUIC_VERSION_28) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AtLeast(2)); } else { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); } writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->rst_stream_frames().size()); } TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) { QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); // Lose a packet and ensure it does not trigger retransmission. QuicAckFrame nack_two = InitAckFrame(last_packet); NackPacket(last_packet - 1, &nack_two); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessAckPacket(&nack_two); } TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) { QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); // Lose a packet, ensure it triggers retransmission on QUIC_VERSION_29 // or later versions. QuicAckFrame nack_two = InitAckFrame(last_packet); NackPacket(last_packet - 1, &nack_two); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); if (version() > QUIC_VERSION_28) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AtLeast(1)); } else { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); } ProcessAckPacket(&nack_two); } TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) { QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); // Fire the RTO and verify that the RST_STREAM is resent, not stream data. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->rst_stream_frames().size()); EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); } TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) { connection_.DisableTailLossProbe(); QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); // Fire the RTO and verify that the RST_STREAM is resent, the stream data // is only sent on QUIC_VERSION_29 or later versions. if (version() > QUIC_VERSION_28) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AtLeast(2)); } else { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); } clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->rst_stream_frames().size()); EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); } TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) { QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); BlockOnNextWrite(); connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr); // Lose a packet which will trigger a pending retransmission. QuicAckFrame ack = InitAckFrame(last_packet); NackPacket(last_packet - 1, &ack); PacketNumberSet lost_packets; lost_packets.insert(last_packet - 1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessAckPacket(&ack); connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); // Unblock the connection and verify that the RST_STREAM is sent but not the // second data packet nor a retransmit. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->rst_stream_frames().size()); EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); } TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) { QuicStreamId stream_id = 2; QuicPacketNumber last_packet; SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); BlockOnNextWrite(); connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr); // Lose a packet which will trigger a pending retransmission. QuicAckFrame ack = InitAckFrame(last_packet); NackPacket(last_packet - 1, &ack); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessAckPacket(&ack); connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); // Unblock the connection and verify that the RST_STREAM is sent and the // second data packet or a retransmit is only sent on QUIC_VERSION_29 or // later versions. if (version() > QUIC_VERSION_28) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AtLeast(2)); } else { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); } writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(1u, writer_->frame_count()); if (version() > QUIC_VERSION_28) { EXPECT_EQ(0u, writer_->rst_stream_frames().size()); } else { EXPECT_EQ(1u, writer_->rst_stream_frames().size()); EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); } } TEST_P(QuicConnectionTest, DiscardRetransmit) { QuicPacketNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Instigate a loss with an ack. QuicAckFrame nack_two = InitAckFrame(3); NackPacket(2, &nack_two); // The first nack should trigger a fast retransmission, but we'll be // write blocked, so the packet will be queued. BlockOnNextWrite(); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&nack_two); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Now, ack the previous transmission. EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); QuicAckFrame ack_all = InitAckFrame(3); ProcessAckPacket(&ack_all); // Unblock the socket and attempt to send the queued packets. However, // since the previous transmission has been acked, we will not // send the retransmission. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketNumber largest_observed; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); QuicAckFrame frame = InitAckFrame(1); NackPacket(largest_observed, &frame); // The first nack should retransmit the largest observed packet. SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { connection_.DisableTailLossProbe(); for (int i = 0; i < 10; ++i) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr); } // Block the writer and ensure they're queued. BlockOnNextWrite(); clock_.AdvanceTime(DefaultRetransmissionTime()); // Only one packet should be retransmitted. connection_.GetRetransmissionAlarm()->Fire(); EXPECT_TRUE(connection_.HasQueuedData()); // Unblock the writer. writer_->SetWritable(); clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( 2 * DefaultRetransmissionTime().ToMicroseconds())); // Retransmit already retransmitted packets event though the packet number // greater than the largest observed. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); connection_.GetRetransmissionAlarm()->Fire(); connection_.OnCanWrite(); } TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) { BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, WriteBlockedThenSent) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // The second packet should also be queued, in order to ensure packets are // never sent out of order. writer_->SetWritable(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_EQ(2u, connection_.NumQueuedPackets()); // Now both are sent in order when we unblock. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Ack the sent packet before the callback returns, which happens in // rare circumstances with write blocked sockets. QuicAckFrame ack = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); writer_->SetWritable(); connection_.OnCanWrite(); // There is now a pending packet, but with no retransmittable frames. EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2)); } TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { // Block the connection. BlockOnNextWrite(); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); // Set the send and resumption alarms. Fire the alarms and ensure they don't // attempt to write. connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); connection_.GetResumeWritesAlarm()->Fire(); connection_.GetSendAlarm()->Fire(); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); int offset = 0; // Send packets 1 to 15. for (int i = 0; i < 15; ++i) { SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr); offset += 3; } // Ack 15, nack 1-14. QuicAckFrame nack = InitAckFrame(15); for (int i = 1; i < 15; ++i) { NackPacket(i, &nack); } // 14 packets have been NACK'd and lost. SendAlgorithmInterface::CongestionVector lost_packets; for (int i = 1; i < 15; ++i) { lost_packets.push_back(std::make_pair(i, kMaxPacketSize)); } EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); ProcessAckPacket(&nack); } // Test sending multiple acks from the connection to the session. TEST_P(QuicConnectionTest, MultipleAcks) { QuicPacketNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2 EXPECT_EQ(2u, last_packet); SendAckPacketToPeer(); // Packet 3 SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5 EXPECT_EQ(5u, last_packet); SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6 EXPECT_EQ(6u, last_packet); // Client will ack packets 1, 2, [!3], 4, 5. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame1 = InitAckFrame(5); NackPacket(3, &frame1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessAckPacket(&frame1); // Now the client implicitly acks 3, and explicitly acks 6. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame2 = InitAckFrame(6); ProcessAckPacket(&frame2); } TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); // Packet 1; // From now on, we send acks, so the send algorithm won't mark them pending. ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(false)); SendAckPacketToPeer(); // Packet 2 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame = InitAckFrame(1); ProcessAckPacket(&frame); // Verify that our internal state has least-unacked as 2, because we're still // waiting for a potential ack for 2. EXPECT_EQ(2u, stop_waiting()->least_unacked); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(2); ProcessAckPacket(&frame); EXPECT_EQ(3u, stop_waiting()->least_unacked); // When we send an ack, we make sure our least-unacked makes sense. In this // case since we're not waiting on an ack for 2 and all packets are acked, we // set it to 3. SendAckPacketToPeer(); // Packet 3 // Least_unacked remains at 3 until another ack is received. EXPECT_EQ(3u, stop_waiting()->least_unacked); // Check that the outgoing ack had its packet number as least_unacked. EXPECT_EQ(3u, least_unacked()); // Ack the ack, which updates the rtt and raises the least unacked. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(3); ProcessAckPacket(&frame); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4 EXPECT_EQ(4u, stop_waiting()->least_unacked); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(false)); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(4u, least_unacked()); // Send two data packets at the end, and ensure if the last one is acked, // the least unacked is raised above the ack packets. ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6 SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(7); NackPacket(5, &frame); NackPacket(6, &frame); ProcessAckPacket(&frame); EXPECT_EQ(6u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, TLP) { QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1); SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); EXPECT_EQ(1u, stop_waiting()->least_unacked); QuicTime retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); EXPECT_NE(QuicTime::Zero(), retransmission_time); EXPECT_EQ(1u, writer_->header().packet_number); // Simulate the retransmission alarm firing and sending a tlp, // so send algorithm's OnRetransmissionTimeout is not called. clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, RTO) { connection_.DisableTailLossProbe(); QuicTime default_retransmission_time = clock_.ApproximateNow().Add(DefaultRetransmissionTime()); SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); EXPECT_EQ(1u, stop_waiting()->least_unacked); EXPECT_EQ(1u, writer_->header().packet_number); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) { connection_.DisableTailLossProbe(); QuicTime default_retransmission_time = clock_.ApproximateNow().Add(DefaultRetransmissionTime()); use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)); } // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Packet should have been sent with ENCRYPTION_NONE. EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); // Packet should have been sent with ENCRYPTION_INITIAL. EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, SendHandshakeMessages) { use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); // Attempt to send a handshake message and have the socket block. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); // The packet should be serialized, but not queued. EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Switch to the new encrypter. connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); // Now become writeable and flush the packets. writer_->SetWritable(); EXPECT_CALL(visitor_, OnCanWrite()); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Verify that the handshake packet went out at the null encryption. EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); QuicPacketNumber packet_number; SendStreamDataToPeer(3, "foo", 0, !kFin, &packet_number); // Simulate the retransmission alarm firing and the socket blocking. BlockOnNextWrite(); clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Go forward secure. connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); connection_.NeuterUnencryptedPackets(); EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); // Unblock the socket and ensure that no packets are sent. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); writer_->SetWritable(); connection_.OnCanWrite(); } TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); } TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilClientIsReady) { // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at // the end of the packet. We can test this to check which encrypter was used. use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendAckPacketToPeer(); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); // Set a forward-secure encrypter but do not make it the default, and verify // that it is not yet used. connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, new TaggingEncrypter(0x03)); SendAckPacketToPeer(); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); // Now simulate receipt of a forward-secure packet and verify that the // forward-secure encrypter is now used. connection_.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE); SendAckPacketToPeer(); EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilManyPacketSent) { // Set a congestion window of 10 packets. QuicPacketCount congestion_window = 10; EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) .WillRepeatedly(Return(congestion_window * kDefaultMaxPacketSize)); // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at // the end of the packet. We can test this to check which encrypter was used. use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendAckPacketToPeer(); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); // Set a forward-secure encrypter but do not make it the default, and // verify that it is not yet used. connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, new TaggingEncrypter(0x03)); SendAckPacketToPeer(); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); // Now send a packet "Far enough" after the encrypter was set and verify that // the forward-secure encrypter is now used. for (uint64_t i = 0; i < 3 * congestion_window - 1; ++i) { EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); SendAckPacketToPeer(); } EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { // SetFromConfig is always called after construction from InitializeSession. EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; connection_.SetFromConfig(config); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); use_tagging_decrypter(); const uint8_t tag = 0x07; framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process an encrypted packet which can not yet be decrypted which should // result in the packet being buffered. ProcessDataPacketAtLevel(kDefaultPathId, 1, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Transition to the new encryption state and process another encrypted packet // which should result in the original packet being processed. connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); ProcessDataPacketAtLevel(kDefaultPathId, 2, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Finally, process a third packet and note that we do not reprocess the // buffered packet. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 3, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) { // SetFromConfig is always called after construction from InitializeSession. EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; config.set_max_undecryptable_packets(100); connection_.SetFromConfig(config); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); use_tagging_decrypter(); const uint8_t tag = 0x07; framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process an encrypted packet which can not yet be decrypted which should // result in the packet being buffered. for (QuicPacketNumber i = 1; i <= 100; ++i) { ProcessDataPacketAtLevel(kDefaultPathId, i, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } // Transition to the new encryption state and process another encrypted packet // which should result in the original packets being processed. connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(101); ProcessDataPacketAtLevel(kDefaultPathId, 101, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Finally, process a third packet and note that we do not reprocess the // buffered packet. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 102, kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } TEST_P(QuicConnectionTest, TestRetransmitOrder) { connection_.DisableTailLossProbe(); QuicByteCount first_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&first_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr); QuicByteCount second_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&second_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr); EXPECT_NE(first_packet_size, second_packet_size); // Advance the clock by huge time to make sure packets will be retransmitted. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); } connection_.GetRetransmissionAlarm()->Fire(); // Advance again and expect the packets to be sent again in the same order. