// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection.h" #include "base/basictypes.h" #include "base/bind.h" #include "base/stl_util.h" #include "net/base/net_errors.h" #include "net/quic/congestion_control/loss_detection_interface.h" #include "net/quic/congestion_control/receive_algorithm_interface.h" #include "net/quic/congestion_control/send_algorithm_interface.h" #include "net/quic/crypto/null_encrypter.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/mock_clock.h" #include "net/quic/test_tools/mock_random.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_framer_peer.h" #include "net/quic/test_tools/quic_packet_creator_peer.h" #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/quic/test_tools/simple_quic_framer.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using base::StringPiece; using std::map; using std::vector; using testing::AnyNumber; using testing::AtLeast; using testing::ContainerEq; using testing::Contains; using testing::DoAll; using testing::InSequence; using testing::InvokeWithoutArgs; using testing::NiceMock; using testing::Ref; using testing::Return; using testing::SaveArg; using testing::StrictMock; using testing::_; namespace net { namespace test { namespace { const char data1[] = "foo"; const char data2[] = "bar"; const bool kFin = true; const bool kEntropyFlag = true; const QuicPacketEntropyHash kTestEntropyHash = 76; const int kDefaultRetransmissionTimeMs = 500; class TestReceiveAlgorithm : public ReceiveAlgorithmInterface { public: explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback) : feedback_(feedback) { } bool GenerateCongestionFeedback( QuicCongestionFeedbackFrame* congestion_feedback) { if (feedback_ == NULL) { return false; } *congestion_feedback = *feedback_; return true; } MOCK_METHOD3(RecordIncomingPacket, void(QuicByteCount, QuicPacketSequenceNumber, QuicTime)); private: QuicCongestionFeedbackFrame* feedback_; DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm); }; // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. class TaggingEncrypter : public QuicEncrypter { public: explicit TaggingEncrypter(uint8 tag) : tag_(tag) { } virtual ~TaggingEncrypter() {} // QuicEncrypter interface. virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Encrypt(StringPiece nonce, StringPiece associated_data, StringPiece plaintext, unsigned char* output) OVERRIDE { memcpy(output, plaintext.data(), plaintext.size()); output += plaintext.size(); memset(output, tag_, kTagSize); return true; } virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece plaintext) OVERRIDE { const size_t len = plaintext.size() + kTagSize; uint8* buffer = new uint8[len]; Encrypt(StringPiece(), associated_data, plaintext, buffer); return new QuicData(reinterpret_cast(buffer), len, true); } virtual size_t GetKeySize() const OVERRIDE { return 0; } virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; } virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE { return ciphertext_size - kTagSize; } virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE { return plaintext_size + kTagSize; } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } private: enum { kTagSize = 12, }; const uint8 tag_; DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter); }; // TaggingDecrypter ensures that the final kTagSize bytes of the message all // have the same value and then removes them. class TaggingDecrypter : public QuicDecrypter { public: virtual ~TaggingDecrypter() {} // QuicDecrypter interface virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Decrypt(StringPiece nonce, StringPiece associated_data, StringPiece ciphertext, unsigned char* output, size_t* output_length) OVERRIDE { if (ciphertext.size() < kTagSize) { return false; } if (!CheckTag(ciphertext, GetTag(ciphertext))) { return false; } *output_length = ciphertext.size() - kTagSize; memcpy(output, ciphertext.data(), *output_length); return true; } virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece ciphertext) OVERRIDE { if (ciphertext.size() < kTagSize) { return NULL; } if (!CheckTag(ciphertext, GetTag(ciphertext))) { return NULL; } const size_t len = ciphertext.size() - kTagSize; uint8* buf = new uint8[len]; memcpy(buf, ciphertext.data(), len); return new QuicData(reinterpret_cast(buf), len, true /* owns buffer */); } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } protected: virtual uint8 GetTag(StringPiece ciphertext) { return ciphertext.data()[ciphertext.size()-1]; } private: enum { kTagSize = 12, }; bool CheckTag(StringPiece ciphertext, uint8 tag) { for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { if (ciphertext.data()[i] != tag) { return false; } } return true; } }; // StringTaggingDecrypter ensures that the final kTagSize bytes of the message // match the expected value. class StrictTaggingDecrypter : public TaggingDecrypter { public: explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {} virtual ~StrictTaggingDecrypter() {} // TaggingQuicDecrypter virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE { return tag_; } private: const uint8 tag_; }; class TestConnectionHelper : public QuicConnectionHelperInterface { public: class TestAlarm : public QuicAlarm { public: explicit TestAlarm(QuicAlarm::Delegate* delegate) : QuicAlarm(delegate) { } virtual void SetImpl() OVERRIDE {} virtual void CancelImpl() OVERRIDE {} using QuicAlarm::Fire; }; TestConnectionHelper(MockClock* clock, MockRandom* random_generator) : clock_(clock), random_generator_(random_generator) { clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); } // QuicConnectionHelperInterface virtual const QuicClock* GetClock() const OVERRIDE { return clock_; } virtual QuicRandom* GetRandomGenerator() OVERRIDE { return random_generator_; } virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE { return new TestAlarm(delegate); } private: MockClock* clock_; MockRandom* random_generator_; DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); }; class TestPacketWriter : public QuicPacketWriter { public: explicit TestPacketWriter(QuicVersion version) : version_(version), framer_(SupportedVersions(version_)), last_packet_size_(0), write_blocked_(false), block_on_next_write_(false), is_write_blocked_data_buffered_(false), final_bytes_of_last_packet_(0), final_bytes_of_previous_packet_(0), use_tagging_decrypter_(false), packets_write_attempts_(0) { } // QuicPacketWriter interface virtual WriteResult WritePacket( const char* buffer, size_t buf_len, const IPAddressNumber& self_address, const IPEndPoint& peer_address) OVERRIDE { QuicEncryptedPacket packet(buffer, buf_len); ++packets_write_attempts_; if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, sizeof(final_bytes_of_last_packet_)); } if (use_tagging_decrypter_) { framer_.framer()->SetDecrypter(new TaggingDecrypter, ENCRYPTION_NONE); } EXPECT_TRUE(framer_.ProcessPacket(packet)); if (block_on_next_write_) { write_blocked_ = true; block_on_next_write_ = false; } if (IsWriteBlocked()) { return WriteResult(WRITE_STATUS_BLOCKED, -1); } last_packet_size_ = packet.length(); return WriteResult(WRITE_STATUS_OK, last_packet_size_); } virtual bool IsWriteBlockedDataBuffered() const OVERRIDE { return is_write_blocked_data_buffered_; } virtual bool IsWriteBlocked() const OVERRIDE { return write_blocked_; } virtual void SetWritable() OVERRIDE { write_blocked_ = false; } void BlockOnNextWrite() { block_on_next_write_ = true; } const QuicPacketHeader& header() { return framer_.header(); } size_t frame_count() const { return framer_.num_frames(); } const vector& ack_frames() const { return framer_.ack_frames(); } const vector& feedback_frames() const { return framer_.feedback_frames(); } const vector& stop_waiting_frames() const { return framer_.stop_waiting_frames(); } const vector& connection_close_frames() const { return framer_.connection_close_frames(); } const vector& stream_frames() const { return framer_.stream_frames(); } const vector& ping_frames() const { return framer_.ping_frames(); } size_t last_packet_size() { return last_packet_size_; } const QuicVersionNegotiationPacket* version_negotiation_packet() { return framer_.version_negotiation_packet(); } void set_is_write_blocked_data_buffered(bool buffered) { is_write_blocked_data_buffered_ = buffered; } void set_is_server(bool is_server) { // We invert is_server here, because the framer needs to parse packets // we send. QuicFramerPeer::SetIsServer(framer_.framer(), !is_server); } // final_bytes_of_last_packet_ returns the last four bytes of the previous // packet as a little-endian, uint32. This is intended to be used with a // TaggingEncrypter so that tests can determine which encrypter was used for // a given packet. uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } // Returns the final bytes of the second to last packet. uint32 final_bytes_of_previous_packet() { return final_bytes_of_previous_packet_; } void use_tagging_decrypter() { use_tagging_decrypter_ = true; } uint32 packets_write_attempts() { return packets_write_attempts_; } void Reset() { framer_.Reset(); } void SetSupportedVersions(const QuicVersionVector& versions) { framer_.SetSupportedVersions(versions); } private: QuicVersion version_; SimpleQuicFramer framer_; size_t last_packet_size_; bool write_blocked_; bool block_on_next_write_; bool is_write_blocked_data_buffered_; uint32 final_bytes_of_last_packet_; uint32 final_bytes_of_previous_packet_; bool use_tagging_decrypter_; uint32 packets_write_attempts_; DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); }; class TestConnection : public QuicConnection { public: TestConnection(QuicConnectionId connection_id, IPEndPoint address, TestConnectionHelper* helper, const PacketWriterFactory& factory, bool is_server, QuicVersion version) : QuicConnection(connection_id, address, helper, factory, /* owns_writer= */ false, is_server, SupportedVersions(version)) { // Disable tail loss probes for most tests. QuicSentPacketManagerPeer::SetMaxTailLossProbes( QuicConnectionPeer::GetSentPacketManager(this), 0); writer()->set_is_server(is_server); } void SendAck() { QuicConnectionPeer::SendAck(this); } void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) { QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm); } void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); } void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { QuicSentPacketManagerPeer::SetLossAlgorithm( QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm); } void SendPacket(EncryptionLevel level, QuicPacketSequenceNumber sequence_number, QuicPacket* packet, QuicPacketEntropyHash entropy_hash, HasRetransmittableData retransmittable) { RetransmittableFrames* retransmittable_frames = retransmittable == HAS_RETRANSMITTABLE_DATA ? new RetransmittableFrames() : NULL; OnSerializedPacket( SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, packet, entropy_hash, retransmittable_frames)); } QuicConsumedData SendStreamDataWithString( QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicAckNotifier::DelegateInterface* delegate) { return SendStreamDataWithStringHelper(id, data, offset, fin, MAY_FEC_PROTECT, delegate); } QuicConsumedData SendStreamDataWithStringWithFec( QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicAckNotifier::DelegateInterface* delegate) { return SendStreamDataWithStringHelper(id, data, offset, fin, MUST_FEC_PROTECT, delegate); } QuicConsumedData SendStreamDataWithStringHelper( QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, FecProtection fec_protection, QuicAckNotifier::DelegateInterface* delegate) { IOVector data_iov; if (!data.empty()) { data_iov.Append(const_cast(data.data()), data.size()); } return QuicConnection::SendStreamData(id, data_iov, offset, fin, fec_protection, delegate); } QuicConsumedData SendStreamData3() { return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin, NULL); } QuicConsumedData SendStreamData3WithFec() { return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0, !kFin, NULL); } QuicConsumedData SendStreamData5() { return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin, NULL); } QuicConsumedData SendStreamData5WithFec() { return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0, !kFin, NULL); } // Ensures the connection can write stream data before writing. QuicConsumedData EnsureWritableAndSendStreamData5() { EXPECT_TRUE(CanWriteStreamData()); return SendStreamData5(); } // The crypto stream has special semantics so that it is not blocked by a // congestion window limitation, and also so that it gets put into a separate // packet (so that it is easier to reason about a crypto frame not being // split needlessly across packet boundaries). As a result, we have separate // tests for some cases for this stream. QuicConsumedData SendCryptoStreamData() { return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, NULL); } bool is_server() { return QuicConnectionPeer::IsServer(this); } void set_version(QuicVersion version) { QuicConnectionPeer::GetFramer(this)->set_version(version); } void SetSupportedVersions(const QuicVersionVector& versions) { QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); writer()->SetSupportedVersions(versions); } void set_is_server(bool is_server) { writer()->set_is_server(is_server); QuicConnectionPeer::SetIsServer(this, is_server); } TestConnectionHelper::TestAlarm* GetAckAlarm() { return reinterpret_cast( QuicConnectionPeer::GetAckAlarm(this)); } TestConnectionHelper::TestAlarm* GetPingAlarm() { return reinterpret_cast( QuicConnectionPeer::GetPingAlarm(this)); } TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() { return reinterpret_cast( QuicConnectionPeer::GetResumeWritesAlarm(this)); } TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { return reinterpret_cast( QuicConnectionPeer::GetRetransmissionAlarm(this)); } TestConnectionHelper::TestAlarm* GetSendAlarm() { return reinterpret_cast( QuicConnectionPeer::GetSendAlarm(this)); } TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { return reinterpret_cast( QuicConnectionPeer::GetTimeoutAlarm(this)); } using QuicConnection::SelectMutualVersion; private: TestPacketWriter* writer() { return static_cast(QuicConnection::writer()); } DISALLOW_COPY_AND_ASSIGN(TestConnection); }; // Used for testing packets revived from FEC packets. class FecQuicConnectionDebugVisitor : public QuicConnectionDebugVisitor { public: virtual void OnRevivedPacket(const QuicPacketHeader& header, StringPiece data) OVERRIDE { revived_header_ = header; } // Public accessor method. QuicPacketHeader revived_header() const { return revived_header_; } private: QuicPacketHeader revived_header_; }; class MockPacketWriterFactory : public QuicConnection::PacketWriterFactory { public: MockPacketWriterFactory(QuicPacketWriter* writer) { ON_CALL(*this, Create(_)).WillByDefault(Return(writer)); } virtual ~MockPacketWriterFactory() {} MOCK_CONST_METHOD1(Create, QuicPacketWriter*(QuicConnection* connection)); }; class QuicConnectionTest : public ::testing::TestWithParam { protected: QuicConnectionTest() : connection_id_(42), framer_(SupportedVersions(version()), QuicTime::Zero(), false), peer_creator_(connection_id_, &framer_, &random_generator_), send_algorithm_(new StrictMock), loss_algorithm_(new MockLossAlgorithm()), helper_(new TestConnectionHelper(&clock_, &random_generator_)), writer_(new TestPacketWriter(version())), factory_(writer_.get()), connection_(connection_id_, IPEndPoint(), helper_.get(), factory_, false, version()), frame1_(1, false, 0, MakeIOVector(data1)), frame2_(1, false, 3, MakeIOVector(data2)), sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER), connection_id_length_(PACKET_8BYTE_CONNECTION_ID) { connection_.set_visitor(&visitor_); connection_.SetSendAlgorithm(send_algorithm_); connection_.SetLossAlgorithm(loss_algorithm_); framer_.set_received_entropy_calculator(&entropy_calculator_); // Simplify tests by not sending feedback unless specifically configured. SetFeedback(NULL); EXPECT_CALL( *send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly(Return( QuicTime::Delta::Zero())); EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _)).Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly( Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( Return(kMaxPacketSize)); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) .Times(AnyNumber()) .WillRepeatedly(Return(QuicBandwidth::Zero())); EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) .WillRepeatedly(Return(QuicTime::Zero())); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillRepeatedly(Return(SequenceNumberSet())); } QuicVersion version() { return GetParam(); } QuicAckFrame* outgoing_ack() { outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_)); return outgoing_ack_.get(); } QuicStopWaitingFrame* stop_waiting() { stop_waiting_.reset( QuicConnectionPeer::CreateStopWaitingFrame(&connection_)); return stop_waiting_.get(); } QuicPacketSequenceNumber least_unacked() { if (writer_->stop_waiting_frames().empty()) { return 0; } return writer_->stop_waiting_frames()[0].least_unacked; } void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } void ProcessPacket(QuicPacketSequenceNumber number) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); ProcessDataPacket(number, 0, !kEntropyFlag); } QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { QuicFrames frames; frames.push_back(QuicFrame(frame)); QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, connection_.is_server()); SerializedPacket serialized_packet = peer_creator_.SerializeAllFrames(frames); scoped_ptr packet(serialized_packet.packet); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, serialized_packet.sequence_number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return serialized_packet.entropy_hash; } size_t ProcessDataPacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag) { return ProcessDataPacketAtLevel(number, fec_group, entropy_flag, ENCRYPTION_NONE); } size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag, EncryptionLevel level) { scoped_ptr packet(ConstructDataPacket(number, fec_group, entropy_flag)); scoped_ptr encrypted(framer_.EncryptPacket( level, number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return encrypted->length(); } void ProcessPingPacket(QuicPacketSequenceNumber number) { scoped_ptr packet(ConstructPingPacket(number)); scoped_ptr encrypted(framer_.EncryptPacket( ENCRYPTION_NONE, number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } void ProcessClosePacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group) { scoped_ptr packet(ConstructClosePacket(number, fec_group)); scoped_ptr encrypted(framer_.EncryptPacket( ENCRYPTION_NONE, number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number, bool expect_revival, bool entropy_flag) { if (expect_revival) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); } EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1). RetiresOnSaturation(); return ProcessDataPacket(number, 1, entropy_flag); } // Processes an FEC packet that covers the packets that would have been // received. size_t ProcessFecPacket(QuicPacketSequenceNumber number, QuicPacketSequenceNumber min_protected_packet, bool expect_revival, bool entropy_flag, QuicPacket* packet) { if (expect_revival) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); } // Construct the decrypted data packet so we can compute the correct // redundancy. If |packet| has been provided then use that, otherwise // construct a default data packet. scoped_ptr data_packet; if (packet) { data_packet.reset(packet); } else { data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag)); } header_.public_header.connection_id = connection_id_; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.public_header.sequence_number_length = sequence_number_length_; header_.public_header.connection_id_length = connection_id_length_; header_.packet_sequence_number = number; header_.entropy_flag = entropy_flag; header_.fec_flag = true; header_.is_in_fec_group = IN_FEC_GROUP; header_.fec_group = min_protected_packet; QuicFecData fec_data; fec_data.fec_group = header_.fec_group; // Since all data packets in this test have the same payload, the // redundancy is either equal to that payload or the xor of that payload // with itself, depending on the number of packets. if (((number - min_protected_packet) % 2) == 0) { for (size_t i = GetStartOfFecProtectedData( header_.public_header.connection_id_length, header_.public_header.version_flag, header_.public_header.sequence_number_length); i < data_packet->length(); ++i) { data_packet->mutable_data()[i] ^= data_packet->data()[i]; } } fec_data.redundancy = data_packet->FecProtectedData(); scoped_ptr fec_packet( framer_.BuildFecPacket(header_, fec_data).packet); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return encrypted->length(); } QuicByteCount SendStreamDataToPeer(QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicPacketSequenceNumber* last_packet) { QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(id, data, offset, fin, NULL); if (last_packet != NULL) { *last_packet = QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number(); } EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); return packet_size; } void SendAckPacketToPeer() { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendAck(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); } QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } bool IsMissing(QuicPacketSequenceNumber number) { return IsAwaitingPacket(*outgoing_ack(), number); } QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag) { header_.public_header.connection_id = connection_id_; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.public_header.sequence_number_length = sequence_number_length_; header_.public_header.connection_id_length = connection_id_length_; header_.entropy_flag = entropy_flag; header_.fec_flag = false; header_.packet_sequence_number = number; header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; header_.fec_group = fec_group; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); QuicPacket* packet = BuildUnsizedDataPacket(&framer_, header_, frames).packet; EXPECT_TRUE(packet != NULL); return packet; } QuicPacket* ConstructPingPacket(QuicPacketSequenceNumber number) { header_.public_header.connection_id = connection_id_; header_.packet_sequence_number = number; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = false; header_.fec_flag = false; header_.is_in_fec_group = NOT_IN_FEC_GROUP; header_.fec_group = 0; QuicPingFrame ping; QuicFrames frames; QuicFrame frame(&ping); frames.push_back(frame); QuicPacket* packet = BuildUnsizedDataPacket(&framer_, header_, frames).packet; EXPECT_TRUE(packet != NULL); return packet; } QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group) { header_.public_header.connection_id = connection_id_; header_.packet_sequence_number = number; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = false; header_.fec_flag = false; header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; header_.fec_group = fec_group; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrames frames; QuicFrame frame(&qccf); frames.push_back(frame); QuicPacket* packet = BuildUnsizedDataPacket(&framer_, header_, frames).packet; EXPECT_TRUE(packet != NULL); return packet; } void SetFeedback(QuicCongestionFeedbackFrame* feedback) { receive_algorithm_ = new TestReceiveAlgorithm(feedback); connection_.SetReceiveAlgorithm(receive_algorithm_); } QuicTime::Delta DefaultRetransmissionTime() { return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } QuicTime::Delta DefaultDelayedAckTime() { return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs); } // Initialize a frame acknowledging all packets up to largest_observed. const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed) { QuicAckFrame frame(MakeAckFrame(largest_observed)); if (largest_observed > 0) { frame.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, largest_observed); } return frame; } const QuicStopWaitingFrame InitStopWaitingFrame( QuicPacketSequenceNumber least_unacked) { QuicStopWaitingFrame frame; frame.least_unacked = least_unacked; return frame; } // Explicitly nack a packet. void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) { frame->missing_packets.insert(missing); frame->entropy_hash ^= QuicConnectionPeer::PacketEntropy(&connection_, missing); } // Undo nacking a packet within the frame. void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) { EXPECT_THAT(frame->missing_packets, Contains(arrived)); frame->missing_packets.erase(arrived); frame->entropy_hash ^= QuicConnectionPeer::PacketEntropy(&connection_, arrived); } void TriggerConnectionClose() { // Send an erroneous packet to close the connection. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); // Call ProcessDataPacket rather than ProcessPacket, as we should not get a // packet call to the visitor. ProcessDataPacket(6000, 0, !kEntropyFlag); EXPECT_FALSE( QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL); } void BlockOnNextWrite() { writer_->BlockOnNextWrite(); EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); } void CongestionBlockWrites() { EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::FromSeconds(1))); } void CongestionUnblockWrites() { EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); } QuicConnectionId connection_id_; QuicFramer framer_; QuicPacketCreator peer_creator_; MockEntropyCalculator entropy_calculator_; MockSendAlgorithm* send_algorithm_; MockLossAlgorithm* loss_algorithm_; TestReceiveAlgorithm* receive_algorithm_; MockClock clock_; MockRandom random_generator_; scoped_ptr helper_; scoped_ptr writer_; NiceMock factory_; TestConnection connection_; StrictMock visitor_; QuicPacketHeader header_; QuicStreamFrame frame1_; QuicStreamFrame frame2_; scoped_ptr outgoing_ack_; scoped_ptr stop_waiting_; QuicSequenceNumberLength sequence_number_length_; QuicConnectionIdLength connection_id_length_; private: DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); }; // Run all end to end tests with all supported versions. INSTANTIATE_TEST_CASE_P(SupportedVersion, QuicConnectionTest, ::testing::ValuesIn(QuicSupportedVersions())); TEST_P(QuicConnectionTest, PacketsInOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); EXPECT_EQ(1u, outgoing_ack()->largest_observed); EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); ProcessPacket(2); EXPECT_EQ(2u, outgoing_ack()->largest_observed); EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); } TEST_P(QuicConnectionTest, PacketsOutOfOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(2); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(1); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_FALSE(IsMissing(1)); } TEST_P(QuicConnectionTest, DuplicatePacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); // Send packet 3 again, but do not set the expectation that // the visitor OnStreamFrames() will be called. ProcessDataPacket(3, 0, !kEntropyFlag); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); } TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(2); EXPECT_EQ(3u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(1)); ProcessPacket(5); EXPECT_EQ(5u, outgoing_ack()->largest_observed); EXPECT_TRUE(IsMissing(1)); EXPECT_TRUE(IsMissing(4)); // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a // packet the peer will not retransmit. It indicates this by sending 'least // awaiting' is 4. The connection should then realize 1 will not be // retransmitted, and will remove it from the missing list. peer_creator_.set_sequence_number(5); QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _)); ProcessAckPacket(&frame); // Force an ack to be sent. SendAckPacketToPeer(); EXPECT_TRUE(IsMissing(4)); } TEST_P(QuicConnectionTest, RejectPacketTooFarOut) { EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); // Call ProcessDataPacket rather than ProcessPacket, as we should not get a // packet call to the visitor. ProcessDataPacket(6000, 0, !kEntropyFlag); EXPECT_FALSE( QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL); } TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { // Process an unencrypted packet from the non-crypto stream. frame1_.stream_id = 3; EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, false)); ProcessDataPacket(1, 0, !kEntropyFlag); EXPECT_FALSE( QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL); const vector& connection_close_frames = writer_->connection_close_frames(); EXPECT_EQ(1u, connection_close_frames.size()); EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA, connection_close_frames[0].error_code); } TEST_P(QuicConnectionTest, TruncatedAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber num_packets = 256 * 2 + 1; for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) { SendStreamDataToPeer(3, "foo", i * 3, !kFin, NULL); } QuicAckFrame frame = InitAckFrame(num_packets); SequenceNumberSet lost_packets; // Create an ack with 256 nacks, none adjacent to one another. for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) { NackPacket(i * 2, &frame); if (i < 256) { // Last packet is nacked, but not lost. lost_packets.insert(i * 2); } } EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(entropy_calculator_, EntropyHash(511)).WillOnce(testing::Return(0)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); const QuicSentPacketManager& sent_packet_manager = connection_.sent_packet_manager(); // A truncated ack will not have the true largest observed. EXPECT_GT(num_packets, sent_packet_manager.largest_observed()); AckPacket(192, &frame); // Removing one missing packet allows us to ack 192 and one more range, but // 192 has already been declared lost, so it doesn't register as an ack. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(SequenceNumberSet())); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); EXPECT_EQ(num_packets, sent_packet_manager.largest_observed()); } TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); // Delay sending, then queue up an ack. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); QuicConnectionPeer::SendAck(&connection_); // Process an ack with a least unacked of the received ack. // This causes an ack to be sent when TimeUntilSend returns 0. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); // Skip a packet and then record an ack. peer_creator_.set_sequence_number(2); QuicAckFrame frame = InitAckFrame(0); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); // Should ack immediately since we have missing packets. EXPECT_EQ(1u, writer_->packets_write_attempts()); ProcessPacket(2); // Should ack immediately since we have missing packets. EXPECT_EQ(2u, writer_->packets_write_attempts()); ProcessPacket(1); // Should ack immediately, since this fills the last hole. EXPECT_EQ(3u, writer_->packets_write_attempts()); ProcessPacket(4); // Should not cause an ack. EXPECT_EQ(3u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber original; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); QuicAckFrame frame = InitAckFrame(original); NackPacket(original, &frame); // First nack triggers early retransmit. SequenceNumberSet lost_packets; lost_packets.insert(1); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicPacketSequenceNumber retransmission; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)) .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true))); ProcessAckPacket(&frame); QuicAckFrame frame2 = InitAckFrame(retransmission); NackPacket(original, &frame2); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(SequenceNumberSet())); ProcessAckPacket(&frame2); // Now if the peer sends an ack which still reports the retransmitted packet // as missing, that will bundle an ack with data after two acks in a row // indicate the high water mark needs to be raised. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL); // No ack sent. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); // No more packet loss for the rest of the test. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillRepeatedly(Return(SequenceNumberSet())); ProcessAckPacket(&frame2); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL); // Ack bundled. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(writer_->ack_frames().empty()); // But an ack with no missing packets will not send an ack. AckPacket(original, &frame2); ProcessAckPacket(&frame2); ProcessAckPacket(&frame2); } TEST_P(QuicConnectionTest, 20AcksCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); // But an ack with no missing packets will not send an ack. QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillRepeatedly(Return(SequenceNumberSet())); for (int i = 0; i < 20; ++i) { EXPECT_FALSE(ack_alarm->IsSet()); ProcessAckPacket(&frame); } EXPECT_TRUE(ack_alarm->IsSet()); } TEST_P(QuicConnectionTest, LeastUnackedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); // Start out saying the least unacked is 2. peer_creator_.set_sequence_number(5); QuicStopWaitingFrame frame = InitStopWaitingFrame(2); ProcessStopWaitingPacket(&frame); // Change it to 1, but lower the sequence number to fake out-of-order packets. // This should be fine. peer_creator_.set_sequence_number(1); // The scheduler will not process out of order acks, but all packet processing // causes the connection to try to write. EXPECT_CALL(visitor_, OnCanWrite()); QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1); ProcessStopWaitingPacket(&frame2); // Now claim it's one, but set the ordering so it was sent "after" the first // one. This should cause a connection error. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); peer_creator_.set_sequence_number(7); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false)); QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1); ProcessStopWaitingPacket(&frame3); } TEST_P(QuicConnectionTest, LargestObservedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Start out saying the largest observed is 2. QuicAckFrame frame1 = InitAckFrame(1); QuicAckFrame frame2 = InitAckFrame(2); ProcessAckPacket(&frame2); // Now change it to 1, and it should cause a connection error. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame1); } TEST_P(QuicConnectionTest, AckUnsentData) { // Ack a packet which has not been sent. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicAckFrame frame(MakeAckFrame(1)); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckAll) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); peer_creator_.set_sequence_number(1); QuicAckFrame frame1 = InitAckFrame(0); ProcessAckPacket(&frame1); } TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { QuicPacketSequenceNumber last_packet; QuicPacketCreator* creator = QuicConnectionPeer::GetPacketCreator(&connection_); SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( Return(kMaxPacketSize * 256)); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(2u, last_packet); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); // The 1 packet lag is due to the sequence number length being recalculated in // QuicConnection after a packet is sent. EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( Return(kMaxPacketSize * 256 * 256)); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(3u, last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( Return(kMaxPacketSize * 256 * 256 * 256)); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(4u, last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( Return(kMaxPacketSize * 256 * 256 * 256 * 256)); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(5u, last_packet); EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); } // TODO(ianswett): Re-enable this test by finding a good way to test different // sequence number lengths without sending packets with giant gaps. TEST_P(QuicConnectionTest, DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) { QuicPacketSequenceNumber last_packet; QuicPacketCreator* creator = QuicConnectionPeer::GetPacketCreator(&connection_); SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); creator->set_sequence_number(100); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); creator->set_sequence_number(100 * 256); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); creator->set_sequence_number(100 * 256 * 256); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); creator->set_sequence_number(100 * 256 * 256 * 256); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, creator->next_sequence_number_length()); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, writer_->header().public_header.sequence_number_length); } TEST_P(QuicConnectionTest, BasicSending) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendAckPacketToPeer(); // Packet 2 EXPECT_EQ(1u, least_unacked()); SendAckPacketToPeer(); // Packet 3 EXPECT_EQ(1u, least_unacked()); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(1u, least_unacked()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Peer acks up to packet 3. QuicAckFrame frame = InitAckFrame(3); ProcessAckPacket(&frame); SendAckPacketToPeer(); // Packet 6 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of // ack for 4. EXPECT_EQ(4u, least_unacked()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Peer acks up to packet 4, the last packet. QuicAckFrame frame2 = InitAckFrame(6); ProcessAckPacket(&frame2); // Acks don't instigate acks. // Verify that we did not send an ack. EXPECT_EQ(6u, writer_->header().packet_sequence_number); // So the last ack has not changed. EXPECT_EQ(4u, least_unacked()); // If we force an ack, we shouldn't change our retransmit state. SendAckPacketToPeer(); // Packet 