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); { InSequence s; EXPECT_CALL(visitor_, OnPathDegrading()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); } connection_.GetRetransmissionAlarm()->Fire(); } TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); // Make sure that RTO is not started when the packet is queued. EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); // Test that RTO is started once we write to the socket. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { connection_.DisableTailLossProbe(); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr); QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()), retransmission_alarm->deadline()); // Advance the time right before the RTO, then receive an ack for the first // packet to delay the RTO. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack = InitAckFrame(1); ProcessAckPacket(&ack); EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_GT(retransmission_alarm->deadline(), clock_.Now()); // Move forward past the original RTO and ensure the RTO is still pending. clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2)); // Ensure the second packet gets retransmitted when it finally fires. EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); // Manually cancel the alarm to simulate a real test. connection_.GetRetransmissionAlarm()->Fire(); // The new retransmitted packet number should set the RTO to a larger value // than previously. EXPECT_TRUE(retransmission_alarm->IsSet()); QuicTime next_rto_time = retransmission_alarm->deadline(); QuicTime expected_rto_time = connection_.sent_packet_manager().GetRetransmissionTime(); EXPECT_EQ(next_rto_time, expected_rto_time); } TEST_P(QuicConnectionTest, TestQueued) { connection_.DisableTailLossProbe(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Unblock the writes and actually send. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, InitialTimeout) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); // SetFromConfig sets the initial timeouts before negotiation. EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; connection_.SetFromConfig(config); // Subtract a second from the idle timeout on the client side. QuicTime default_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); // Simulate the timeout alarm firing. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } TEST_P(QuicConnectionTest, HandshakeTimeout) { // Use a shorter handshake timeout than idle timeout for this test. const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); connection_.SetNetworkTimeouts(timeout, timeout); EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); QuicTime handshake_timeout = clock_.ApproximateNow().Add(timeout).Subtract( QuicTime::Delta::FromSeconds(1)); EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline()); EXPECT_TRUE(connection_.connected()); // Send and ack new data 3 seconds later to lengthen the idle timeout. SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); // Fire early to verify it wouldn't timeout yet. connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); clock_.AdvanceTime(timeout.Subtract(QuicTime::Delta::FromSeconds(2))); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_HANDSHAKE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); // Simulate the timeout alarm firing. connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); } TEST_P(QuicConnectionTest, PingAfterSend) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true)); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); // Advance to 5ms, and send a packet to the peer, which will set // the ping alarm. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)), connection_.GetPingAlarm()->deadline()); // Now recevie and ACK of the previous packet, which will move the // ping alarm forward. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); // The ping timer is set slightly less than 15 seconds in the future, because // of the 1s ping timer alarm granularity. EXPECT_EQ(clock_.ApproximateNow() .Add(QuicTime::Delta::FromSeconds(15)) .Subtract(QuicTime::Delta::FromMilliseconds(5)), connection_.GetPingAlarm()->deadline()); writer_->Reset(); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); connection_.GetPingAlarm()->Fire(); EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->ping_frames().size()); writer_->Reset(); EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); SendAckPacketToPeer(); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); } // Tests whether sending an MTU discovery packet to peer successfully causes the // maximum packet size to increase. TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) { EXPECT_TRUE(connection_.connected()); // Send an MTU probe. const size_t new_mtu = kDefaultMaxPacketSize + 100; QuicByteCount mtu_probe_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&mtu_probe_size), Return(true))); connection_.SendMtuDiscoveryPacket(new_mtu); EXPECT_EQ(new_mtu, mtu_probe_size); EXPECT_EQ(1u, creator_->packet_number()); // Send more than MTU worth of data. No acknowledgement was received so far, // so the MTU should be at its old value. const string data(kDefaultMaxPacketSize + 1, '.'); QuicByteCount size_before_mtu_change; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&size_before_mtu_change), Return(true))) .WillOnce(Return(true)); connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr); EXPECT_EQ(3u, creator_->packet_number()); EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change); // Acknowledge all packets so far. QuicAckFrame probe_ack = InitAckFrame(3); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&probe_ack); EXPECT_EQ(new_mtu, connection_.max_packet_length()); // Send the same data again. Check that it fits into a single packet now. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr); EXPECT_EQ(4u, creator_->packet_number()); } // Tests whether MTU discovery does not happen when it is not explicitly enabled // by the connection options. TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) { EXPECT_TRUE(connection_.connected()); const QuicPacketCount number_of_packets = kPacketsBetweenMtuProbesBase * 2; for (QuicPacketCount i = 0; i < number_of_packets; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); EXPECT_EQ(0u, connection_.mtu_probe_count()); } } // Tests whether MTU discovery works when the probe gets acknowledged on the // first try. TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) { EXPECT_TRUE(connection_.connected()); connection_.EnablePathMtuDiscovery(send_algorithm_); // Send enough packets so that the next one triggers path MTU discovery. for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } // Trigger the probe. SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, /*fin=*/false, nullptr); ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); QuicByteCount probe_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true))); connection_.GetMtuDiscoveryAlarm()->Fire(); EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size); const QuicPacketCount probe_packet_number = kPacketsBetweenMtuProbesBase + 1; ASSERT_EQ(probe_packet_number, creator_->packet_number()); // Acknowledge all packets sent so far. QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&probe_ack); EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, connection_.max_packet_length()); EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); // Send more packets, and ensure that none of them sets the alarm. for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } EXPECT_EQ(1u, connection_.mtu_probe_count()); } // Tests whether MTU discovery works correctly when the probes never get // acknowledged. TEST_P(QuicConnectionTest, MtuDiscoveryFailed) { EXPECT_TRUE(connection_.connected()); connection_.EnablePathMtuDiscovery(send_algorithm_); const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); EXPECT_EQ(kPacketsBetweenMtuProbesBase, QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_)); // Lower the number of probes between packets in order to make the test go // much faster. const QuicPacketCount packets_between_probes_base = 10; QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_, packets_between_probes_base); QuicConnectionPeer::SetNextMtuProbeAt(&connection_, packets_between_probes_base); // This tests sends more packets than strictly necessary to make sure that if // the connection was to send more discovery packets than needed, those would // get caught as well. const QuicPacketCount number_of_packets = packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1)); vector mtu_discovery_packets; // Called by the first ack. EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Called on many acks. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)) .Times(AnyNumber()); for (QuicPacketCount i = 0; i < number_of_packets; i++) { SendStreamDataToPeer(3, "!", i, /*fin=*/false, nullptr); clock_.AdvanceTime(rtt); // Receive an ACK, which marks all data packets as received, and all MTU // discovery packets as missing. QuicAckFrame ack = InitAckFrame(creator_->packet_number()); for (QuicPacketNumber& packet : mtu_discovery_packets) { NackPacket(packet, &ack); } ProcessAckPacket(&ack); // Trigger MTU probe if it would be scheduled now. if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) { continue; } // Fire the alarm. The alarm should cause a packet to be sent. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(Return(true)); connection_.GetMtuDiscoveryAlarm()->Fire(); // Record the packet number of the MTU discovery packet in order to // mark it as NACK'd. mtu_discovery_packets.push_back(creator_->packet_number()); } // Ensure the number of packets between probes grows exponentially by checking // it against the closed-form expression for the packet number. ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size()); for (QuicPacketNumber i = 0; i < kMtuDiscoveryAttempts; i++) { // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1 const QuicPacketCount packets_between_probes = packets_between_probes_base * ((1 << (i + 1)) - 1); EXPECT_EQ(packets_between_probes + (i + 1), mtu_discovery_packets[i]); } EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count()); } // Tests whether MTU discovery works when the writer has a limit on how large a // packet can be. TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) { EXPECT_TRUE(connection_.connected()); const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; writer_->set_max_packet_size(mtu_limit); connection_.EnablePathMtuDiscovery(send_algorithm_); // Send enough packets so that the next one triggers path MTU discovery. for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } // Trigger the probe. SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, /*fin=*/false, nullptr); ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); QuicByteCount probe_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true))); connection_.GetMtuDiscoveryAlarm()->Fire(); EXPECT_EQ(mtu_limit, probe_size); const QuicPacketCount probe_sequence_number = kPacketsBetweenMtuProbesBase + 1; ASSERT_EQ(probe_sequence_number, creator_->packet_number()); // Acknowledge all packets sent so far. QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&probe_ack); EXPECT_EQ(mtu_limit, connection_.max_packet_length()); EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); // Send more packets, and ensure that none of them sets the alarm. for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } EXPECT_EQ(1u, connection_.mtu_probe_count()); } TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) { EXPECT_TRUE(connection_.connected()); connection_.EnablePathMtuDiscovery(send_algorithm_); // Send enough packets so that the next one triggers path MTU discovery. for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, /*fin=*/false, nullptr); EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); connection_.CloseConnection(QUIC_INTERNAL_ERROR, ConnectionCloseSource::FROM_SELF); EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); } TEST_P(QuicConnectionTest, TimeoutAfterSend) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; connection_.SetFromConfig(config); EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); const QuicTime::Delta initial_idle_timeout = QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout); // When we send a packet, the timeout will change to 5ms + // kInitialIdleTimeoutSecs. clock_.AdvanceTime(five_ms); SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // Now send more data. This will not move the timeout becase // no data has been recieved since the previous write. clock_.AdvanceTime(five_ms); SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // The original alarm will fire. We should not time out because we had a // network event at t=5ms. The alarm will reregister. clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms).Subtract(five_ms)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); EXPECT_EQ(default_timeout.Add(five_ms).Add(five_ms), connection_.GetTimeoutAlarm()->deadline()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); clock_.AdvanceTime(five_ms); EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, NewTimeoutAfterSendSilentClose) { // Same test as above, but complete a handshake which enables silent close, // causing no connection close packet to be sent. EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; // Create a handshake message that also enables silent close. CryptoHandshakeMessage msg; string error_details; QuicConfig client_config; client_config.SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); client_config.SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); client_config.SetIdleConnectionStateLifetime( QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); client_config.ToHandshakeMessage(&msg); const QuicErrorCode error = config.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_EQ(QUIC_NO_ERROR, error); connection_.SetFromConfig(config); EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); const QuicTime::Delta default_idle_timeout = QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); QuicTime default_timeout = clock_.ApproximateNow().Add(default_idle_timeout); // When we send a packet, the timeout will change to 5ms + // kInitialIdleTimeoutSecs. clock_.AdvanceTime(five_ms); SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // Now send more data. This will not move the timeout becase // no data has been recieved since the previous write. clock_.AdvanceTime(five_ms); SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // The original alarm will fire. We should not time out because we had a // network event at t=5ms. The alarm will reregister. clock_.AdvanceTime(default_idle_timeout.Subtract(five_ms).Subtract(five_ms)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); EXPECT_EQ(default_timeout.Add(five_ms).Add(five_ms), connection_.GetTimeoutAlarm()->deadline()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); clock_.AdvanceTime(five_ms); EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, TimeoutAfterReceive) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; connection_.SetFromConfig(config); EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); const QuicTime::Delta initial_idle_timeout = QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); clock_.AdvanceTime(five_ms); // When we receive a packet, the timeout will change to 5ms + // kInitialIdleTimeoutSecs. QuicAckFrame ack = InitAckFrame(2); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); // The original alarm will fire. We should not time out because we had a // network event at t=5ms. The alarm will reregister. clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.connected()); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_EQ(default_timeout.Add(five_ms), connection_.GetTimeoutAlarm()->deadline()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); clock_.AdvanceTime(five_ms); EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; connection_.SetFromConfig(config); EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); const QuicTime::Delta initial_idle_timeout = QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); connection_.SetNetworkTimeouts( QuicTime::Delta::Infinite(), initial_idle_timeout.Add(QuicTime::Delta::FromSeconds(1))); const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, nullptr); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); clock_.AdvanceTime(five_ms); // When we receive a packet, the timeout will change to 5ms + // kInitialIdleTimeoutSecs. QuicAckFrame ack = InitAckFrame(2); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); // The original alarm will fire. We should not time out because we had a // network event at t=5ms. The alarm will reregister. clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.connected()); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_EQ(default_timeout.Add(five_ms), connection_.GetTimeoutAlarm()->deadline()); // Now, send packets while advancing the time and verify that the connection // eventually times out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); for (int i = 0; i < 100 && connection_.connected(); ++i) { VLOG(1) << "sending data packet"; connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); connection_.GetTimeoutAlarm()->Fire(); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); } EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); } TEST_P(QuicConnectionTest, TimeoutAfter5RTOs) { FLAGS_quic_enable_rto_timeout = true; QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 2); EXPECT_TRUE(connection_.connected()); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(k5RTO); config.SetConnectionOptionsToSend(connection_options); connection_.SetFromConfig(config); // Send stream data. SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); EXPECT_CALL(visitor_, OnPathDegrading()); // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. for (int i = 0; i < 6; ++i) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); } EXPECT_EQ(2u, connection_.sent_packet_manager().consecutive_tlp_count()); EXPECT_EQ(4u, connection_.sent_packet_manager().consecutive_rto_count()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_RTOS, ConnectionCloseSource::FROM_SELF)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, SendScheduler) { // Test that if we send a packet without delay, it is not queued. QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false, false); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, FailToSendFirstPacket) { // Test that the connection does not crash when it fails to send the first // packet at which point self_address_ might be uninitialized. EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting); writer_->SetShouldWriteFail(); connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false, false); } TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting); BlockOnNextWrite(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false, false); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { // All packets carry version info till version is negotiated. size_t payload_length; size_t length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, !kIncludePathId, PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_PACKET_NUMBER, &payload_length); connection_.SetMaxPacketLength(length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillOnce(testing::Return(QuicTime::Delta::FromMicroseconds(10))); const string payload(payload_length, 'a'); EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) .bytes_consumed); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, LoopThroughSendingPackets) { // All packets carry version info till version is negotiated. size_t payload_length; // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining // packet length. The size of the offset field in a stream frame is 0 for // offset 0, and 2 for non-zero offsets up through 16K. Increase // max_packet_length by 2 so that subsequent packets containing subsequent // stream frames with non-zero offets will fit within the packet length. size_t length = 2 + GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, !kIncludePathId, PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_PACKET_NUMBER, &payload_length); connection_.SetMaxPacketLength(length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); // The first stream frame will have 2 fewer overhead bytes than the other six. const string payload(payload_length * 7 + 2, 'a'); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr) .bytes_consumed); } TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { // Set up a larger payload than will fit in one packet. const string payload(connection_.max_packet_length(), 'a'); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); // Now send some packets with no truncation. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) .bytes_consumed); // Track the size of the second packet here. The overhead will be the largest // we see in this test, due to the non-truncated connection id. size_t non_truncated_packet_size = writer_->last_packet_size(); // Change to a 4 byte connection id. QuicConfig config; QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 4); connection_.SetFromConfig(config); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) .bytes_consumed); // Verify that we have 8 fewer bytes than in the non-truncated case. The // first packet got 4 bytes of extra payload due to the truncation, and the // headers here are also 4 byte smaller. EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8); // Change to a 1 byte connection id. QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 1); connection_.SetFromConfig(config); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) .bytes_consumed); // Just like above, we save 7 bytes on payload, and 7 on truncation. EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 7 * 2); // Change to a 0 byte connection id. QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); connection_.SetFromConfig(config); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) .bytes_consumed); // Just like above, we save 8 bytes on payload, and 8 on truncation. EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2); } TEST_P(QuicConnectionTest, SendDelayedAck) { QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); const uint8_t tag = 0x07; connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process a packet from the non-crypto stream. frame1_.stream_id = 3; // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used // instead of ENCRYPTION_NONE. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Simulate delayed ack alarm firing. connection_.GetAckAlarm()->Fire(); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckDecimation) { QuicConnectionPeer::SetAckMode(&connection_, QuicConnection::ACK_DECIMATION); const size_t kMinRttMs = 40; RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(manager_); rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), QuicTime::Delta::Zero(), QuicTime::Zero()); // The ack time should be based on min_rtt/4, since it's less than the // default delayed ack time. QuicTime ack_time = clock_.ApproximateNow().Add( QuicTime::Delta::FromMilliseconds(kMinRttMs / 4)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); const uint8_t tag = 0x07; connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process a packet from the non-crypto stream. frame1_.stream_id = 3; // Process all the initial packets in order so there aren't missing packets. QuicPacketNumber kFirstDecimatedPacket = 101; for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used // instead of ENCRYPTION_NONE. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // The 10th received packet causes an ack to be sent. for (int i = 0; i < 9; ++i) { EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) { FLAGS_quic_ack_decimation2 = true; QuicConnectionPeer::SetAckMode( &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); const size_t kMinRttMs = 40; RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(manager_); rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), QuicTime::Delta::Zero(), QuicTime::Zero()); // The ack time should be based on min_rtt/4, since it's less than the // default delayed ack time. QuicTime ack_time = clock_.ApproximateNow().Add( QuicTime::Delta::FromMilliseconds(kMinRttMs / 4)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); const uint8_t tag = 0x07; connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process a packet from the non-crypto stream. frame1_.stream_id = 3; // Process all the initial packets in order so there aren't missing packets. QuicPacketNumber kFirstDecimatedPacket = 101; for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used // instead of ENCRYPTION_NONE. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Process packet 10 first and ensure the alarm is one eighth min_rtt. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 9, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); ack_time = clock_.ApproximateNow().Add(QuicTime::Delta::FromMilliseconds(5)); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // The 10th received packet causes an ack to be sent. for (int i = 0; i < 8; ++i) { EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) { FLAGS_quic_ack_decimation2 = true; QuicConnectionPeer::SetAckMode( &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); const size_t kMinRttMs = 40; RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(manager_); rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), QuicTime::Delta::Zero(), QuicTime::Zero()); // The ack time should be based on min_rtt/4, since it's less than the // default delayed ack time. QuicTime ack_time = clock_.ApproximateNow().Add( QuicTime::Delta::FromMilliseconds(kMinRttMs / 4)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); const uint8_t tag = 0x07; connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process a packet from the non-crypto stream. frame1_.stream_id = 3; // Process all the initial packets in order so there aren't missing packets. QuicPacketNumber kFirstDecimatedPacket = 101; for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used // instead of ENCRYPTION_NONE. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Process packet 10 first and ensure the alarm is one eighth min_rtt. EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 19, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); ack_time = clock_.ApproximateNow().Add(QuicTime::Delta::FromMilliseconds(5)); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // The 10th received packet causes an ack to be sent. for (int i = 0; i < 8; ++i) { EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); } // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); // The next packet received in order will cause an immediate ack, // because it fills a hole. EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 10, !kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); // Check that ack is sent and that delayed ack alarm is set. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Completing the handshake as the server does nothing. QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); connection_.OnHandshakeComplete(); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Complete the handshake as the client decreases the delayed ack time to 0ms. QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT); connection_.OnHandshakeComplete(); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); } TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); ProcessPacket(kDefaultPathId, 2); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, NoAckOnOldNacks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Drop one packet, triggering a sequence of acks. ProcessPacket(kDefaultPathId, 2); size_t frames_per_ack = 2; EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(kDefaultPathId, 3); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(kDefaultPathId, 4); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(kDefaultPathId, 5); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); // Now only set the timer on the 6th packet, instead of sending another ack. ProcessPacket(kDefaultPathId, 6); EXPECT_EQ(0u, writer_->frame_count()); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); // Check that ack is bundled with outgoing data and that delayed ack // alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, nullptr); // Check that ack is bundled with outgoing crypto data. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, nullptr); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_FALSE(connection_.HasQueuedData()); connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin, nullptr); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_TRUE(connection_.HasQueuedData()); } TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnCanWrite()) .WillOnce(IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendCryptoStreamData))); // Process a packet from the crypto stream, which is frame1_'s default. // Receiving the CHLO as packet 2 first will cause the connection to // immediately send an ack, due to the packet gap. ProcessPacket(kDefaultPathId, 2); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, nullptr); // Ack the second packet, which will retransmit the first packet. QuicAckFrame ack = InitAckFrame(2); NackPacket(1, &ack); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); writer_->Reset(); // Now ack the retransmission, which will both raise the high water mark // and see if there is more data to send. ack = InitAckFrame(3); NackPacket(1, &ack); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); // Check that no packet is sent and the ack alarm isn't set. EXPECT_EQ(0u, writer_->frame_count()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); writer_->Reset(); // Send the same ack, but send both data and an ack together. ack = InitAckFrame(3); NackPacket(1, &ack); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(visitor_, OnCanWrite()) .WillOnce(IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); ProcessAckPacket(&ack); // Check that ack is bundled with outgoing data and the delayed ack // alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, NoAckSentForClose) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(kDefaultPathId, 1); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, ConnectionCloseSource::FROM_PEER)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessClosePacket(kDefaultPathId, 2); } TEST_P(QuicConnectionTest, SendWhenDisconnected) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, ConnectionCloseSource::FROM_SELF)); connection_.CloseConnection(QUIC_PEER_GOING_AWAY, ConnectionCloseSource::FROM_SELF); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.CanWriteStreamData()); QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false, false); } TEST_P(QuicConnectionTest, PublicReset) { QuicPublicResetPacket header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = true; header.public_header.version_flag = false; header.rejected_packet_number = 10101; scoped_ptr packet( framer_.BuildPublicResetPacket(header)); scoped_ptr received( ConstructReceivedPacket(*packet, QuicTime::Zero())); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, ConnectionCloseSource::FROM_PEER)); connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); } TEST_P(QuicConnectionTest, GoAway) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicGoAwayFrame goaway; goaway.last_good_stream_id = 1; goaway.error_code = QUIC_PEER_GOING_AWAY; goaway.reason_phrase = "Going away."; EXPECT_CALL(visitor_, OnGoAway(_)); ProcessGoAwayPacket(&goaway); } TEST_P(QuicConnectionTest, WindowUpdate) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicWindowUpdateFrame window_update; window_update.stream_id = 3; window_update.byte_offset = 1234; EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); ProcessFramePacket(QuicFrame(&window_update)); } TEST_P(QuicConnectionTest, Blocked) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicBlockedFrame blocked; blocked.stream_id = 3; EXPECT_CALL(visitor_, OnBlockedFrame(_)); ProcessFramePacket(QuicFrame(&blocked)); } TEST_P(QuicConnectionTest, PathClose) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPathCloseFrame path_close = QuicPathCloseFrame(1); ProcessPathClosePacket(&path_close); EXPECT_TRUE(QuicFramerPeer::IsPathClosed( QuicConnectionPeer::GetFramer(&connection_), 1)); } TEST_P(QuicConnectionTest, ZeroBytePacket) { // Don't close the connection for zero byte packets. EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero()); connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted); } TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { // Set the packet number of the ack packet to be least unacked (4). QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicStopWaitingFrame frame = InitStopWaitingFrame(4); ProcessStopWaitingPacket(&frame); EXPECT_TRUE(outgoing_ack()->missing_packets.Empty()); } TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag); ProcessDataPacket(kDefaultPathId, 4, kEntropyFlag); ProcessDataPacket(kDefaultPathId, 3, !kEntropyFlag); ProcessDataPacket(kDefaultPathId, 7, kEntropyFlag); EXPECT_EQ(146u, outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag); ProcessDataPacket(kDefaultPathId, 5, kEntropyFlag); ProcessDataPacket(kDefaultPathId, 4, !kEntropyFlag); EXPECT_EQ(34u, outgoing_ack()->entropy_hash); // Make 4th packet my least unacked, and update entropy for 2, 3 packets. QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); QuicPacketEntropyHash six_packet_entropy_hash = 0; QuicPacketEntropyHash random_entropy_hash = 129u; QuicStopWaitingFrame frame = InitStopWaitingFrame(4); frame.entropy_hash = random_entropy_hash; if (ProcessStopWaitingPacket(&frame)) { six_packet_entropy_hash = 1 << 6; } EXPECT_EQ((random_entropy_hash + (1 << 5) + six_packet_entropy_hash), outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag); ProcessDataPacket(kDefaultPathId, 5, !kEntropyFlag); ProcessDataPacket(kDefaultPathId, 22, kEntropyFlag); EXPECT_EQ(66u, outgoing_ack()->entropy_hash); QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 22); QuicPacketEntropyHash random_entropy_hash = 85u; // Current packet is the least unacked packet. QuicPacketEntropyHash ack_entropy_hash; QuicStopWaitingFrame frame = InitStopWaitingFrame(23); frame.entropy_hash = random_entropy_hash; ack_entropy_hash = ProcessStopWaitingPacket(&frame); EXPECT_EQ((random_entropy_hash + ack_entropy_hash), outgoing_ack()->entropy_hash); ProcessDataPacket(kDefaultPathId, 25, kEntropyFlag); EXPECT_EQ((random_entropy_hash + ack_entropy_hash + (1 << (25 % 8))), outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) { EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketEntropyHash entropy[51]; entropy[0] = 0; for (int i = 1; i < 51; ++i) { bool should_send = i % 10 != 1; bool entropy_flag = (i & (i - 1)) != 0; if (!should_send) { entropy[i] = entropy[i - 1]; continue; } if (entropy_flag) { entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); } else { entropy[i] = entropy[i - 1]; } ProcessDataPacket(kDefaultPathId, i, entropy_flag); } for (int i = 1; i < 50; ++i) { EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash(&connection_, i)); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.version_flag = true; header.path_id = kDefaultPathId; header.packet_number = 12; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); framer_.set_version(version()); connection_.set_perspective(Perspective::IS_SERVER); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); size_t num_versions = arraysize(kSupportedQuicVersions); ASSERT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.version_flag = true; header.packet_number = 12; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); framer_.set_version(version()); connection_.set_perspective(Perspective::IS_SERVER); BlockOnNextWrite(); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_TRUE(connection_.HasQueuedData()); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); size_t num_versions = arraysize(kSupportedQuicVersions); ASSERT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.version_flag = true; header.packet_number = 12; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encryped_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); framer_.set_version(version()); connection_.set_perspective(Perspective::IS_SERVER); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encryped_length, QuicTime::Zero(), false)); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_FALSE(connection_.HasQueuedData()); } TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { // Start out with some unsupported version. QuicConnectionPeer::GetFramer(&connection_) ->set_version_for_tests(QUIC_VERSION_UNSUPPORTED); // Send a version negotiation packet. scoped_ptr encrypted( framer_.BuildVersionNegotiationPacket(connection_id_, QuicSupportedVersions())); scoped_ptr received( ConstructReceivedPacket(*encrypted, QuicTime::Zero())); connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); // Now force another packet. The connection should transition into // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.path_id = kDefaultPathId; header.packet_number = 12; header.public_header.version_flag = false; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); scoped_ptr packet(ConstructPacket(header, frames)); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); ASSERT_NE(0u, encrypted_length); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); } TEST_P(QuicConnectionTest, BadVersionNegotiation) { // Send a version negotiation packet with the version the client started with. // It should be rejected. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, ConnectionCloseSource::FROM_SELF)); scoped_ptr encrypted( framer_.BuildVersionNegotiationPacket(connection_id_, QuicSupportedVersions())); scoped_ptr received( ConstructReceivedPacket(*encrypted, QuicTime::Zero())); connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); } TEST_P(QuicConnectionTest, CheckSendStats) { connection_.DisableTailLossProbe(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr); size_t first_packet_size = writer_->last_packet_size(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr); size_t second_packet_size = writer_->last_packet_size(); // 2 retransmissions due to rto, 1 due to explicit nack. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); // Retransmit due to RTO. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); connection_.GetRetransmissionAlarm()->Fire(); // Retransmit due to explicit nacks. QuicAckFrame nack_three = InitAckFrame(4); NackPacket(3, &nack_three); NackPacket(1, &nack_three); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); lost_packets.push_back(std::make_pair(3, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(visitor_, OnCanWrite()); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessAckPacket(&nack_three); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) .WillOnce(Return(QuicBandwidth::Zero())); const QuicConnectionStats& stats = connection_.GetStats(); EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, stats.bytes_sent); EXPECT_EQ(5u, stats.packets_sent); EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, stats.bytes_retransmitted); EXPECT_EQ(3u, stats.packets_retransmitted); EXPECT_EQ(1u, stats.rto_count); EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); } TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { // Construct a packet with stream frame and connection close frame. QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.packet_number = 1; header.public_header.version_flag = false; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrames frames; frames.push_back(QuicFrame(&frame1_)); frames.push_back(QuicFrame(&qccf)); scoped_ptr packet(ConstructPacket(header, frames)); EXPECT_TRUE(nullptr != packet.get()); char buffer[kMaxPacketSize]; size_t encrypted_length = framer_.EncryptPayload( ENCRYPTION_NONE, kDefaultPathId, 1, *packet, buffer, kMaxPacketSize); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, ConnectionCloseSource::FROM_PEER)); EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket( kSelfAddress, kPeerAddress, QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); } TEST_P(QuicConnectionTest, SelectMutualVersion) { connection_.SetSupportedVersions(QuicSupportedVersions()); // Set the connection to speak the lowest quic version. connection_.set_version(QuicVersionMin()); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Pass in available versions which includes a higher mutually supported // version. The higher mutually supported version should be selected. QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); EXPECT_EQ(QuicVersionMax(), connection_.version()); // Expect that the lowest version is selected. // Ensure the lowest supported version is less than the max, unless they're // the same. EXPECT_LE(QuicVersionMin(), QuicVersionMax()); QuicVersionVector lowest_version_vector; lowest_version_vector.push_back(QuicVersionMin()); EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Shouldn't be able to find a mutually supported version. QuicVersionVector unsupported_version; unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); } TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { EXPECT_FALSE(writer_->IsWriteBlocked()); // Send a packet. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); TriggerConnectionClose(); EXPECT_EQ(2u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { BlockOnNextWrite(); TriggerConnectionClose(); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); } TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); TriggerConnectionClose(); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a listener which we expect to be called. scoped_refptr listener(new MockAckListener); EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(1); // Send some data, which will register the listener to be notified. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get()); // Process an ACK from the server which should trigger the callback. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame = InitAckFrame(1); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a listener which we don't expect to be called. scoped_refptr listener(new MockAckListener); EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(0); // Send some data, which will register the listener to be notified. This will // not be ACKed and so the listener should never be called. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get()); // Send some other data which we will ACK. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr); // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 // which we registered to be notified about. QuicAckFrame frame = InitAckFrame(3); NackPacket(1, &frame); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a listener which we expect to be called. scoped_refptr listener(new MockAckListener); EXPECT_CALL(*listener, OnPacketRetransmitted(3)).Times(1); EXPECT_CALL(*listener, OnPacketAcked(3, _)).Times(1); // Send four packets, and register to be notified on ACK of packet 2. connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get()); connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); // Now we receive ACK for packets 1, 3, and 4 and lose 2. QuicAckFrame frame = InitAckFrame(4); NackPacket(2, &frame); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); // Now we get an ACK for packet 5 (retransmitted packet 2), which should // trigger the callback. EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame second_ack_frame = InitAckFrame(5); ProcessAckPacket(&second_ack_frame); } // AckNotifierCallback is triggered by the ack of a packet that timed // out and was retransmitted, even though the retransmission has a // different packet number. TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) { connection_.DisableTailLossProbe(); // Create a listener which we expect to be called. scoped_refptr listener(new StrictMock); QuicTime default_retransmission_time = clock_.ApproximateNow().Add(DefaultRetransmissionTime()); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, listener.get()); EXPECT_EQ(1u, stop_waiting()->least_unacked); EXPECT_EQ(1u, writer_->header().packet_number); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*listener, OnPacketRetransmitted(3)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); // Ack the original packet, which will revert the RTO. EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*listener, OnPacketAcked(3, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack_frame = InitAckFrame(1); ProcessAckPacket(&ack_frame); // listener is not notified again when the retransmit is acked. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame second_ack_frame = InitAckFrame(2); ProcessAckPacket(&second_ack_frame); } // AckNotifierCallback is triggered by the ack of a packet that was // previously nacked, even though the retransmission has a different // packet number. TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) { // Create a listener which we expect to be called. scoped_refptr listener(new StrictMock); // Send four packets, and register to be notified on ACK of packet 2. connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get()); connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); // Now we receive ACK for packets 1, 3, and 4 and lose 2. QuicAckFrame frame = InitAckFrame(4); NackPacket(2, &frame); EXPECT_CALL(*listener, OnPacketRetransmitted(_)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendAlgorithmInterface::CongestionVector lost_packets; lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)) .WillOnce(SetArgPointee<3>(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); // Now we get an ACK for packet 2, which was previously nacked. EXPECT_CALL(*listener, OnPacketAcked(3, _)); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); QuicAckFrame second_ack_frame = InitAckFrame(4); ProcessAckPacket(&second_ack_frame); // Verify that the listener is not notified again when the // retransmit is acked. EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame third_ack_frame = InitAckFrame(5); ProcessAckPacket(&third_ack_frame); } TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { QuicPacketHeader header; scoped_ptr debug_visitor( new MockQuicConnectionDebugVisitor()); connection_.set_debug_visitor(debug_visitor.get()); EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1); EXPECT_CALL(*debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1); connection_.OnPacketHeader(header); } TEST_P(QuicConnectionTest, Pacing) { TestConnection server(connection_id_, kSelfAddress, helper_.get(), writer_.get(), Perspective::IS_SERVER, version()); TestConnection client(connection_id_, kPeerAddress, helper_.get(), writer_.get(), Perspective::IS_CLIENT, version()); EXPECT_FALSE(client.sent_packet_manager().using_pacing()); EXPECT_FALSE(server.sent_packet_manager().using_pacing()); } TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Send a WINDOW_UPDATE frame. QuicWindowUpdateFrame window_update; window_update.stream_id = 3; window_update.byte_offset = 1234; EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); ProcessFramePacket(QuicFrame(&window_update)); // Ensure that this has caused the ACK alarm to be set. QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); EXPECT_TRUE(ack_alarm->IsSet()); } TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Send a BLOCKED frame. QuicBlockedFrame blocked; blocked.stream_id = 3; EXPECT_CALL(visitor_, OnBlockedFrame(_)); ProcessFramePacket(QuicFrame(&blocked)); // Ensure that this has caused the ACK alarm to be set. QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); EXPECT_TRUE(ack_alarm->IsSet()); } TEST_P(QuicConnectionTest, NoDataNoFin) { // Make sure that a call to SendStreamWithData, with no data and no FIN, does // not result in a QuicAckNotifier being used-after-free (fail under ASAN). // Regression test for b/18594622 scoped_refptr listener(new MockAckListener); EXPECT_DFATAL( connection_.SendStreamDataWithString(3, "", 0, !kFin, listener.get()), "Attempt to send empty stream frame"); } TEST_P(QuicConnectionTest, DoNotSendGoAwayTwice) { EXPECT_FALSE(connection_.goaway_sent()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away."); EXPECT_TRUE(connection_.goaway_sent()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away."); } TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, nullptr); // Evaluate CanWrite, and have it return a non-Zero value. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(1))); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); EXPECT_EQ(clock_.Now().Add(QuicTime::Delta::FromMilliseconds(1)), connection_.GetSendAlarm()->deadline()); // Process an ack and the send alarm will be set to the new 2ms delay. QuicAckFrame ack = InitAckFrame(1); EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) .WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(2))); ProcessAckPacket(&ack); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); EXPECT_EQ(clock_.Now().Add(QuicTime::Delta::FromMilliseconds(2)), connection_.GetSendAlarm()->deadline()); writer_->Reset(); } TEST_P(QuicConnectionTest, SendAcksImmediately) { CongestionBlockWrites(); SendAckPacketToPeer(); } TEST_P(QuicConnectionTest, SendPingImmediately) { CongestionBlockWrites(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendPing(); EXPECT_FALSE(connection_.HasQueuedData()); } TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) { FLAGS_quic_never_write_unencrypted_data = true; EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, ConnectionCloseSource::FROM_SELF)); EXPECT_DFATAL(connection_.SendStreamDataWithString(3, "", 0, kFin, nullptr), "Cannot send stream data without encryption."); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, EnableMultipathNegotiation) { // Test multipath negotiation during crypto handshake. Multipath is enabled // when both endpoints enable multipath. ValueRestore old_flag(&FLAGS_quic_enable_multipath, true); EXPECT_TRUE(connection_.connected()); EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); QuicConfig config; // Enable multipath on server side. config.SetMultipathEnabled(true); // Create a handshake message enables multipath. CryptoHandshakeMessage msg; string error_details; QuicConfig client_config; // Enable multipath on client side. client_config.SetMultipathEnabled(true); client_config.ToHandshakeMessage(&msg); const QuicErrorCode error = config.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_EQ(QUIC_NO_ERROR, error); connection_.SetFromConfig(config); EXPECT_TRUE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); } TEST_P(QuicConnectionTest, ClosePath) { QuicPathId kTestPathId = 1; connection_.SendPathClose(kTestPathId); EXPECT_TRUE(QuicFramerPeer::IsPathClosed( QuicConnectionPeer::GetFramer(&connection_), kTestPathId)); } TEST_P(QuicConnectionTest, BadMultipathFlag) { EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_BAD_MULTIPATH_FLAG, ConnectionCloseSource::FROM_SELF)); // Receieve a packet with multipath flag on when multipath is not enabled. EXPECT_TRUE(connection_.connected()); EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); peer_creator_.SetCurrentPath(/*path_id=*/1u, 1u, 10u); QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); EXPECT_DFATAL(ProcessFramePacket(QuicFrame(&stream_frame)), "Received a packet with multipath flag on when multipath is " "not enabled."); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, OnPathDegrading) { QuicByteCount packet_size; const size_t kMinTimeoutsBeforePathDegrading = 2; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(3, "packet", 0, !kFin, nullptr); size_t num_timeouts = kMinTimeoutsBeforePathDegrading + QuicSentPacketManagerPeer::GetMaxTailLossProbes( QuicConnectionPeer::GetSentPacketManager(&connection_)); for (size_t i = 1; i < num_timeouts; ++i) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10 * i)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _)); connection_.GetRetransmissionAlarm()->Fire(); } // Next RTO should cause OnPathDegrading to be called before the // retransmission is sent out. clock_.AdvanceTime( QuicTime::Delta::FromSeconds(kMinTimeoutsBeforePathDegrading * 10)); { InSequence s; EXPECT_CALL(visitor_, OnPathDegrading()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _)); } connection_.GetRetransmissionAlarm()->Fire(); } TEST_P(QuicConnectionTest, MultipleCallsToSendConnectionCloseWithDetails) { // Verifies that multiple calls to SendConnectionCloseWithDetails do not // result in multiple attempts to close the connection - it will be marked as // disconnected after the first call. EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); connection_.SendConnectionCloseWithDetails(QUIC_NO_ERROR, "no reason"); connection_.SendConnectionCloseWithDetails(QUIC_NO_ERROR, "no reason"); } } // namespace } // namespace test } // namespace net