7 EXPECT_EQ(7u, least_unacked()); // But if we send more data it should. SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8 EXPECT_EQ(8u, last_packet); SendAckPacketToPeer(); // Packet 9 EXPECT_EQ(7u, least_unacked()); } TEST_P(QuicConnectionTest, FECSending) { // All packets carry version info till version is negotiated. QuicPacketCreator* creator = QuicConnectionPeer::GetPacketCreator(&connection_); size_t payload_length; // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining // packet length. The size of the offset field in a stream frame is 0 for // offset 0, and 2 for non-zero offsets up through 64K. Increase // max_packet_length by 2 so that subsequent packets containing subsequent // stream frames with non-zero offets will fit within the packet length. size_t length = 2 + GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, IN_FEC_GROUP, &payload_length); creator->set_max_packet_length(length); // Send 4 protected data packets, which should also trigger 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(5); // The first stream frame will have 2 fewer overhead bytes than the other 3. const string payload(payload_length * 4 + 2, 'a'); connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL); // Expect the FEC group to be closed after SendStreamDataWithString. EXPECT_FALSE(creator->IsFecGroupOpen()); EXPECT_FALSE(creator->IsFecProtected()); } TEST_P(QuicConnectionTest, FECQueueing) { // All packets carry version info till version is negotiated. size_t payload_length; QuicPacketCreator* creator = QuicConnectionPeer::GetPacketCreator(&connection_); size_t length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, IN_FEC_GROUP, &payload_length); creator->set_max_packet_length(length); EXPECT_TRUE(creator->IsFecEnabled()); EXPECT_EQ(0u, connection_.NumQueuedPackets()); BlockOnNextWrite(); const string payload(payload_length, 'a'); connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL); EXPECT_FALSE(creator->IsFecGroupOpen()); EXPECT_FALSE(creator->IsFecProtected()); // Expect the first data packet and the fec packet to be queued. EXPECT_EQ(2u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, AbandonFECFromCongestionWindow) { EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( &connection_)->IsFecEnabled()); // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL); const QuicTime::Delta retransmission_time = QuicTime::Delta::FromMilliseconds(5000); clock_.AdvanceTime(retransmission_time); // Abandon FEC packet and data packet. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); EXPECT_CALL(visitor_, OnCanWrite()); connection_.OnRetransmissionTimeout(); } TEST_P(QuicConnectionTest, DontAbandonAckedFEC) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( &connection_)->IsFecEnabled()); // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL); // Send some more data afterwards to ensure early retransmit doesn't trigger. connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL); connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL); QuicAckFrame ack_fec = InitAckFrame(2); // Data packet missing. // TODO(ianswett): Note that this is not a sensible ack, since if the FEC was // received, it would cause the covered packet to be acked as well. NackPacket(1, &ack_fec); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack_fec); clock_.AdvanceTime(DefaultRetransmissionTime()); // Don't abandon the acked FEC packet, but it will abandon 2 the subsequent // FEC packets. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); connection_.GetRetransmissionAlarm()->Fire(); } TEST_P(QuicConnectionTest, AbandonAllFEC) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( &connection_)->IsFecEnabled()); // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL); // Send some more data afterwards to ensure early retransmit doesn't trigger. connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL); // Advance the time so not all the FEC packets are abandoned. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL); QuicAckFrame ack_fec = InitAckFrame(5); // Ack all data packets, but no fec packets. NackPacket(2, &ack_fec); NackPacket(4, &ack_fec); // Lose the first FEC packet and ack the three data packets. SequenceNumberSet lost_packets; lost_packets.insert(2); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack_fec); clock_.AdvanceTime(DefaultRetransmissionTime().Subtract( QuicTime::Delta::FromMilliseconds(1))); // Abandon all packets EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(false)); connection_.GetRetransmissionAlarm()->Fire(); // Ensure the alarm is not set since all packets have been abandoned. EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, FramePacking) { CongestionBlockWrites(); // Send an ack and two stream frames in 1 packet by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); CongestionUnblockWrites(); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(4u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); ASSERT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); } TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { CongestionBlockWrites(); // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 // packets by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendCryptoStreamData)))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); CongestionUnblockWrites(); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the crypto stream frame. EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id); } TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { CongestionBlockWrites(); // Send an ack and two stream frames (one crypto, then one non-crypto) in 2 // packets by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendCryptoStreamData)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); CongestionUnblockWrites(); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the stream frame from stream 3. EXPECT_EQ(1u, writer_->frame_count()); ASSERT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); } TEST_P(QuicConnectionTest, FramePackingFEC) { EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( &connection_)->IsFecEnabled()); CongestionBlockWrites(); // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on // for sending protected data; two stream frames are packing in 1 packet. EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData3WithFec)), IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::SendStreamData5WithFec)))); connection_.SendAck(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); CongestionUnblockWrites(); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's in an fec group. EXPECT_EQ(2u, writer_->header().fec_group); EXPECT_EQ(0u, writer_->frame_count()); } TEST_P(QuicConnectionTest, FramePackingAckResponse) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Process a data packet to queue up a pending ack. EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); ProcessDataPacket(1, 1, kEntropyFlag); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); // Process an ack to cause the visitor's OnCanWrite to be invoked. peer_creator_.set_sequence_number(2); QuicAckFrame ack_one = InitAckFrame(0); ProcessAckPacket(&ack_one); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(4u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); ASSERT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); } TEST_P(QuicConnectionTest, FramePackingSendv) { // Send data in 1 packet by writing multiple blocks in a single iovector // using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); char data[] = "ABCD"; IOVector data_iov; data_iov.AppendNoCoalesce(data, 2); data_iov.AppendNoCoalesce(data + 2, 2); connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure multiple iovector blocks have // been packed into a single stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); QuicStreamFrame frame = writer_->stream_frames()[0]; EXPECT_EQ(1u, frame.stream_id); EXPECT_EQ("ABCD", string(static_cast (frame.data.iovec()[0].iov_base), (frame.data.iovec()[0].iov_len))); } TEST_P(QuicConnectionTest, FramePackingSendvQueued) { // Try to send two stream frames in 1 packet by using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); BlockOnNextWrite(); char data[] = "ABCD"; IOVector data_iov; data_iov.AppendNoCoalesce(data, 2); data_iov.AppendNoCoalesce(data + 2, 2); connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_TRUE(connection_.HasQueuedData()); // Unblock the writes and actually send. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); } TEST_P(QuicConnectionTest, SendingZeroBytes) { // Send a zero byte write with a fin using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); IOVector empty_iov; connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); EXPECT_TRUE(writer_->stream_frames()[0].fin); } TEST_P(QuicConnectionTest, OnCanWrite) { // Visitor's OnCanWrite will send data, but will have more pending writes. EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)))); EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); connection_.OnCanWrite(); // Parse the last packet and ensure it's the two stream frames from // two different streams. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_EQ(2u, writer_->stream_frames().size()); EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); } TEST_P(QuicConnectionTest, RetransmitOnNack) { QuicPacketSequenceNumber last_packet; QuicByteCount second_packet_size; SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1 second_packet_size = SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't lose a packet on an ack, and nothing is retransmitted. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack_one = InitAckFrame(1); ProcessAckPacket(&ack_one); // Lose a packet and ensure it triggers retransmission. QuicAckFrame nack_two = InitAckFrame(3); NackPacket(2, &nack_two); SequenceNumberSet lost_packets; lost_packets.insert(2); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)). Times(1); ProcessAckPacket(&nack_two); } TEST_P(QuicConnectionTest, DiscardRetransmit) { QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Instigate a loss with an ack. QuicAckFrame nack_two = InitAckFrame(3); NackPacket(2, &nack_two); // The first nack should trigger a fast retransmission, but we'll be // write blocked, so the packet will be queued. BlockOnNextWrite(); SequenceNumberSet lost_packets; lost_packets.insert(2); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&nack_two); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Now, ack the previous transmission. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(SequenceNumberSet())); QuicAckFrame ack_all = InitAckFrame(3); ProcessAckPacket(&ack_all); // Unblock the socket and attempt to send the queued packets. However, // since the previous transmission has been acked, we will not // send the retransmission. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber largest_observed; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size), Return(true))); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); QuicAckFrame frame = InitAckFrame(1); NackPacket(largest_observed, &frame); // The first nack should retransmit the largest observed packet. SequenceNumberSet lost_packets; lost_packets.insert(1); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { for (int i = 0; i < 10; ++i) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, NULL); } // Block the congestion window and ensure they're queued. BlockOnNextWrite(); clock_.AdvanceTime(DefaultRetransmissionTime()); // Only one packet should be retransmitted. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_TRUE(connection_.HasQueuedData()); // Unblock the congestion window. writer_->SetWritable(); clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( 2 * DefaultRetransmissionTime().ToMicroseconds())); // Retransmit already retransmitted packets event though the sequence number // greater than the largest observed. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); connection_.GetRetransmissionAlarm()->Fire(); connection_.OnCanWrite(); } TEST_P(QuicConnectionTest, WriteBlockedThenSent) { BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); // Simulate the retransmission alarm firing. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(_)); clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Ack the sent packet before the callback returns, which happens in // rare circumstances with write blocked sockets. QuicAckFrame ack = InitAckFrame(1); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); ProcessAckPacket(&ack); writer_->SetWritable(); connection_.OnCanWrite(); // There is now a pending packet, but with no retransmittable frames. EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2)); } TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { // Block the connection. BlockOnNextWrite(); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); // Set the send and resumption alarms. Fire the alarms and ensure they don't // attempt to write. connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); connection_.GetResumeWritesAlarm()->Fire(); connection_.GetSendAlarm()->Fire(); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); int offset = 0; // Send packets 1 to 15. for (int i = 0; i < 15; ++i) { SendStreamDataToPeer(1, "foo", offset, !kFin, NULL); offset += 3; } // Ack 15, nack 1-14. SequenceNumberSet lost_packets; QuicAckFrame nack = InitAckFrame(15); for (int i = 1; i < 15; ++i) { NackPacket(i, &nack); lost_packets.insert(i); } // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits // the retransmission rate in the case of burst losses. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); ProcessAckPacket(&nack); } // Test sending multiple acks from the connection to the session. TEST_P(QuicConnectionTest, MultipleAcks) { QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2 EXPECT_EQ(2u, last_packet); SendAckPacketToPeer(); // Packet 3 SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5 EXPECT_EQ(5u, last_packet); SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6 EXPECT_EQ(6u, last_packet); // Client will ack packets 1, 2, [!3], 4, 5. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame1 = InitAckFrame(5); NackPacket(3, &frame1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessAckPacket(&frame1); // Now the client implicitly acks 3, and explicitly acks 6. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame2 = InitAckFrame(6); ProcessAckPacket(&frame2); } TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1; // From now on, we send acks, so the send algorithm won't mark them pending. ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(false)); SendAckPacketToPeer(); // Packet 2 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame = InitAckFrame(1); ProcessAckPacket(&frame); // Verify that our internal state has least-unacked as 2, because we're still // waiting for a potential ack for 2. EXPECT_EQ(2u, stop_waiting()->least_unacked); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(2); ProcessAckPacket(&frame); EXPECT_EQ(3u, stop_waiting()->least_unacked); // When we send an ack, we make sure our least-unacked makes sense. In this // case since we're not waiting on an ack for 2 and all packets are acked, we // set it to 3. SendAckPacketToPeer(); // Packet 3 // Least_unacked remains at 3 until another ack is received. EXPECT_EQ(3u, stop_waiting()->least_unacked); // Check that the outgoing ack had its sequence number as least_unacked. EXPECT_EQ(3u, least_unacked()); // Ack the ack, which updates the rtt and raises the least unacked. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(3); ProcessAckPacket(&frame); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4 EXPECT_EQ(4u, stop_waiting()->least_unacked); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(false)); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(4u, least_unacked()); // Send two data packets at the end, and ensure if the last one is acked, // the least unacked is raised above the ack packets. ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); SendStreamDataToPeer(1, "bar", 6, false, NULL); // Packet 6 SendStreamDataToPeer(1, "bar", 9, false, NULL); // Packet 7 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); frame = InitAckFrame(7); NackPacket(5, &frame); NackPacket(6, &frame); ProcessAckPacket(&frame); EXPECT_EQ(6u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); // Entropy flag should be false, so entropy should be 0. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Set up a debug visitor to the connection. FecQuicConnectionDebugVisitor* fec_visitor = new FecQuicConnectionDebugVisitor(); connection_.set_debug_visitor(fec_visitor); QuicPacketSequenceNumber fec_packet = 0; QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER, PACKET_4BYTE_SEQUENCE_NUMBER, PACKET_2BYTE_SEQUENCE_NUMBER, PACKET_1BYTE_SEQUENCE_NUMBER}; // For each sequence number length size, revive a packet and check sequence // number length in the revived packet. for (size_t i = 0; i < arraysize(lengths); ++i) { // Set sequence_number_length_ (for data and FEC packets). sequence_number_length_ = lengths[i]; fec_packet += 2; // Don't send missing packet, but send fec packet right after it. ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL); // Sequence number length in the revived header should be the same as // in the original data/fec packet headers. EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header(). public_header.sequence_number_length); } } TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Set up a debug visitor to the connection. FecQuicConnectionDebugVisitor* fec_visitor = new FecQuicConnectionDebugVisitor(); connection_.set_debug_visitor(fec_visitor); QuicPacketSequenceNumber fec_packet = 0; QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID, PACKET_4BYTE_CONNECTION_ID, PACKET_1BYTE_CONNECTION_ID, PACKET_0BYTE_CONNECTION_ID}; // For each connection id length size, revive a packet and check connection // id length in the revived packet. for (size_t i = 0; i < arraysize(lengths); ++i) { // Set connection id length (for data and FEC packets). connection_id_length_ = lengths[i]; fec_packet += 2; // Don't send missing packet, but send fec packet right after it. ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL); // Connection id length in the revived header should be the same as // in the original data/fec packet headers. EXPECT_EQ(connection_id_length_, fec_visitor->revived_header().public_header.connection_id_length); } } TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, kEntropyFlag); // Don't send missing packet 2. ProcessFecPacket(3, 1, true, !kEntropyFlag, NULL); // Entropy flag should be true, so entropy should not be 0. EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, !kEntropyFlag); // Don't send missing packet 2. ProcessFecProtectedPacket(3, false, !kEntropyFlag); ProcessFecPacket(4, 1, true, kEntropyFlag, NULL); // Ensure QUIC no longer revives entropy for lost packets. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4)); } TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. ProcessFecPacket(3, 1, false, !kEntropyFlag, NULL); // Out of order. ProcessFecProtectedPacket(2, true, !kEntropyFlag); // Entropy flag should be false, so entropy should be 0. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, !kEntropyFlag); // Don't send missing packet 2. ProcessFecPacket(6, 1, false, kEntropyFlag, NULL); ProcessFecProtectedPacket(3, false, kEntropyFlag); ProcessFecProtectedPacket(4, false, kEntropyFlag); ProcessFecProtectedPacket(5, true, !kEntropyFlag); // Ensure entropy is not revived for the missing packet. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3)); } TEST_P(QuicConnectionTest, TLP) { QuicSentPacketManagerPeer::SetMaxTailLossProbes( QuicConnectionPeer::GetSentPacketManager(&connection_), 1); SendStreamDataToPeer(3, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, stop_waiting()->least_unacked); QuicTime retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); EXPECT_NE(QuicTime::Zero(), retransmission_time); EXPECT_EQ(1u, writer_->header().packet_sequence_number); // Simulate the retransmission alarm firing and sending a tlp, // so send algorithm's OnRetransmissionTimeout is not called. clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_sequence_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, RTO) { QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); SendStreamDataToPeer(3, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, stop_waiting()->least_unacked); EXPECT_EQ(1u, writer_->header().packet_sequence_number); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_sequence_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); } TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) { QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); SendStreamDataToPeer(3, "foo", 0, !kFin, NULL); EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(3, "foo", 0, !kFin, NULL); EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); { InSequence s; EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)); } // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Packet should have been sent with ENCRYPTION_NONE. EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); // Packet should have been sent with ENCRYPTION_INITIAL. EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, SendHandshakeMessages) { use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); // Attempt to send a handshake message and have the socket block. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // The packet should be serialized, but not queued. EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Switch to the new encrypter. connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); // Now become writeable and flush the packets. writer_->SetWritable(); EXPECT_CALL(visitor_, OnCanWrite()); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Verify that the handshake packet went out at the null encryption. EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); } TEST_P(QuicConnectionTest, DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); QuicPacketSequenceNumber sequence_number; SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number); // Simulate the retransmission alarm firing and the socket blocking. BlockOnNextWrite(); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Go forward secure. connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); connection_.NeuterUnencryptedPackets(); EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); // Unblock the socket and ensure that no packets are sent. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); writer_->SetWritable(); connection_.OnCanWrite(); } TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(2, "bar", 0, !kFin, NULL); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); } TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); use_tagging_decrypter(); const uint8 tag = 0x07; framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process an encrypted packet which can not yet be decrypted // which should result in the packet being buffered. ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL); // Transition to the new encryption state and process another // encrypted packet which should result in the original packet being // processed. connection_.SetDecrypter(new StrictTaggingDecrypter(tag), ENCRYPTION_INITIAL); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2); ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL); // Finally, process a third packet and note that we do not // reprocess the buffered packet. EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL); } TEST_P(QuicConnectionTest, TestRetransmitOrder) { QuicByteCount first_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( DoAll(SaveArg<3>(&first_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, NULL); QuicByteCount second_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( DoAll(SaveArg<3>(&second_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, NULL); EXPECT_NE(first_packet_size, second_packet_size); // Advance the clock by huge time to make sure packets will be retransmitted. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); } connection_.GetRetransmissionAlarm()->Fire(); // Advance again and expect the packets to be sent again in the same order. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); } connection_.GetRetransmissionAlarm()->Fire(); } TEST_P(QuicConnectionTest, RetransmissionCountCalculation) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber original_sequence_number; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&original_sequence_number), Return(true))); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, original_sequence_number)); EXPECT_FALSE(QuicConnectionPeer::IsRetransmission( &connection_, original_sequence_number)); // Force retransmission due to RTO. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); QuicPacketSequenceNumber rto_sequence_number; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&rto_sequence_number), Return(true))); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, original_sequence_number)); ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, rto_sequence_number)); EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( &connection_, rto_sequence_number)); // Once by explicit nack. SequenceNumberSet lost_packets; lost_packets.insert(rto_sequence_number); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicPacketSequenceNumber nack_sequence_number = 0; // Ack packets might generate some other packets, which are not // retransmissions. (More ack packets). EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&nack_sequence_number), Return(true))); QuicAckFrame ack = InitAckFrame(rto_sequence_number); // Nack the retransmitted packet. NackPacket(original_sequence_number, &ack); NackPacket(rto_sequence_number, &ack); ProcessAckPacket(&ack); ASSERT_NE(0u, nack_sequence_number); EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, rto_sequence_number)); ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, nack_sequence_number)); EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( &connection_, nack_sequence_number)); } TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // Make sure that RTO is not started when the packet is queued. EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); // Test that RTO is started once we write to the socket. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(2); connection_.SendStreamDataWithString(2, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, NULL); QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()), retransmission_alarm->deadline()); // Advance the time right before the RTO, then receive an ack for the first // packet to delay the RTO. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack = InitAckFrame(1); ProcessAckPacket(&ack); EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_GT(retransmission_alarm->deadline(), clock_.Now()); // Move forward past the original RTO and ensure the RTO is still pending. clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2)); // Ensure the second packet gets retransmitted when it finally fires. EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); // Manually cancel the alarm to simulate a real test. connection_.GetRetransmissionAlarm()->Fire(); // The new retransmitted sequence number should set the RTO to a larger value // than previously. EXPECT_TRUE(retransmission_alarm->IsSet()); QuicTime next_rto_time = retransmission_alarm->deadline(); QuicTime expected_rto_time = connection_.sent_packet_manager().GetRetransmissionTime(); EXPECT_EQ(next_rto_time, expected_rto_time); } TEST_P(QuicConnectionTest, TestQueued) { EXPECT_EQ(0u, connection_.NumQueuedPackets()); BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Unblock the writes and actually send. writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, CloseFecGroup) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. // Don't send missing packet 2. ProcessFecProtectedPacket(3, false, !kEntropyFlag); // Don't send missing FEC packet 3. ASSERT_EQ(1u, connection_.NumFecGroups()); // Now send non-fec protected ack packet and close the group. peer_creator_.set_sequence_number(4); QuicStopWaitingFrame frame = InitStopWaitingFrame(5); ProcessStopWaitingPacket(&frame); ASSERT_EQ(0u, connection_.NumFecGroups()); } TEST_P(QuicConnectionTest, NoQuicCongestionFeedbackFrame) { SendAckPacketToPeer(); EXPECT_TRUE(writer_->feedback_frames().empty()); } TEST_P(QuicConnectionTest, WithQuicCongestionFeedbackFrame) { QuicCongestionFeedbackFrame info; info.type = kTCP; info.tcp.receive_window = 0x4030; // After QUIC_VERSION_22, do not send TCP Congestion Feedback Frames anymore. if (version() > QUIC_VERSION_22) { SendAckPacketToPeer(); ASSERT_TRUE(writer_->feedback_frames().empty()); } else { // Only SetFeedback in this case because SetFeedback will create a receive // algorithm which is how the received_packet_manager checks if it should be // creating TCP Congestion Feedback Frames. SetFeedback(&info); SendAckPacketToPeer(); ASSERT_FALSE(writer_->feedback_frames().empty()); ASSERT_EQ(kTCP, writer_->feedback_frames()[0].type); } } TEST_P(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) { SendAckPacketToPeer(); EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); } TEST_P(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendAckPacketToPeer(); // Process an FEC packet, and revive the missing data packet // but only contact the receive_algorithm once. EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _)); ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); } TEST_P(QuicConnectionTest, InitialTimeout) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); QuicTime default_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); if (FLAGS_quic_timeouts_require_activity) { // Simulate the timeout alarm firing. clock_.AdvanceTime( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); connection_.GetTimeoutAlarm()->Fire(); // We should not actually timeout until a packet is sent. EXPECT_TRUE(connection_.connected()); SendStreamDataToPeer(1, "GET /", 0, kFin, NULL); } // Simulate the timeout alarm firing. clock_.AdvanceTime( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); } TEST_P(QuicConnectionTest, OverallTimeout) { connection_.SetOverallConnectionTimeout( QuicTime::Delta::FromSeconds(kDefaultMaxTimeForCryptoHandshakeSecs)); EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); QuicTime overall_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kDefaultMaxTimeForCryptoHandshakeSecs)); EXPECT_EQ(overall_timeout, connection_.GetTimeoutAlarm()->deadline()); EXPECT_TRUE(connection_.connected()); SendStreamDataToPeer(1, "GET /", 0, kFin, NULL); clock_.AdvanceTime( QuicTime::Delta::FromSeconds(2 * kDefaultInitialTimeoutSecs)); // Process an ack and see that the connection still times out. QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); // Simulate the timeout alarm firing. connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); } TEST_P(QuicConnectionTest, PingAfterSend) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(true)); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); // Advance to 5ms, and send a packet to the peer, which will set // the ping alarm. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); SendStreamDataToPeer(1, "GET /", 0, kFin, NULL); EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)), connection_.GetPingAlarm()->deadline()); // Now recevie and ACK of the previous packet, which will move the // ping alarm forward. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); QuicAckFrame frame = InitAckFrame(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); // The ping timer is set slightly less than 15 seconds in the future, because // of the 1s ping timer alarm granularity. EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)) .Subtract(QuicTime::Delta::FromMilliseconds(5)), connection_.GetPingAlarm()->deadline()); writer_->Reset(); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); connection_.GetPingAlarm()->Fire(); EXPECT_EQ(1u, writer_->frame_count()); if (version() >= QUIC_VERSION_18) { ASSERT_EQ(1u, writer_->ping_frames().size()); } else { ASSERT_EQ(1u, writer_->stream_frames().size()); EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id); EXPECT_EQ(0u, writer_->stream_frames()[0].offset); } writer_->Reset(); EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); SendAckPacketToPeer(); EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); } TEST_P(QuicConnectionTest, TimeoutAfterSend) { EXPECT_TRUE(connection_.connected()); QuicTime default_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); // When we send a packet, the timeout will change to 5000 + // kDefaultInitialTimeoutSecs. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); // Send an ack so we don't set the retransmission alarm. SendAckPacketToPeer(); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // The original alarm will fire. We should not time out because we had a // network event at t=5000. The alarm will reregister. clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( kDefaultInitialTimeoutSecs * 1000000 - 5000)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), connection_.GetTimeoutAlarm()->deadline()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } TEST_P(QuicConnectionTest, SendScheduler) { // Test that if we send a packet without delay, it is not queued. QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); BlockOnNextWrite(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { // All packets carry version info till version is negotiated. size_t payload_length; size_t length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP, &payload_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length( length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(10))); const string payload(payload_length, 'a'); EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin, NULL).bytes_consumed); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_P(QuicConnectionTest, LoopThroughSendingPackets) { // All packets carry version info till version is negotiated. size_t payload_length; // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining // packet length. The size of the offset field in a stream frame is 0 for // offset 0, and 2 for non-zero offsets up through 16K. Increase // max_packet_length by 2 so that subsequent packets containing subsequent // stream frames with non-zero offets will fit within the packet length. size_t length = 2 + GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP, &payload_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length( length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); // The first stream frame will have 2 fewer overhead bytes than the other six. const string payload(payload_length * 7 + 2, 'a'); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(1, payload, 0, !kFin, NULL).bytes_consumed); } TEST_P(QuicConnectionTest, SendDelayedAck) { QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); const uint8 tag = 0x07; connection_.SetDecrypter(new StrictTaggingDecrypter(tag), ENCRYPTION_INITIAL); framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process a packet from the non-crypto stream. frame1_.stream_id = 3; // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used // instead of ENCRYPTION_NONE. EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); ProcessDataPacketAtLevel(1, 0, !kEntropyFlag, ENCRYPTION_INITIAL); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Simulate delayed ack alarm firing. connection_.GetAckAlarm()->Fire(); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendEarlyDelayedAckForCrypto) { QuicTime ack_time = clock_.ApproximateNow(); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); // Process a packet from the crypto stream, which is frame1_'s default. ProcessPacket(1); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Simulate delayed ack alarm firing. connection_.GetAckAlarm()->Fire(); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); ProcessPacket(2); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckForPing) { if (version() < QUIC_VERSION_18) { return; } EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); ProcessPingPacket(1); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, NoAckOnOldNacks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Drop one packet, triggering a sequence of acks. ProcessPacket(2); size_t frames_per_ack = 2; EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(3); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(4); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); ProcessPacket(5); EXPECT_EQ(frames_per_ack, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); writer_->Reset(); // Now only set the timer on the 6th packet, instead of sending another ack. ProcessPacket(6); EXPECT_EQ(0u, writer_->frame_count()); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, NULL); // Check that ack is bundled with outgoing data and that delayed ack // alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, NULL); // Check that ack is bundled with outgoing crypto data. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, NULL); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_FALSE(connection_.HasQueuedData()); connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin, NULL); EXPECT_TRUE(writer_->IsWriteBlocked()); EXPECT_TRUE(connection_.HasQueuedData()); } TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendCryptoStreamData))); // Process a packet from the crypto stream, which is frame1_'s default. // Receiving the CHLO as packet 2 first will cause the connection to // immediately send an ack, due to the packet gap. ProcessPacket(2); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, NULL); // Ack the second packet, which will retransmit the first packet. QuicAckFrame ack = InitAckFrame(2); NackPacket(1, &ack); SequenceNumberSet lost_packets; lost_packets.insert(1); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames().size()); writer_->Reset(); // Now ack the retransmission, which will both raise the high water mark // and see if there is more data to send. ack = InitAckFrame(3); NackPacket(1, &ack); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(SequenceNumberSet())); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&ack); // Check that no packet is sent and the ack alarm isn't set. EXPECT_EQ(0u, writer_->frame_count()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); writer_->Reset(); // Send the same ack, but send both data and an ack together. ack = InitAckFrame(3); NackPacket(1, &ack); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(SequenceNumberSet())); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( IgnoreResult(InvokeWithoutArgs( &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); ProcessAckPacket(&ack); // Check that ack is bundled with outgoing data and the delayed ack // alarm is reset. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_FALSE(writer_->stop_waiting_frames().empty()); EXPECT_FALSE(writer_->ack_frames().empty()); EXPECT_EQ(1u, writer_->stream_frames().size()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_P(QuicConnectionTest, NoAckSentForClose) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessClosePacket(2, 0); } TEST_P(QuicConnectionTest, SendWhenDisconnected) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false)); connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.CanWriteStreamData()); QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); } TEST_P(QuicConnectionTest, PublicReset) { QuicPublicResetPacket header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = true; header.public_header.version_flag = false; header.rejected_sequence_number = 10101; scoped_ptr packet( framer_.BuildPublicResetPacket(header)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet); } TEST_P(QuicConnectionTest, GoAway) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicGoAwayFrame goaway; goaway.last_good_stream_id = 1; goaway.error_code = QUIC_PEER_GOING_AWAY; goaway.reason_phrase = "Going away."; EXPECT_CALL(visitor_, OnGoAway(_)); ProcessGoAwayPacket(&goaway); } TEST_P(QuicConnectionTest, WindowUpdate) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicWindowUpdateFrame window_update; window_update.stream_id = 3; window_update.byte_offset = 1234; EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); ProcessFramePacket(QuicFrame(&window_update)); } TEST_P(QuicConnectionTest, Blocked) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicBlockedFrame blocked; blocked.stream_id = 3; EXPECT_CALL(visitor_, OnBlockedFrames(_)); ProcessFramePacket(QuicFrame(&blocked)); } TEST_P(QuicConnectionTest, InvalidPacket) { EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); QuicEncryptedPacket encrypted(NULL, 0); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted); // The connection close packet should have error details. ASSERT_FALSE(writer_->connection_close_frames().empty()); EXPECT_EQ("Unable to read public flags.", writer_->connection_close_frames()[0].error_details); } TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { // Set the sequence number of the ack packet to be least unacked (4). peer_creator_.set_sequence_number(3); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicStopWaitingFrame frame = InitStopWaitingFrame(4); ProcessStopWaitingPacket(&frame); EXPECT_TRUE(outgoing_ack()->missing_packets.empty()); } TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(4, 1, kEntropyFlag); ProcessDataPacket(3, 1, !kEntropyFlag); ProcessDataPacket(7, 1, kEntropyFlag); EXPECT_EQ(146u, outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculationHalfFEC) { // FEC packets should not change the entropy hash calculation. EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessFecPacket(4, 1, false, kEntropyFlag, NULL); ProcessDataPacket(3, 3, !kEntropyFlag); ProcessFecPacket(7, 3, false, kEntropyFlag, NULL); EXPECT_EQ(146u, outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(5, 1, kEntropyFlag); ProcessDataPacket(4, 1, !kEntropyFlag); EXPECT_EQ(34u, outgoing_ack()->entropy_hash); // Make 4th packet my least unacked, and update entropy for 2, 3 packets. peer_creator_.set_sequence_number(5); QuicPacketEntropyHash six_packet_entropy_hash = 0; QuicPacketEntropyHash kRandomEntropyHash = 129u; QuicStopWaitingFrame frame = InitStopWaitingFrame(4); frame.entropy_hash = kRandomEntropyHash; if (ProcessStopWaitingPacket(&frame)) { six_packet_entropy_hash = 1 << 6; } EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash), outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(5, 1, !kEntropyFlag); ProcessDataPacket(22, 1, kEntropyFlag); EXPECT_EQ(66u, outgoing_ack()->entropy_hash); peer_creator_.set_sequence_number(22); QuicPacketEntropyHash kRandomEntropyHash = 85u; // Current packet is the least unacked packet. QuicPacketEntropyHash ack_entropy_hash; QuicStopWaitingFrame frame = InitStopWaitingFrame(23); frame.entropy_hash = kRandomEntropyHash; ack_entropy_hash = ProcessStopWaitingPacket(&frame); EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash), outgoing_ack()->entropy_hash); ProcessDataPacket(25, 1, kEntropyFlag); EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))), outgoing_ack()->entropy_hash); } TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) { EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketEntropyHash entropy[51]; entropy[0] = 0; for (int i = 1; i < 51; ++i) { bool should_send = i % 10 != 1; bool entropy_flag = (i & (i - 1)) != 0; if (!should_send) { entropy[i] = entropy[i - 1]; continue; } if (entropy_flag) { entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); } else { entropy[i] = entropy[i - 1]; } ProcessDataPacket(i, 1, entropy_flag); } for (int i = 1; i < 50; ++i) { EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash( &connection_, i)); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr packet( BuildUnsizedDataPacket(&framer_, header, frames).packet); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(version()); connection_.set_is_server(true); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_TRUE(writer_->version_negotiation_packet() != NULL); size_t num_versions = arraysize(kSupportedQuicVersions); ASSERT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr packet( BuildUnsizedDataPacket(&framer_, header, frames).packet); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(version()); connection_.set_is_server(true); BlockOnNextWrite(); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_TRUE(connection_.HasQueuedData()); writer_->SetWritable(); connection_.OnCanWrite(); EXPECT_TRUE(writer_->version_negotiation_packet() != NULL); size_t num_versions = arraysize(kSupportedQuicVersions); ASSERT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { connection_.SetSupportedVersions(QuicSupportedVersions()); framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr packet( BuildUnsizedDataPacket(&framer_, header, frames).packet); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(version()); connection_.set_is_server(true); BlockOnNextWrite(); writer_->set_is_write_blocked_data_buffered(true); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_FALSE(connection_.HasQueuedData()); } TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { // Start out with some unsupported version. QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests( QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } // Send a version negotiation packet. scoped_ptr encrypted( framer_.BuildVersionNegotiationPacket( header.public_header, supported_versions)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); // Now force another packet. The connection should transition into // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. header.public_header.version_flag = false; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr packet( BuildUnsizedDataPacket(&framer_, header, frames).packet); encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket( QuicConnectionPeer::GetPacketCreator(&connection_))); } TEST_P(QuicConnectionTest, BadVersionNegotiation) { QuicPacketHeader header; header.public_header.connection_id = connection_id_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } // Send a version negotiation packet with the version the client started with. // It should be rejected. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, false)); scoped_ptr encrypted( framer_.BuildVersionNegotiationPacket( header.public_header, supported_versions)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } TEST_P(QuicConnectionTest, CheckSendStats) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(3, "first", 0, !kFin, NULL); size_t first_packet_size = writer_->last_packet_size(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendStreamDataWithString(5, "second", 0, !kFin, NULL); size_t second_packet_size = writer_->last_packet_size(); // 2 retransmissions due to rto, 1 due to explicit nack. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); // Retransmit due to RTO. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); connection_.GetRetransmissionAlarm()->Fire(); // Retransmit due to explicit nacks. QuicAckFrame nack_three = InitAckFrame(4); NackPacket(3, &nack_three); NackPacket(1, &nack_three); SequenceNumberSet lost_packets; lost_packets.insert(1); lost_packets.insert(3); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(visitor_, OnCanWrite()).Times(2); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); ProcessAckPacket(&nack_three); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( Return(QuicBandwidth::Zero())); const uint32 kSlowStartThreshold = 23u; EXPECT_CALL(*send_algorithm_, GetSlowStartThreshold()).WillOnce( Return(kSlowStartThreshold)); const QuicConnectionStats& stats = connection_.GetStats(); EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, stats.bytes_sent); EXPECT_EQ(5u, stats.packets_sent); EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, stats.bytes_retransmitted); EXPECT_EQ(3u, stats.packets_retransmitted); EXPECT_EQ(1u, stats.rto_count); EXPECT_EQ(kMaxPacketSize, stats.congestion_window); EXPECT_EQ(kSlowStartThreshold, stats.slow_start_threshold); EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); } TEST_P(QuicConnectionTest, CheckReceiveStats) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); size_t received_bytes = 0; received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag); received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag); // Should be counted against dropped packets. received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag); received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, NULL); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( Return(QuicBandwidth::Zero())); const uint32 kSlowStartThreshold = 23u; EXPECT_CALL(*send_algorithm_, GetSlowStartThreshold()).WillOnce( Return(kSlowStartThreshold)); const QuicConnectionStats& stats = connection_.GetStats(); EXPECT_EQ(received_bytes, stats.bytes_received); EXPECT_EQ(4u, stats.packets_received); EXPECT_EQ(1u, stats.packets_revived); EXPECT_EQ(1u, stats.packets_dropped); EXPECT_EQ(kSlowStartThreshold, stats.slow_start_threshold); } TEST_P(QuicConnectionTest, TestFecGroupLimits) { // Create and return a group for 1. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != NULL); // Create and return a group for 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); // Create and return a group for 4. This should remove 1 but not 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); // Create and return a group for 3. This will kill off 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == NULL); // Verify that adding 5 kills off 3, despite 4 being created before 3. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == NULL); } TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { // Construct a packet with stream frame and connection close frame. header_.public_header.connection_id = connection_id_; header_.packet_sequence_number = 1; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = false; header_.fec_flag = false; header_.fec_group = 0; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrame close_frame(&qccf); QuicFrame stream_frame(&frame1_); QuicFrames frames; frames.push_back(stream_frame); frames.push_back(close_frame); scoped_ptr packet( BuildUnsizedDataPacket(&framer_, header_, frames).packet); EXPECT_TRUE(NULL != packet.get()); scoped_ptr encrypted(framer_.EncryptPacket( ENCRYPTION_NONE, 1, *packet)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } TEST_P(QuicConnectionTest, SelectMutualVersion) { connection_.SetSupportedVersions(QuicSupportedVersions()); // Set the connection to speak the lowest quic version. connection_.set_version(QuicVersionMin()); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Pass in available versions which includes a higher mutually supported // version. The higher mutually supported version should be selected. QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); EXPECT_EQ(QuicVersionMax(), connection_.version()); // Expect that the lowest version is selected. // Ensure the lowest supported version is less than the max, unless they're // the same. EXPECT_LE(QuicVersionMin(), QuicVersionMax()); QuicVersionVector lowest_version_vector; lowest_version_vector.push_back(QuicVersionMin()); EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Shouldn't be able to find a mutually supported version. QuicVersionVector unsupported_version; unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); } TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { EXPECT_FALSE(writer_->IsWriteBlocked()); // Send a packet. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); TriggerConnectionClose(); EXPECT_EQ(2u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { BlockOnNextWrite(); TriggerConnectionClose(); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); } TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { BlockOnNextWrite(); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); EXPECT_TRUE(writer_->IsWriteBlocked()); TriggerConnectionClose(); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we expect to be called. scoped_refptr delegate(new MockAckNotifierDelegate); EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); // Send some data, which will register the delegate to be notified. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); // Process an ACK from the server which should trigger the callback. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame = InitAckFrame(1); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we don't expect to be called. scoped_refptr delegate(new MockAckNotifierDelegate); EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(0); // Send some data, which will register the delegate to be notified. This will // not be ACKed and so the delegate should never be called. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); // Send some other data which we will ACK. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(1, "bar", 0, !kFin, NULL); // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 // which we registered to be notified about. QuicAckFrame frame = InitAckFrame(3); NackPacket(1, &frame); SequenceNumberSet lost_packets; lost_packets.insert(1); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we expect to be called. scoped_refptr delegate(new MockAckNotifierDelegate); EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); // Send four packets, and register to be notified on ACK of packet 2. connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); connection_.SendStreamDataWithString(3, "baz", 0, !kFin, NULL); connection_.SendStreamDataWithString(3, "qux", 0, !kFin, NULL); // Now we receive ACK for packets 1, 3, and 4 and lose 2. QuicAckFrame frame = InitAckFrame(4); NackPacket(2, &frame); SequenceNumberSet lost_packets; lost_packets.insert(2); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); // Now we get an ACK for packet 5 (retransmitted packet 2), which should // trigger the callback. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillRepeatedly(Return(SequenceNumberSet())); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame second_ack_frame = InitAckFrame(5); ProcessAckPacket(&second_ack_frame); } // AckNotifierCallback is triggered by the ack of a packet that timed // out and was retransmitted, even though the retransmission has a // different sequence number. TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) { InSequence s; // Create a delegate which we expect to be called. scoped_refptr delegate( new StrictMock); QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, delegate.get()); EXPECT_EQ(1u, stop_waiting()->least_unacked); EXPECT_EQ(1u, writer_->header().packet_sequence_number); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, writer_->header().packet_sequence_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, stop_waiting()->least_unacked); // Ack the original packet, which will revert the RTO. EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, 1, _, _)); EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame ack_frame = InitAckFrame(1); ProcessAckPacket(&ack_frame); // Delegate is not notified again when the retransmit is acked. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame second_ack_frame = InitAckFrame(2); ProcessAckPacket(&second_ack_frame); } // AckNotifierCallback is triggered by the ack of a packet that was // previously nacked, even though the retransmission has a different // sequence number. TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) { InSequence s; // Create a delegate which we expect to be called. scoped_refptr delegate( new StrictMock); // Send four packets, and register to be notified on ACK of packet 2. connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); connection_.SendStreamDataWithString(3, "baz", 0, !kFin, NULL); connection_.SendStreamDataWithString(3, "qux", 0, !kFin, NULL); // Now we receive ACK for packets 1, 3, and 4 and lose 2. QuicAckFrame frame = InitAckFrame(4); NackPacket(2, &frame); SequenceNumberSet lost_packets; lost_packets.insert(2); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); // Now we get an ACK for packet 2, which was previously nacked. SequenceNumberSet no_lost_packets; EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, 1, _, _)); EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(no_lost_packets)); QuicAckFrame second_ack_frame = InitAckFrame(4); ProcessAckPacket(&second_ack_frame); // Verify that the delegate is not notified again when the // retransmit is acked. EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) .WillOnce(Return(no_lost_packets)); EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame third_ack_frame = InitAckFrame(5); ProcessAckPacket(&third_ack_frame); } TEST_P(QuicConnectionTest, AckNotifierFECTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we expect to be called. scoped_refptr delegate( new MockAckNotifierDelegate); EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); // Send some data, which will register the delegate to be notified. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); connection_.SendStreamDataWithString(2, "bar", 0, !kFin, NULL); // Process an ACK from the server with a revived packet, which should trigger // the callback. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); QuicAckFrame frame = InitAckFrame(2); NackPacket(1, &frame); frame.revived_packets.insert(1); ProcessAckPacket(&frame); // If the ack is processed again, the notifier should not be called again. ProcessAckPacket(&frame); } TEST_P(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(visitor_, OnCanWrite()); // Create a delegate which we expect to be called. scoped_refptr delegate(new MockAckNotifierDelegate); EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); // Expect ACKs for 1 packet. EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); // Send one packet, and register to be notified on ACK. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); // Ack packet gets dropped, but we receive an FEC packet that covers it. // Should recover the Ack packet and trigger the notification callback. QuicFrames frames; QuicAckFrame ack_frame = InitAckFrame(1); frames.push_back(QuicFrame(&ack_frame)); // Dummy stream frame to satisfy expectations set elsewhere. frames.push_back(QuicFrame(&frame1_)); QuicPacketHeader ack_header; ack_header.public_header.connection_id = connection_id_; ack_header.public_header.reset_flag = false; ack_header.public_header.version_flag = false; ack_header.entropy_flag = !kEntropyFlag; ack_header.fec_flag = true; ack_header.packet_sequence_number = 1; ack_header.is_in_fec_group = IN_FEC_GROUP; ack_header.fec_group = 1; QuicPacket* packet = BuildUnsizedDataPacket(&framer_, ack_header, frames).packet; // Take the packet which contains the ACK frame, and construct and deliver an // FEC packet which allows the ACK packet to be recovered. ProcessFecPacket(2, 1, true, !kEntropyFlag, packet); } TEST_P(QuicConnectionTest, NetworkChangeVisitorCallbacksChangeFecState) { QuicPacketCreator* creator = QuicConnectionPeer::GetPacketCreator(&connection_); size_t max_packets_per_fec_group = creator->max_packets_per_fec_group(); QuicSentPacketManager::NetworkChangeVisitor* visitor = QuicSentPacketManagerPeer::GetNetworkChangeVisitor( QuicConnectionPeer::GetSentPacketManager(&connection_)); EXPECT_TRUE(visitor); // Increase FEC group size by increasing congestion window to a large number. visitor->OnCongestionWindowChange(1000 * kDefaultTCPMSS); EXPECT_LT(max_packets_per_fec_group, creator->max_packets_per_fec_group()); } class MockQuicConnectionDebugVisitor : public QuicConnectionDebugVisitor { public: MOCK_METHOD1(OnFrameAddedToPacket, void(const QuicFrame&)); MOCK_METHOD5(OnPacketSent, void(QuicPacketSequenceNumber, EncryptionLevel, TransmissionType, const QuicEncryptedPacket&, WriteResult)); MOCK_METHOD2(OnPacketRetransmitted, void(QuicPacketSequenceNumber, QuicPacketSequenceNumber)); MOCK_METHOD3(OnPacketReceived, void(const IPEndPoint&, const IPEndPoint&, const QuicEncryptedPacket&)); MOCK_METHOD1(OnProtocolVersionMismatch, void(QuicVersion)); MOCK_METHOD1(OnPacketHeader, void(const QuicPacketHeader& header)); MOCK_METHOD1(OnStreamFrame, void(const QuicStreamFrame&)); MOCK_METHOD1(OnAckFrame, void(const QuicAckFrame& frame)); MOCK_METHOD1(OnCongestionFeedbackFrame, void(const QuicCongestionFeedbackFrame&)); MOCK_METHOD1(OnStopWaitingFrame, void(const QuicStopWaitingFrame&)); MOCK_METHOD1(OnRstStreamFrame, void(const QuicRstStreamFrame&)); MOCK_METHOD1(OnConnectionCloseFrame, void(const QuicConnectionCloseFrame&)); MOCK_METHOD1(OnPublicResetPacket, void(const QuicPublicResetPacket&)); MOCK_METHOD1(OnVersionNegotiationPacket, void(const QuicVersionNegotiationPacket&)); MOCK_METHOD2(OnRevivedPacket, void(const QuicPacketHeader&, StringPiece payload)); }; TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { QuicPacketHeader header; MockQuicConnectionDebugVisitor* debug_visitor = new MockQuicConnectionDebugVisitor(); connection_.set_debug_visitor(debug_visitor); EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); connection_.OnPacketHeader(header); } TEST_P(QuicConnectionTest, Pacing) { TestConnection server(connection_id_, IPEndPoint(), helper_.get(), factory_, /* is_server= */ true, version()); TestConnection client(connection_id_, IPEndPoint(), helper_.get(), factory_, /* is_server= */ false, version()); EXPECT_FALSE(client.sent_packet_manager().using_pacing()); EXPECT_FALSE(server.sent_packet_manager().using_pacing()); } TEST_P(QuicConnectionTest, ControlFramesInstigateAcks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Send a WINDOW_UPDATE frame. QuicWindowUpdateFrame window_update; window_update.stream_id = 3; window_update.byte_offset = 1234; EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); ProcessFramePacket(QuicFrame(&window_update)); // Ensure that this has caused the ACK alarm to be set. QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); EXPECT_TRUE(ack_alarm->IsSet()); // Cancel alarm, and try again with BLOCKED frame. ack_alarm->Cancel(); QuicBlockedFrame blocked; blocked.stream_id = 3; EXPECT_CALL(visitor_, OnBlockedFrames(_)); ProcessFramePacket(QuicFrame(&blocked)); EXPECT_TRUE(ack_alarm->IsSet()); } } // namespace } // namespace test } // namespace net